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Supporting Material 

A. Evaluation of local and nonlocal contributions 

1. Derivation and analysis of Eqn. 6. 

Substitution of (4) into (3), (3) into (1) and (2) by taking into account (5) and the Fresnel 

and local field factors for the sum frequency radiation lead to the general expression of Eqn.6: 
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                                                                                                                                     (A.1b) 

where )( nme ω  is the m-th component of the polarization unit vector of the n-th electric field in 

medium 2. A partial integration in the fourth integral leads to the result 
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                                                                                                                                     (A.1c) 

We note that an analogous formula was obtained by Shen in Ref.21, although in that work the 

local field corrections were not explicitly considered. 

The first integral relates to the dipolar (local) contribution and was discussed in detail in 

Section 3.2. As it was already noted in Ref.21, in the case of SFG (or SHG) from a semi-infinite 

medium Eqn.A.1c gives two kinds of nonlocal contributions. The first, described by the second, 



 2

third and fourth integrals, is due to the rapid field variation in the interfacial region and can be 

suppressed if the dielectric functions of the ambient and the substrate are matched.41 The second, 

given by the bracketed ({ }) expression in Eqn.A.1c, describes a contribution induced by 

structural variation in the interfacial region. We note that the susceptibilities as material 

parameters are expected to be proportional to the local density of the nonlinear medium. Since 

we can choose the boundaries of the thin layer in such a way that the susceptibilities are 

negligible at both boundaries, we can see that this expression in Eqn.A.1c vanishes in the thin 

film model, thus leading to the final expression of Eqn. 6.  

2. Estimation of the second- and higher-order hyperpolarizabilities 

We want to evaluate the hyperpolarizabilities according to the following formulas (Eqn. 

9): 
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where µ , αt , A
t

, Q
t

 are the dipole moment, polarizability, electric-dipole-quadrupole 

polarizability and quadrupole moment, respectively. The derivatives are taken with respect to the 

s-th normal coordinate, while sω  and sΓ  denote the frequency and width of the s-th normal 

vibration.  
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Using a bond additivity modela we can deduce bond polarizability derivatives taken with 

respect to the bond length such as 
r∂

∂ ζζα
 or 

r

A

∂
∂ ζζζ  (ζ is the direction of the bond) from the 

published polarizability data. For example, the value for 
r∂

∂ ζζα
 of a C-H bond from the data of 

Ref.b is quite close to the value (3×10-30 Cm/V) usually used in the SFG literature.22 

Unfortunately, we were unable to find a value for 
r

A

∂
∂ ζζζ  of a C-H bond. In the literature, we 

found the electric-dipole-quadrupole polarizability functions for CF4 and HCl.c,d From these data 

the bond additivity model yields =
∂

∂
r

Aζζζ  12×10-40 Cm2/V for a C-F bond and 4×10-40 Cm2/V for 

a Cl-H bond. Here we approximate 
r

A

∂
∂ ζζζ  of the C-H bond to be 10×10-40 Cm2/V. Assuming C3v 

symmetry for the methyl group and using the value 20109.2 −×−=
∂

∂
r
ζµ

 C,22 the bond additivity 

model gives the following nonzero elements of the sPB ,1
αβγδ  tensor for the symmetric methyl 

stretch: 

Vs

m
BBBB symPsymPsymPsymP

5
37,,,, 109.31111 −×−=−=−=−= ηηξζηξηζξηηζξξξζ  

Vs

m
BBBBBB symPsymPsymPsymPsymPsymP

5
37,,,,,, 108.2111111 −×====== ζηηζζξξζηζηζξζξζηηζζξξζζ                  (A.3) 

Vs

m
B symP

5
38, 109.61 −×=ζζζζ  

Although it is difficult to judge how reasonable is the approximation of the electric-dipole-

quadrupole derivative of a C-H bond, we note that the resulting hyperpolarizability is of the same 

order of magnitude as the product of the dipole hyperpolarizability and the bond length, as 
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expected.21 Therefore, we believe the above hyperpolarizabilities are suitable for our order of 

magnitude estimation purposes.  

With these values and assuming azimuthal isotropy for the thin layer, we can evaluate the 

nonlocal susceptibility 1P
ijklχ  for the symmetric methyl stretch. Although we were unable to find 

values for 
sq

Q

∂
∂ γδ , we expect that the elements of 2P

ijklχ  are in the same order of magnitude.21,44 

Furthermore, we assume that the approximate relation 1P
jikl

Q
ijkl χχ ≈  is also valid.44 

 We note that as far as the methyl groups can be approximated as harmonic oscillators, 

their higher order hyperpolarizabilities are connected in a simple way to their linear 

polarizability, as described in Refs.e and f. The nonlocal hyperpolarizabilities obtained from 

such an estimation are of the same order of magnitude as the ones derived above. Thus we 

believe that our approximations above are reasonable. 

3. Estimation of the nonlocal contributions 

As Eqn.6 indicates, the nonlinear response from the thin film is determined by both its 

optical and structural properties. Therefore, in order to evaluate the nonlocal contributions, we 

have to use a structural and optical model for the film. As the properties of such a layer are 

largely unknown, for the purpose of our model calculation we have to assume some specific 

forms for the optical functions ),( zfi ω  and the distribution ),( zG θ .  

We understand that the problem of optical functions such as local fields is extremely 

complicated. The Lorentz model is one of the traditional ways to deal with the local field 

correction problem within the bulk of a material. Nevertheless, several calculations indicate that 

even at a surface it can give reasonable estimations.g In addition it is often found that if the local 

fields are evaluated by planewise summation (as in Ref. 46) in a multilayered system, the result 
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depends mostly on the properties of the actual layer and is only slightly influenced by the 

adjacent layers.h Again this means that the local fields may not differ too strongly from their bulk 

value even in the case of the loss of centrosymmetry at a surface. Also, the protein film we 

considered here is several nm thick, thus it is more like a bulk than an infinitesimally sharp 

interface for the calculation of local field correction factors. We believe that it is a reasonable 

approach to use the local field correction factor from the Lorentz model:i, j 
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where 2),(),( znz ωωε ≡  is the local dielectric function and we assume that the latter is a linear 

function of the local density N(z). Furthermore, we may neglect the frequency dependence of the 

local optical properties: 

)(1)( zNz ⋅+= ρε                                      (A.5) 

where ρ is an empirical parameter. 

As far as the distribution function is concerned, let us assume that we have a monolayer 

of BSA adsorbed on a fused silica substrate. We assume that the nonlinearly polarizable groups 

are the methyl groups, which are randomly and uniformly distributed across the film. From 

previous studies we can assume that the thickness of an adsorbed BSA monolayer is around 4 

nm. The average density of the CH3 groups corresponds to that expected for an adsorbed BSA 

monolayer (which contains 2×1012 molecule/cm2, with 300 methyl groups on each molecule). 

The ambient in the positive half-space is air with dielectric function ε1 = 1, while the substrate is 

fused silica with ε2 = 2.1 (n2 = 1.45) at all relevant wavelengths. The refractive index inside the 

protein layer is assumed to be 1.4-1.6.k We used 1.4 here, but 1.6 has also been found not to 
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change the conclusion. The density and dielectric function profiles used in our calculation are 

shown in Fig.A. 

Furthermore, we assume that the distribution function ),( zG θ  can be written as a product 

of a depth-dependent density and a depth-independent orientation distribution )(θg  (i.e. the 

orientation of the methyl groups is independent of their location): 

)(
)(

),(
0

θθ g
N

zN
zG ⋅=                  (A.6) 

and we assume that the orientation distribution is a random distribution, for which the local 

contribution vanishes. 
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Fig. A The density and dielectric function profiles of the adsorbed protein layer
used in our calculation on nonlocal contributions. 
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B. Further discussions about the local field corrections 
 

 We used the local refractive index term n(z) instead of the average n’ which is used in the 

infinitesimally thin film layer model, and ignored the phase variation of the optical field (protein 

monolayer adsorption) . The calculated results of Fijk as a function of n(z) by using the Lorentz 

model and Eqn. A4 and Eqn. 10 are shown in Fig. B. Please note that according to the definition 

in Eq.5, Fijk includes both the local 

refractive index term 






)(2

2
2

zn
n and the 

local optical field correction factor. With 

this approximation, the ssp and sps 

polarization combinations have no local 

field correction factors and no 






)(
1

2 zn
 

terms in the calculation of the local optical 

field, which is quite different from the 

common infinitesimally thin film model. Our 

model also indicates that the quantitative 

interpretation of ppp spectra collected from interfacial proteins may need more in-depth analysis.   

 

C. Discussion of the effect of the protein film thickness 
 
       We emphasized in our paper that our treatment is suitable for thin protein films (e.g. 

monolayer adsorption). Under this condition, the protein film is thin enough to ignore the slow 

n(z)
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Fig. B Calculated Fijk as a function of local 
refractive index by using Lorentz model  
(n2=1) 
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phase shift due to propagation of the light beams across the film (equation 4 in the paper). In 

order to provide more insights into this assumption, we will use two examples to evaluate the 

effect of the slow phase shift. We consider two extreme conditions in which the chemical groups 

we are measuring are separated into two parts by a distance d (Figure C). In case a, all the groups 

orient along the film surface normal in the same direction, while case b has a symmetric film 

structure. The calculated SFG intensities with and without considering the slow phase shifts are 

shown in Figure D. The calculation method can be found in Ref. 42. Our calculations are based 

on our SFG geometry indicated in this paper and we assume the refractive indices of the films 

are 1.45. 

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         From the calculated results we can see that if the protein film is thick, the slow phase shift 

should be considered in the calculation.  The calculation of the thick film requires an additional 

knowledge of the depth dependent density of chemical groups, which is usually unknown.  If the 

protein film is very thin (<10 nm), ignoring the phase shift will not generate substantial errors 

and can simplify the calculation. Usually, the thickness of an adsorbed protein monolayer is only 

several nanometers. Therefore, our treatments in the paper are suitable for most conditions.  
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Fig. C Model films used to evaluate the slow phase shift effect.    
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       Fig. D Calculated SFG intensity without considering the slow phase shift 

(solid line); considering the slow phase shift (dash); a: calculated results for Figure 

Ca; b: calculated results for Figure Cb;    
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