Supporting Information

Novel Dolabellane-type Diterpene Alkaloids with Lipid Metabolism Promoting Activities from the Seeds of Nigella sativa

Toshio Morikawa, Fengming Xu, Yousuke Kashima, Hisashi Matsuda, Kiyofumi Ninomiya, and Masayuki Yoshikawa*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan

Table of Contents

Experimental Section
Spectrum Data for Desacyl Derivatives of $\mathbf{1}(\mathbf{1 a - c})$
Spectrum Data for Desacyl Derivatives of $\mathbf{2}(\mathbf{2 a}-\mathbf{e})$
Spectrum Data for Reductants of $\mathbf{3}$ and 4 ($\mathbf{3 a}$ and $\mathbf{4 a}$)
Spectrum Data for Desacyl Derivatives of 3a (3b-d)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{2}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4

General Experimental Procedures. The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ($l=5 \mathrm{~cm}$); CD spectra, JASCO J720WI spectrometer; UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra, JEOL JNM LA-500 (500 MHz) spectrometer; ${ }^{13} \mathrm{C}$ NMR spectra, JEOL JNM LA-500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; EIMS, CIMS, HREIMS, and HRCIMS, JEOL JMS-GCMATE mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10Avp UV-VIS detectors.

The following experimental conditions were used for chromatography: normal-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, 150-350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, 100-200 mesh); HPLC column, YMC-Pack ODS-A (YMC, $250 \times 20 \mathrm{~mm}$ i.d.); TLC, pre-coated TLC plates with Silica gel $60 \mathrm{~F}_{254}$ (Merck, 0.25 mm) (normal-phase) and Silica gel RP-18 $\mathrm{F}_{254 \mathrm{~S}}$ (Merck, 0.25 mm) (reversed-phase); reversed-phase HPTLC, precoated TLC plates with Silica gel RP-18 $\mathrm{WF}_{254 \mathrm{~S}}$ (Merck, 0.25 mm); detection was achieved by spraying with $1 \% \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}-10 \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating.

Extraction and Isolation. The seeds of N. sativa (10.0 kg , collected in Egypt) were extracted with methanol 3 times under reflux for 3 h . Evaporation of the solvent under reduced pressure provided the methanolic extract ($1740 \mathrm{~g}, 17.4 \%$ from this natural medicine). The methanolic extract (1245 g) was partitioned into an EtOAc and water mixture to give an EtOAc-soluble fraction ($723 \mathrm{~g}, 10.1 \%$) and an aqueous phase ($522 \mathrm{~g}, 7.3 \%$). The EtOAcsoluble fraction (285 g) was subjected to ordinary-phase silica gel column chromatography [3.0 kg, n-hexane-EtOAc (20:1-10:1-5:1-2:1-1:2)-CHCl ${ }_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (20:3:1, lower layer-6:4:1)-MeOH] to give 12 fractions [Fr. $1(12.36 \mathrm{~g}), 2(55.91 \mathrm{~g}), 3(74.90 \mathrm{~g}), 4(18.51 \mathrm{~g})$, $5(61.82 \mathrm{~g}), 6(2.55 \mathrm{~g}), 7(0.97 \mathrm{~g}), 8(9.68 \mathrm{~g}), 9(6.69 \mathrm{~g}), 10(8.13 \mathrm{~g}), 11(15.82 \mathrm{~g})$, and 12 $(16.57 \mathrm{~g})$]. Fraction $7(0.97 \mathrm{~g})$ was subjected to reversed-phase silica gel column chromatography $\left[30 \mathrm{~g}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(50: 50-70: 30-85: 15, \mathrm{v} / \mathrm{v})-\mathrm{MeOH}\right]$ to give seven fractions [Fr. 7-1 (112 mg), 7-2 (105 mg), 7-3 (68 mg), 7-4 (315 mg), 7-5 (87 mg), 7-6 (152 mg), and 7-7 (120 mg)]. Fraction 7-4 (315 mg) was further separated by HPLC [YMC-Pack ODS-5-A, $250 \times 20 \mathrm{~mm}$ i.d., $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(85: 15, \mathrm{v} / \mathrm{v})\right]$ to give nigellamine $\mathrm{A}_{1}(\mathbf{1}, 271 \mathrm{mg}$, 0.0096% from the natural medicine). Fraction 7-6 (152 mg) was purified by HPLC [MeOH$\left.\mathrm{H}_{2} \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})\right]$ to give nigellamine $\mathrm{B}_{1}(\mathbf{3}, 33 \mathrm{mg}, 0.0012 \%)$. Fraction $9(6.69 \mathrm{~g})$ was subjected to reversed-phase silica gel column chromatography [200 g, MeOH- $\mathrm{H}_{2} \mathrm{O}(40: 60-$ 60:40-80:20, v/v) -MeOH] to give ten fractions [Fr. 9-1 (1.150 g), 9-2 (943 mg), 9-3 (627 $\mathrm{mg}), 9-4(1.312 \mathrm{~g}), 9-5(142 \mathrm{mg}), 9-6(750 \mathrm{mg}), 9-7(150 \mathrm{mg}), 9-8(241 \mathrm{mg}), 9-9(805 \mathrm{mg})$, and 9-10 (428 mg$)$]. Fraction 9-6 $(750 \mathrm{mg})$ was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(75: 25, \mathrm{v} / \mathrm{v})\right]$ to give nigellamine $\mathrm{B}_{2}(\mathbf{4}, 102 \mathrm{mg}, 0.0036 \%)$. Fraction $9-9(805 \mathrm{mg})$ was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})\right]$ to give nigellamine $\mathrm{A}_{2}(\mathbf{2}, 221 \mathrm{mg}, 0.0078 \%)$.

Treatment of Nigellamine $\mathbf{A}_{\mathbf{1}} \mathbf{(1)}$ with $\mathbf{0 . 1 \%} \mathbf{N a O M e} \mathbf{- M e O H}$. A solution of $\mathbf{1}(10.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . From the reaction mixture, methyl nicotinate (i) and methyl benzoate (ii) were identified by HPLC analyses $\left[t_{\mathrm{R}}\right.$ (i): 5.58 , (ii): 15.80 min , detection: UV (254 nm), column: YMC-Pack ODS-5-A, 250×4.6 mm i.d., mobile phase: $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(60: 40, \mathrm{v} / \mathrm{v})$; flow rate $0.7 \mathrm{ml} / \mathrm{min}$ (standard samples were obtained by diazomethane methylation of commercial nicotinic acid and benzoic acid)].
Then the reaction mixture was neutralized with Dowex HCR-W2 (H^{+}form) and the resin was removed by filtration. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [detection: RI, column: YMC-Pack ODS-5A, $250 \times 20 \mathrm{~mm}$ i.d., mobile phase: $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(60: 40, \mathrm{v} / \mathrm{v})\right]$ to give $\mathbf{1 a}(4.0 \mathrm{mg}, 77 \%)$.
On the other hand, a solution of $\mathbf{1}(15.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was poured into ice-water and the whole was extracted with EtOAc. The EtOAc extract was successively washed with brine then dried over MgSO_{4} powder and filtrated. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [detection: RI, column: YMC-Pack ODS-5A, $250 \times 20 \mathrm{~mm}$ i.d., mobile phase: $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})$] to give $\mathbf{1 b}(4.1 \mathrm{mg}, 40 \%)$ and 10-desacyl derivative ($\mathbf{1 c}, 4.8 \mathrm{mg}, 38 \%$).

1a: A white powder, $[a]_{\mathrm{D}}{ }^{23}+33.9^{\circ}(c=0.20, \mathrm{MeOH})$. IR (KBr): 3304, 3240, 1655, 1561, 1509, $1375,1122,1038,1017,953,777,718 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}} 59.5(\mathrm{C}-1), 71.9(\mathrm{C}-2)$, 129.4 (C-3), 136.5 (C-4), 38.8 (C-5), 23.9 (C-6), 67.4 (C-7), 60.9 (C-8), 46.5 (C-9), 74.4 (C10), 49.8 (C-11), 141.5 (C-12), 28.7 (C-13), 29.4 (C-14), 62.7 (C-15), 16.4 (C-16), 18.8 (C17), 124.5 (C-18), 22.3 (C-19), 22.4 (C-20).

1b: A white powder, $[a]_{\mathrm{D}}{ }^{24}+36.3^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$. High resolution positive-ion FAB-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 441.2641$. Found: 441.2650. UV (MeOH, $\log \varepsilon$): 230 (4.10), 273 (2.91) nm. IR (KBr): 3325, 1717, 1636, 1603, 1541, 1509, 1451, 1271, 1111, 1071, 1026, $953,754,714 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 57.6(\mathrm{C}-1), 73.7(\mathrm{C}-2), 123.3(\mathrm{C}-3), 139.1(\mathrm{C}-4)$, 37.9 (C-5), 22.8 (C-6), 65.9 (C-7), 59.4 (C-8), 44.8 (C-9), 73.6 (C-10), 48.4 (C-11), 138.4 (C12), 28.3 (C-14), 27.5 (C-14), 61.5 (C-15), 16.2 (C-16), 18.5 (C-17), 124.9 (C-18), 21.9 (C19), 22.3 (C-20), 130.2 (C-1'), 129.6 (C-2',6'), 128.5 (C-3',5'), 133.1 (C-4'), 165.9 (C-7'). Positive-ion FAB-MS: $m / z 441(\mathrm{M}+\mathrm{H})^{+}$.
1c: A white powder, $[a]_{\mathrm{D}}{ }^{24}+29.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$. High resolution positive-ion FAB-MS: Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 545.2903 . Found: 545.2906. UV (MeOH, $\log \varepsilon$): 228 (4.46), 274 (3.30) nm. IR (KBr): 3517, 1717, 1647, 1636, 1603, 1541, 1509, 1451, 1281, 1113, 1069, 1026, 953, 756, $712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40,1.74,1.79$ (3 H each, all s, $\mathrm{H}_{3}-17,19$, 20), $1.52(1 \mathrm{H}, \mathrm{dd}, J=12.8,13.5 \mathrm{~Hz}, \mathrm{H} \beta-9), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \alpha-6), 1.82\left(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, \mathrm{H}_{3}-\right.$ 16), 1.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-6$), $2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-14\right), 2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-13\right), 2.37(1 \mathrm{H}, \mathrm{dd}, J=5.5$, $13.5 \mathrm{~Hz}, \mathrm{H} \alpha-9), 2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \alpha-5), 2.43(1 \mathrm{H}, \mathrm{ddd}, J=5.2,12.8,12.8 \mathrm{~Hz}, \mathrm{H} \beta-5), 2.51(1 \mathrm{H}$, br s, H-11), $3.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .9 \mathrm{~Hz}, \mathrm{H}-7), 4.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.76,5.25$ (1 H each, both d, $\left.J=11.0 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 5.40(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, \mathrm{H}-2), 5.62(1 \mathrm{H}, \mathrm{dd}, J=0.9,10.1 \mathrm{~Hz}, \mathrm{H}-3)$, 7.19 ($\left.2 \mathrm{H}, \mathrm{dd}, J=7.6,8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5{ }^{\prime}\right), 7.42\left(2 \mathrm{H}, \mathrm{dd}, J=7.6,8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5{ }^{\prime \prime \prime}\right), 7.45(1 \mathrm{H}, \mathrm{tt}, J$ $\left.=1.2,7.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.58\left(1 \mathrm{H}, \mathrm{tt}, J=1.2,7.6 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.87\left(2 \mathrm{H}, \mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, $8.07\left(2 \mathrm{H}, \mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, \mathrm{H}-2{ }^{2 \prime \prime}, 6{ }^{\prime \prime \prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 56.2(\mathrm{C}-1), 73.2(\mathrm{C}-2), 123.7$
(C-3), 139.4 (C-4), 37.8 (C-5), 22.9 (C-6), 65.6 (C-7), 58.9 (C-8), 45.4 (C-9), 73.5 (C-10), 49.1 (C-11), 137.8 (C-12), 28.5 (C-13), 30.5 (C-14), 66.5 (C-15), 16.4 (C-16), 18.5 (C-17), 125.8 (C-18), 21.9 (C-19), 22.5 (C-20), 130.0 (C-1'), 129.6 (C-2',6'), 128.2 (C-3',5'), 132.8 (C4'), 166.3 (C-7'), 130.3 (C-1'"), 129.8 (C-2'", $\left.6{ }^{\prime \prime \prime}\right), 128.5$ (C-3'",5"'), 133.1 (C-4"'), 166.3 (C-7"'). Positive-ion FAB-MS: $m / z 545(\mathrm{M}+\mathrm{H})^{+}$.

Treatment of Nigellamine $\mathbf{A}_{\mathbf{2}}$ (2) with $\mathbf{0 . 1 \%} \mathbf{N a O M e} \mathbf{- M e O H}$. A solution of $\mathbf{2}(10.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . From the reaction mixture, methyl nicotinate and methyl benzoate were identified by HPLC analyses and 1a $(3.8 \mathrm{mg}, 74 \%)$ was purified by the similar procedure.
On the other hand, a solution of $2(5.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-\mathrm{MeOH}(1.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was poured into ice-water and the whole was extracted with EtOAc. The EtOAc extract was successively washed with brine then dried over MgSO_{4} powder and filtrated. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [detection: RI, column: YMC-Pack ODS-5A, $250 \times 20 \mathrm{~mm}$ i.d., mobile phase: $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})\right]$ to give $\mathbf{2 a}(0.1 \mathrm{mg}, 3 \%), 10-$ desacyl derivative ($\mathbf{2 b}, 1.8 \mathrm{mg}, 43 \%$), 2-desacyl derivative ($\mathbf{2 c}, 1.0 \mathrm{mg}, 24 \%$), 2,15-desacyl derivative (2d, $0.2 \mathrm{mg}, 6 \%$), 2,10-desacyl derivative ($\mathbf{2 e}, 0.4 \mathrm{mg}, 12 \%$), and $\mathbf{1 a}(0.3 \mathrm{mg}, 9 \%$).

2a: A white powder.
2b: A white powder. High resolution EI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right)$: 545.2777. Found: 545.2781. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.41,1.76,1.83$ (3 H each, all s, $\mathrm{H}_{3}-17,19,20$), $1.45(1 \mathrm{H}$, dd, $J=12.5,13.5 \mathrm{~Hz}, \mathrm{H} \beta-9), 1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \alpha-6), 1.79\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}_{3}-16\right), 1.92(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} \beta-6), 2.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-14\right), 2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-13\right), 2.39,2.57$ (1 H each, both $\mathrm{m}, \mathrm{H}_{2}-5$), 2.45 (1 H , br s, H-11), $2.48(1 \mathrm{H}, \mathrm{dd}, J=5.8,13.5 \mathrm{~Hz}, \mathrm{H} \alpha-9), 3.09(1 \mathrm{H}, \mathrm{d}-\mathrm{like}, \mathrm{H}-7), 4.22(1 \mathrm{H}$, br dd, $J=c a .6,13 \mathrm{~Hz}, \mathrm{H}-10), 4.77,5.33\left(1 \mathrm{H}\right.$ each, both d, $\left.J=10.7 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 5.49(1 \mathrm{H}, \mathrm{d}, J=$ $\left.10.4 \mathrm{~Hz}, \mathrm{H}-2), 5.77(1 \mathrm{H}, \mathrm{d}, J=c a .10 \mathrm{~Hz}, \mathrm{H}-3), 7.10(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.9 \mathrm{~Hz}, \mathrm{H}-5)^{\prime}\right), 7.42(2 \mathrm{H}$, dd, $\left.J=7.7,8.4 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}{ }^{\prime \prime}, 5^{\prime \prime \prime}\right), 7.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=c a .8 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.97(1 \mathrm{H}, \mathrm{ddd}, J=1.2,2.1$, $\left.7.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 8.04$ ($2 \mathrm{H}, \mathrm{dd}, J=1.7,8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$, $6^{\prime \prime \prime}$), 8.59 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4$ '), 8.92 (1 H , br s, H-2'). EI-MS (\%): m/z 545 ($\mathrm{M}^{+}, 2$), 423 (3), 300 (72), 121 (59), 105 (100).
2c: A white powder. High resolution EI-MS: Calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right)$: 545.2777. Found: 545.2772. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.50,1.651 .86$ (3 H each, all s, $\mathrm{H}_{3}-17,19,20$), 1.62 (1 H , dd, $J=12.2,13.2 \mathrm{~Hz}, \mathrm{H} \beta-9), 1.72\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}_{3}-16\right), 1.76,1.91$ (1 H each, both $\mathrm{m}, \mathrm{H}_{2}-6$), 2.27, 2.48 (1 H , each, both m, H2-14), $2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-13\right), 2.47(1 \mathrm{H}, \mathrm{dd}, J=5.5,13.2 \mathrm{~Hz}$, $\mathrm{H} \alpha-9), 2.48,2.53$ (1 H each, both m, $\mathrm{H}_{2}-5$), $2.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-11), 3.08(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .9 \mathrm{~Hz}$, H-7), $4.04(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H}-2), 4.97,5.02$ (1 H each, both d, $J=11.3 \mathrm{~Hz}, \mathrm{H}_{2}-15$), 5.68 ($1 \mathrm{H}, \mathrm{dd}, J=5.5,11.0 \mathrm{~Hz}, \mathrm{H}-10$), $5.69(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .11 \mathrm{~Hz}, \mathrm{H}-3), 7.37(2 \mathrm{H}, \mathrm{dd}, J=7.8,8.5$ Hz, H-3'", 5"'), 7.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ "), 7.53 ($1 \mathrm{H}, \mathrm{tt}, J=1.2,7.8 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime \prime}$), 8.08 ($2 \mathrm{H}, \mathrm{dd}, J=1.2$, $8.5 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime \prime}$ ', $6^{\prime \prime \prime}$), 8.38 (1 H, ddd, $J=1.9,2.2,8.0 \mathrm{~Hz}, \mathrm{H}-6$ "), 8.71 ($1 \mathrm{H}, \mathrm{br}$ s, H-4"), 9.11 (1 H , br s, H-2"). EI-MS (\%): m/z 545 ($\mathrm{M}^{+}, 2$), 527 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1$), 423 (29), 300 (45), 121 (100), 105 (95).
2d: A white powder. High resolution EI-MS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$: 441.2515 . Found: 441.2520. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.42(1 \mathrm{H}, \mathrm{dd}, J=13.1,15.3 \mathrm{~Hz}, \mathrm{H} \beta-9), 1.45,1.63,1.82(3 \mathrm{H}$
each, all s, $\left.\mathrm{H}_{3}-17,19,20\right), 1.67\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}_{3}-16\right), 1.75,1.88\left(1 \mathrm{H}\right.$ each, both $\mathrm{m}, \mathrm{H}_{2}-$ 6), 1.99, $2.23\left(1 \mathrm{H}\right.$, each, both $\left.\mathrm{m}, \mathrm{H}_{2}-14\right), 2.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-13\right), 2.34,2.63$ (1 H each, both m, $\left.\mathrm{H}_{2}-5\right)$, 2.45 (1 H , dd-like, $\mathrm{H} \alpha-9$), $2.48(1 \mathrm{H}$, br s, $\mathrm{H}-11), 3.06(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .9 \mathrm{~Hz}, \mathrm{H}-7), 3.97$, 4.06 (1 H each, both d, $J=10.7 \mathrm{~Hz}, \mathrm{H}_{2}-15$), $4.49(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-2), 5.58(1 \mathrm{H}, \mathrm{dd}, J=$ $5.8,13.5 \mathrm{~Hz}, \mathrm{H}-10), 5.67(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .10 \mathrm{~Hz}, \mathrm{H}-3), 7.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 "), 8.38(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.=c a .8 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 8.79$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4$ "), 9.13 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H-2")}. \mathrm{EI-MS} \mathrm{(} \mathrm{\%):} \mathrm{m/z} 441$ (${ }^{+}, 1$), $423\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 6\right), 300(25), 121$ (100).
2e: A white powder. High resolution positive-ion FAB-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$: 441.2641. Found: 441.2642. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.37,1.73,1.77$ (3 H each, all s, $\mathrm{H}_{3}-17,19$, 20), $1.66\left(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}_{3}-16\right), 2.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-11), 3.03(1 \mathrm{H}, \mathrm{brd}, J=c a .10 \mathrm{~Hz}, \mathrm{H}-7)$, $3.98(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-2), 4.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.70,4.98$ (1 H each, both d, $J=10.7 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-15\right), 5.59(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .10 \mathrm{~Hz}, \mathrm{H}-3), 7.46\left(2 \mathrm{H}, \mathrm{dd}, J=7.8,8.2 \mathrm{~Hz}, \mathrm{H}-3 " \mathrm{l}, 5{ }^{\prime \prime}\right)$), $7.58(1 \mathrm{H}$, t-like, H-4"'), 8.07 ($2 \mathrm{H}, \mathrm{dd}, J=1.2,8.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6{ }^{\prime \prime}$). Positive-ion FAB-MS: m/z 441 $(\mathrm{M}+\mathrm{H})^{+}$.

Triphenylphosphine $\left(\mathbf{P P h}_{\mathbf{3}}\right)$ Reduction of Nigellamines $\mathbf{B}_{\mathbf{1}} \mathbf{(3)}$ and $\mathbf{B}_{\mathbf{2}}$ (4). A solution of $\mathbf{3}$ (20.0 mg) or $4(15.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was treated with $\mathrm{PPh}_{3}(20.0 \mathrm{mg})$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Removal of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [detection: RI, column: YMC-Pack ODS-5-A, $250 \times 20 \mathrm{~mm}$ i.d., mobile phase: $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20$ or $75: 25$, v/v)] to give 3a (13.2 $\mathrm{mg}, 68 \%$ from 3) or $\mathbf{4 a}(9.4 \mathrm{mg}, 64 \%$ from 4), respectively.

3a: A white powder, $[\alpha]^{24}{ }_{\mathrm{D}}+22.8^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$. High resolution EI-MS: Calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{NO}_{8}\left(\mathrm{M}^{+}\right): 665.2988$. Found: 665.2995. $\mathrm{CD}(\mathrm{MeOH}, \Delta \varepsilon):+8.01(216 \mathrm{~nm}),-1.54(236$ $\mathrm{nm}) . \mathrm{UV}(\mathrm{MeOH}, \log \varepsilon): 226(4.52), 264$ (3.68) nm. IR (KBr): 3517, 1717, 1647, 1636, 1592, $1453,1279,1115,1026,941,756,712 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 54.6(\mathrm{C}-1), 73.3(\mathrm{C}-2)$, 122.6 (C-3), 141.1 (C-4), 38.1 (C-5), 23.0 (C-6), 66.8 (C-7), 59.0 (C-8), 41.4 (C-9), 73.9 (C10), 52.0 (C-11), 149.0 (C-12), 125.2 (C-13), 38.2 (C-14), 66.2 (C-15), 17.4 (C-16), 17.1 (C17), 71.5 (C-18), 32.1 (C-19), 32.5 (C-20), 129.8 (C-1'), 129.4 (C-2',6'), 127.9 (C-3',5'), 132.5 (C-4'), 166.2 (C-7'), 125.5 (C-1"), 150.7 (C-2"), 153.5 (C-4"), 123.3 (C-5"), 137.0 (C-6"), 164.9 (C-7"), 130.0 (C-1'"), 129.9 (C-2'",6"'), 128.2 (C-3"',5'"), 132.9 (C-4"'), 166.3 (C-7"'). EI-MS (\%): m/z 665 ($\mathrm{M}^{+}, 13$), 122 (100).
4a: A white powder, $[\alpha]^{26}{ }_{\mathrm{D}}+22.8^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$. High resolution Positive-ion FAB-MS: Calcd for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}$: 667.3019. Found: 667.3022. CD (MeOH, $\left.\Delta \mathcal{\varepsilon}\right)$: +7.37 (221 $\mathrm{nm}),-0.41(256 \mathrm{~nm})$. UV (MeOH, $\log \varepsilon): 222$ (4.58), 264 (3.94) nm. IR (KBr): 3415, 1717, $1647,1636,1592,1456,1283,1113,1026,745,714 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 54.8(\mathrm{C}-1)$, 74.1 (C-2), 122.4 (C-3), 141.9 (C-4), 38.2 (C-5), 23.0 (C-6), 66.9 (C-7), 59.1 (C-8), 41.5 (C9), 74.0 (C-10), 52.1 (C-11), 149.5 (C-12), 125.2 (C-13), 38.3 (C-14), 66.2 (C-15), 17.4 (C16), 17.1 (C-17), 71.6 (C-18), 32.2 (C-19), 32.7 (C-20), 126.0 (C-1'), 150.9 (C-2'), 153.2 (C$\left.4^{\prime}\right), 122.9$ (C-5'), 136.9 (C-6'), 165.2 (C-7'), 125.6 (C-1"), 150.9 (C-2"), 153.6 (C-4"), 123.8 (C-5"), 137.3 (C-6"), 165.1 (C-7"), 130.1 (C-1"'), 129.9 (C-2"',6"'), 128.6 (C-3"',5"'), 133.3 (C4"'). Positive-ion FAB-MS: $m / z 667(\mathrm{M}+\mathrm{H})^{+}$.

Treatment of 3a with $\mathbf{0 . 1} \% \mathbf{N a O M e}-\mathbf{M e O H}$. A solution of $\mathbf{3 a}(5.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-$ $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . From the reaction mixture, methyl nicotinate and methyl benzoate were identified by HPLC analyses and 3b ($1.9 \mathrm{mg}, 72 \%$) was purified by the similar procedure.
On the other hand, a solution of $\mathbf{3 a}(8.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was poured into ice-water and the whole was extracted with EtOAc. The EtOAc extract was successively washed with brine then dried over MgSO_{4} powder and filtrated. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue, which was purified by HPLC [detection: RI, column: YMC-Pack ODS-5A, $250 \times 20 \mathrm{~mm}$ i.d., mobile phase: $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20, \mathrm{v} / \mathrm{v})\right]$ to give $\mathbf{3 c}(2.3 \mathrm{mg}, 42 \%)$ and 10 -desacyl derivative (3d, $2.5 \mathrm{mg}, 37 \%$).

3b: A white powder, $[\alpha]^{24}{ }_{\mathrm{D}}+35.6^{\circ}(c=0.10, \mathrm{MeOH})$. High resolution EI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right): 334.2144$. Found: 334.2140. IR (KBr): 3346, 1653, 1559, 1507, 1387, $1262,1120,1044,938,756,718 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 56.3(\mathrm{C}-1), 72.3(\mathrm{C}-2), 127.6$ (C-3), 137.3 (C-4), 38.1 (C-5), 23.0 (C-6), 66.6 (C-7), 59.5 (C-8), 43.3 (C-9), 70.1 (C-10), 52.4 (C-11), 149.1 (C-12), 126.2 (C-13), 36.4 (C-14), 63.6 (C-15), 16.8 (C-16), 17.5 (C-17), 71.6 (C-18), 33.0 (C-19), 33.2 (C-20). EI-MS (\%): m/z 334 (${ }^{+}+\mathrm{H}_{2} \mathrm{O}, 1$), 120 (100).

3c: A white powder, $[\alpha]^{24} \mathrm{D}+32.9^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$. High resolution positive-ion CI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 457.2590. Found: 457.2587. UV (MeOH, $\log \varepsilon$): 230 (3.93), 273 (2.84) nm. IR (KBr): 3368, 1717, 1636, 1601, 1584, 1453, 1279, 1098, 1026, 938, 756, $714 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 56.6(\mathrm{C}-1), 74.5(\mathrm{C}-2), 122.8(\mathrm{C}-3), 140.0(\mathrm{C}-4), 38.0(\mathrm{C}-5)$, 23.0 (C-6), 66.8 (C-7), 59.4 (C-8), 43.1 (C-9), 70.2 (C-10), 52.4 (C-11), 148.5 (C-12), 126.3 (C-13), 34.7 (C-14), 61.1 (C-15), 16.8 (C-16), 17.7 (C-17), 71.6 (C-18), 32.7 (C-19), 33.1 (C20), 130.2 (C-1'), 129.6 (C-2',6'), 128.5 (C-3',5'), 133.1 (C-4'), 166.0 (C-7'). Positive-ion CIMS: $m / z 457(\mathrm{M}+\mathrm{H})^{+}$.
3d: A white powder, $[\alpha]^{24}{ }_{\mathrm{D}}+18.2^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$. High resolution positive-ion CI-MS: Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$: 561.2852. Found: 561.2869. UV (MeOH, $\log \varepsilon$): 228 (4.11), 274 (3.03) nm. IR (KBr): 3517, 1717, 1647, 1603, 1559, 1451, 1283, 1117, 1026, 941, 756, $712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.38,1.54,1.56\left(3 \mathrm{H}\right.$ each, all s, $\left.\mathrm{H}_{3}-17,19,20\right), 1.62(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} \beta-9), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \alpha-6), 1.89\left(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}, \mathrm{H}_{3}-16\right), 1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-6), 2.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} \alpha-5), 2.41(1 \mathrm{H}, \mathrm{dd}, J=5.5,13.5 \mathrm{~Hz}, \mathrm{H} \alpha-9), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=4.9,12.5,12.5 \mathrm{~Hz}, \mathrm{H} \beta-5)$, $2.64(1 \mathrm{H}, \mathrm{dd}, J=3.1,17.7 \mathrm{~Hz}, \mathrm{H} \alpha-14), 2.73(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=c a .18 \mathrm{~Hz}, \mathrm{H} \beta-14), 2.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-11), 2.95(1 \mathrm{H}, \mathrm{br}$ d, $J=c a .10 \mathrm{~Hz}, \mathrm{H}-7), 4.62(1 \mathrm{H}$, br dd, $J=c a .6,13 \mathrm{~Hz}, \mathrm{H}-10), 4.87,5.29$ (1 H each, both d, $J=11.0 \mathrm{~Hz}, \mathrm{H}_{2}-15$), $5.46(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-2), 5.67(1 \mathrm{H}, \mathrm{dd}, J=0.9$, $10.4 \mathrm{~Hz}, \mathrm{H}-3), 5.73\left(1 \mathrm{H}\right.$, br s, H-13), $7.12\left(2 \mathrm{H}, \mathrm{dd}, J=7.7,8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.42(1 \mathrm{H}, \mathrm{tt}, J=$ $1.3,7.7 \mathrm{~Hz}, \mathrm{H}-4$ '), 7.43 ($\left.2 \mathrm{H}, \mathrm{dd}, J=7.7,8.3 \mathrm{~Hz}, \mathrm{H}-3{ }^{\prime \prime \prime}, 5{ }^{\prime \prime}\right)$), 7.58 ($\left.1 \mathrm{H}, \mathrm{tt}, J=1.3,7.7 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime \prime \prime}\right)$, 7.82 ($2 \mathrm{H}, \mathrm{dd}, J=1.3,8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 8.07 ($2 \mathrm{H}, \mathrm{dd}, J=1.3,8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6{ }^{\prime \prime \prime}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 54.3(\mathrm{C}-1), 73.9(\mathrm{C}-2), 123.1(\mathrm{C}-3), 140.6(\mathrm{C}-4), 38.1(\mathrm{C}-5), 22.9(\mathrm{C}-6), 66.6(\mathrm{C}-$ 7), 59.4 (C-8), 43.8 (C-9), 70.0 (C-10), 53.2 (C-11), 149.6 (C-12), 125.5 (C-13), 37.9 (C-14), 65.7 (C-15), 17.0 (C-16), 17.5 (C-17), 71.7 (C-18), 33.1 (C-19), 33.2 (C-20), 130.1 (C-1'), 129.6 (C-2',6'), 128.1 (C-3',5'), 132.8 (C-4'), 166.4 (C-7'), 130.4 (C-1'"), 129.8 (C-2"',6"'), 128.5 (C-3"',5"'), 133.0 (C-4"'), 166.4 (C-7"'). Positive-ion CI-MS: m/z 561 (M+H)+.

Treatment of $\mathbf{4 a}$ with $\mathbf{0 . 1} \% \mathbf{N a O M e}-\mathbf{M e O H}$. A solution of $\mathbf{4 a}(6.0 \mathrm{mg})$ in $0.1 \% \mathrm{NaOMe}-$ $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . From the reaction mixture, methyl nicotinate and methyl benzoate were identified by HPLC analyses and $\mathbf{3 b}(2.1 \mathrm{mg}, 66 \%)$ was purified by the similar procedure.

