Supporting Information

Title:	Dive	erse Modes of Reactivity of	of Dialkyl azo	dicar	box	ylates with P(III)
	Com	pounds: Synthesis, Structur	re and Reactiv	ity of	Pr	oducts Other than
	the	Morrison-Brunn-Huisgen	Intermediate	in	a	Mitsunobu-Type
	Read	etion				

Authors: N. Satish Kumar, K. Praveen Kumar, K. V. P. Pavan Kumar, Praveen Kommana, Jagadese J. Vittal and K. C. Kumara Swamy*

Figure S1.	A plot showing the hydrogen-bonded dimer of 16 .	S 2
Figure S2.	A plot showing the molecular structure of 19.	S 3
Figure S3	A plot showing the molecular structure of compound 21.	S 4
Figure S4.	A plot showing the molecular structure of 22.CH ₂ Cl ₂ .	S5
Figure S5	A plot showing the molecular structure of compound 25.	S 6
Figure S6	A plot showing the molecular structure of compound 27.	S 7
Figure S7.	A plot showing the molecular structure of 28.	S 8
Figure S8	A plot showing the molecular structure of compound 30.	S 9
Figure S9	Solution (VT) and solid-state ³¹ P NMR spectra of 17 .	S10
Figure S10	Variable temperature ³¹ P NMR spectra for compound 28 .	S 11
Experimenta	l (General remarks)	S12

Table S1. ³¹P NMR chemical shifts for compounds mentioned in the text S13-S17

Figure S1. A plot showing the molecular structure of the hydrogen-bonded dimer of **16**; only selected atoms labeled with the hydrogen atoms not shown. The second set in the asymmetric unit is not shown. Selected bond parameters: P-O(1) 1.586(3), P-O(2) 1.593(3), P-N(1) 1.718(4), P-N(3) 1.464(4) Å. P...S 3.237 (2) Å. Hydrogen bonded D-H, H..A, D...A and D-H...A parameters: N(2)-H(N2)...O(3') [dimer] 0.84(4), 2.01(4), 2.833(5)Å, 166(4)°.

Figure S2. A plot showing the molecular structure of **19**; only selected atoms labeled with the hydrogen atoms [except on N(5)] not shown. The second molecule in the asymmetric unit is not shown. Selected bond parameters: P(1)-N(1) 1.680(3), P(1)-N(2) 1.695(3), P(1)-Cl(1) 2.1425(16), P(2)-N(1) 1.681(3), P(2)-N(2) 1.674(3), P(2)-N(3) 1.488(3), P(2)-N(4) 1.723(3) Å. Hydrogen bonded D-H, H...A, D...A and D-H...A parameters: N(5)-H(N5)...O(3') [dimer] 0.93(4), 1.96(4), 2.892(4)Å, 175(3)°.

Figure S3 A plot showing the molecular structure of compound **21**. Selected bond parameters: P(1)-N(1) 1.707(7), P(1)-N(2) 1.701(7), P(1) – O(5) 1.605(7), P(2)-N(3) 1.585(7), P(2)-N(1) 1.619(6), P(2)-N(2) 1.630 (7), P(2)-N(4) 1.683(8), N(4)-N(5) 1.436(8), P(1)...P(2) 2.496(3) Å. D-H, H.A, D...A and D-H...A parameters: N(3)-H(3)...Cl 0.86, 2.37, 3.207(8)Å, 163.4°; N(5)-H(5)...Cl 0.86, 2.34, 3.071(9), 142.4°.

Figure S4. A plot showing the molecular structure of **22.**CH₂Cl₂; only selected atoms labeled with the solvent and hydrogen atoms not shown. Selected bond parameters: P-O(1) 1.556(3), P-O(2) 1.547(3), P-N(1) 1.564(4), P-N(2) 1.656(3) Å.

Figure S5 A plot showing the molecular structure of compound $25.3/2C_6H_5CH_3$; only selected atoms labeled with the solvent and hydrogen atoms not shown. Selected bond parameters: P-O(1) 1.565(2), P-O(2) 1.545(2), P-O(3) 1.553(3), P-N(1) 1.546(3) Å. D-H, H..A, D...A and D-H...A parameters: N(3)-H(3)...O(8') [dimeric] 0.87, 2.24, 3.062(4)Å, 156.8°; O(9)-H(9)...O(9') [intramolecular] 0.83, 2.31, 2.778(4) Å, 116.1°.

Figure S6 A plot showing the molecular structure of compound **27**.3/2C₆H₅CH₃; only selected atoms labeled with the solvent and hydrogen atoms not shown. Selected bond parameters: P-O(1) 1.596(2), P-O(2) 1.587(3), P- O(3) 1.717(2), P-O(4) 1.648(2), P-N(1) 1.738(3) Å, O(3)-P-N(1) 173.16(16)°. D-H, H...A, D...A and D-H...A parameters: N(1)-H(N1)...O(6) [intramolecular] 0.86(3), 1.87(3), 2.613(4)Å, 144(3)°; N(3)-H(N3)...O(9°) [dimeric] 0.99(4), 1.99(4), 2.955(5), 166(4)°.

Figure S7. A plot showing the molecular structure of **28**; the asymmetric unit contains only one half of the molecule. The disorder at isopropyl methyl carbons not shown; only selected atoms labeled with the hydrogen atoms not shown. Selected bond parameters: P-O(1) 1.603(3), P-O(2) 1.624(3), P- O(3) 1.622(3), P-N(1) 1.790(3), P-N(1') 1.682(3) Å, O(2)-P-N(1) 174.82(14)°.

Figure S8 A plot showing the molecular structure of compound **30**; only selected atoms labeled with the solvent and hydrogen atoms not shown. Selected bond parameters: P-O(1) 1.6605(15), P-O(2) 1.6331(17), P- O(5) 1.6894(17), P-O(7) 1.5949(18), P-N(1) 1.7479(19), S \rightarrow P 2.7942(10) Å, O(1)-P-N(1) 160.76(10), O(2)-P-O(5) 164.67(9), O(7)-P-S 168.66(7)°.

Figure S9 Solution (VT) and solid-state (spinning at 5 kHz) 31 P NMR spectra of CH₂(6-*t*-Bu-4-Me-C₆H₂O)₂P(N-*t*-Bu){N(CO₂Et)NH(CO₂OEt)} (**17**). The spinning side bands were determined by recording the spectrum using a spinning rate of 7 kHz.

Figure S10 Variable temperature ³¹P NMR spectra for compound **28**.

Experimental (General Remarks):

Chemicals and solvents used in this study were purified according to standard procedures. All reactions, unless stated otherwise, were performed in a dry nitrogen atmosphere. H, H, C and HP NMR spectra were recorded using a 200 MHz spectrometer in CDCl₃ or $C_6D_5CD_3$ solutions (unless stated otherwise), with shifts referenced to SiMe₄ ($\delta = 0$) or 85 % H₃PO₄ ($\delta = 0$). Variable temperature H and H and MR spectra were recorded in $C_6D_5CD_3$.

X-ray Crystallography: Single crystal X-ray data were collected on an Enraf-Nonius MACH3 (compounds **16**, **19**, **21**, **22**) or on a Bruker AXS-SMART (**25**, **27**, **28**, **30**) diffractometer, using Mo- K_{α} (λ = 0.71073 Å) radiation. The structures were solved by direct methods and refined by full-matrix least squares method using SHELX-97. Structure solution and refinement: Absorption corrections were performed using SADABS program (Sheldrick 96), where applicable. The quality of data for **21** was only good enough to know the structure. In many cases, the terminal ethyl/ isopropyl/ *t*-butyl groups showed disorder as shown by higher thermals. For this reason a few disordered carbon atoms were refined isotropically in **28**; no significant residuals were found in this compound to account for any solvent.

- (24) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of Laboratory Chemicals*, Pergamon, Oxford, UK, 1986.
- (25) Sheldrick, G. M., *SHELX-97*, *A package for structure solution and refinement*, University of Göttingen, Göttingen, Germany, 1997.

Table S1 ³¹P NMR chemical shifts of the compounds mentioned in the text

Compound No.	Structure	δ(P) (ppm)
3	$P = O_{i,i,j}$ $P = O_{i}$	-61.0, -69.7 (1:1)
4	i-Pr-OC(O) NCS C-O-i-Pr	-67.3
5	i-Pr-O-C N C(O)O-i-Pr	-61.0, -61.7 (1:3)
6	Ph C(O)O-i-Pr N N O-i-Pr	-51.7

Contd..

Compound No	Structure	δ(P) ppm	
8	O NH- <i>t</i> -Bu	138.2	
9	O NH-t-Bu	141.9	
10	O NCO	121.2	
11	O P. N ₃	136.5	
12	OCH ₂ CH ₂ NMe ₂	129.0	
13	OPh S P:	136.1	
14	CI NHBu t	135.4, 200.3	
15	Bu ^t N P N P N Bu ^t NHBu ^t	89.4	

Contd...

Compound No	Structure	δ(P) ppm
16	C(O)OEt N-N-C(O)OEt H NBu ^t	-56.2 (br).
17	C(O)OEt N-N-C(O)OEt H NBu ^t	-56.3 (br)
18	C(O)O <i>i</i> -Pr N—N-C(O)O <i>i</i> -Pr H NBu ^t	-57.6 (br)
19	C(O)O-i-Pr Bu ^t N—NC(O)O-i-Pr H CI Bu ^t NBu ^t	-38.0, 11.8, 133.6, 140.1
20	C(O)O-i-Pr Bu ^t N—NC(O)O-i-Pr H NBu ^t NBu ^t	-28.9, 68.9
21	$\begin{bmatrix} CF_3CH_2O & Bu^t & N-N-N-C(O)O\text{-i\text{-}Pr} \\ N & P & N & H \\ N & NH\text{-}Bu^t \end{bmatrix} [CI]^-$	11.7, 114.4
22	$ \begin{array}{c} $	26.6

Contd..

		I
23	$ \begin{array}{c} $	27.0
24	O C(O)-OEt N-C(O)OEt HO	-7.4
25	O C(O)-O <i>i</i> -Pr N-C(O)O <i>i</i> -Pr HO	-7.6
26	O P NH O DEt	-59.2
27	O PO NH O PO O PO NH O PO O P	-59.3

Contd...

28	Pr-i-O C N C(O)O-i-Pr N O N O N O O-i-Pr	15.8 (~ 95%), -6.7 (~ 5%)
29	(O)CO- <i>i</i> -Pr O, N, N N N N N N N N N N N N N N N N N	-59.6, -66.7 (1:5)
30	(O)CO- <i>i</i> -Pr O, N N N O- <i>i</i> -Pr	-67.0