1. Chemistry. Melting points were determined using a Reichert Köfler hot-stage apparatus and are uncorrected. Infrared spectra were recorded with a Nicolet-Avatar 360 FT-IR spectrophotometer in Nujol mulls. Routine nuclear magnetic resonance spectra were recorded in DMSO-d₆ solution on a Varian Gemini 200 spectrometer operating at 200 MHz. Evaporation was performed in vacuo (rotary evaporator). Analytical TLC was carried out on Merck 0.2 mm precoated silica gel aluminum sheets (60 F-254). Elemental analyses were performed by our Analytical Laboratory and agreed with theoretical values to within ± 0.4%.

2-Phenylindole 32 was from Sigma-Aldrich; 2-(4-fluorophenyl)indole 34 was from Lancaster.

Compounds 28, 1 29, 2 30, 3 and 31, 4 were prepared in accordance with reported procedures.

General Procedure for the Synthesis of 5-Substituted-2-(4-substitutedphenyl)indole Derivatives 33, 35-37. A stirred solution of 50 mmol of the appropriate benzamide 28-31 (3-6) in 25 mL of dry THF, maintained under an N₂ atmosphere and at an internal temperature of -25 to 0°C, was treated dropwise with 9.3 mL (15 mmol) of n-BuLi (1.6 M solution in hexane). The stirred mixture was kept at room temperature for 24-48 h (TLC analysis), cooled in an ice bath and acidified to pH = 5-6 with diluted HCl. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂. After drying (MgSO₄), the combined organic phases were evaporated to dryness, furnishing the crude indoles 33, 35-37, which were purified by flash-chromatography (eluting system: cyclohexane-ethyl acetate in varying ratios) and/or by recrystallization from the appropriate solvent.

2-(4-Chlorophenyl)indole 33. Yield: 85%. Mp: 202-204 °C (cyclohexane) (lit. 5, mp: 208-211 °C). **2-(4-Methylphenyl)indole 35**. Yield: 75%. Mp: 215-218 °C (ethyl acetate) (lit. 6, mp: 219-219.5 °C).

5-Chloro-2-phenylindole 36. Yield: 88%. Mp: 192-194 °C (toluene) (lit. 3, mp: 195-196 °C).

5-Chloro-2-(4-chlorophenyl)indole 37. Yield: 80%. Mp: 190-192 °C (lit. 4).

General Procedure for the Synthesis of [5-Substituted-2-(4-substitutedphenyl)indol-3-yl]glyoxylyl Chloride Derivatives 38-43. Oxalyl chloride (0.12 mL, 1.4 mmol) was added dropwise, at 0 °C, to a well-stirred mixture of the appropriate indole 32-37 (1.0 mmol) in 5 mL di anhydrous ethyl ether. The reaction was maintained at room temperature for 1-2 h (TLC analysis). The precipitate formed was collected and washed with portions of anhydrous ethyl ether to give the acid chlorides 38-43, which were directly used for the next reaction.

(2-Phenylindol-3-yl)glyoxylyl chloride 38. Yield: 68%. Mp: 132-134 °C (lit. 7, mp: 132-135 °C).

[2-(4-Chlorophenyl)indol-3-yl]glyoxylyl chloride 39. Yield: 96%. Mp: 113-115 °C.

[2-(4-Fluorophenyl)indol-3-yl]glyoxylyl chloride 40. Yield: 73%. Mp: 189-190 °C (lit. 8, mp: 145 °C).

[2-(4-Methylphenyl)indol-3-yl]glyoxylyl chloride 41. Yield: 83%. Mp: 194-198 °C. (5-Chloro-2-phenylindol-3-yl)glyoxylyl chloride 42. Yield: 67%. Mp: 116-118 °C (lit. 9, mp: 118-120 °C).

[5-Chloro-2-(4-chlorophenyl)indol-3-yl]glyoxylyl chloride 43. Yield: 65%. Mp: 125-128 °C.

1
~
- 1
_
S
Ť
þ
=
\bar{z}
poı
Ф
=
=
0
\circ
of (
7
•
S
O)
•==
Έ
<u> </u>
Õ.
$\overline{}$
Pro
<u>~</u>
al
ca
•
. 23
<u> </u>
્ટ.
ř
\mathbf{P}
_
Ξ
BL)
-
ш

			Z	Z-Z-	$\prod_{i=1}^{N}$				
	${f R}_1$	R_2	%	.	yield, (%)	recryst. solvent	mp,	formula ^a	
-	(CH ₂) ₂ CH ₃	H	Н	H	55	benzene	218-220	C ₁₉ H ₁₈ N ₂ O ₂	- 1
	$(\mathrm{CH}_2)_3\mathrm{CH}_3$	Н	H	Н	55	toluene	209-210	$C_{20}H_{20}N_2O_2$	
	CH2CH3	$\mathrm{CH}_2\mathrm{CH}_3$	Ħ	Н	54	toluene	142-145	$\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{N}_2\mathrm{O}_2$	
4-	$(\mathrm{CH}_2)_2\mathrm{CH}_3$	$(CH_2)_2CH_3$	Н	Н	20	petroleum benzine	124-126	$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{N}_2\mathrm{O}_2$	
······································	$(CH_2)_3CH_3$	$(CH_2)_3CH_3$	H	Н	62	J°08-09	lio	$\mathrm{C}_{24}\mathrm{H}_{28}\mathrm{N}_2\mathrm{O}_2$	
-	$(\mathrm{CH}_2)_4\mathrm{CH}_3$	$(\mathrm{CH}_2)_4\mathrm{CH}_3$	Н	Н	85		lio	$C_{26}H_{32}N_2O_2$	
	$(CH_2)_5CH_3$	(CH2)5CH3	H	Н	59		lio	$C_{28}H_{36}N_2O_2$	
····	$\mathrm{CH}(\mathrm{CH}_3)_2$	$CH(CH_3)_2$	Н	Н	29	petroleum benzine	125-128	$C_{22}H_{24}N_2O_2$	
· · · · · · · · · · · · · · · · · · ·	CH(CH ₃)CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₃	Н	Н	55	O°08-09	154-156	$\mathrm{C}_{24}\mathrm{H}_{28}\mathrm{N}_{2}\mathrm{O}_{2}$	
0	O)-	-(CH ₂) ₄ -	Н	Н	71	toluene	217-221	$\mathrm{C}_{20}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}$	

n

© 2004 American Chemical Society, J. Am. Chem. Soc., Frae	nkel ja030370y Supporting Info Page 102.

·	IR (cm ⁻¹)	3350, 3100, 1645, 1590, 1420, 740.	3400, 3160, 1660, 1600, 1420, 740.	3175, 1610, 1580, 1420, 1075, 740.	5
H-N R3	1H-NMR (δ ppm)	0.76 (t, 3H, J=7.4Hz, CH ₃); 1.19-1.26 (m, 2H, CH ₂ CH ₂ CH ₃); 2.66-2.74 (m, 2H, CH ₂ CH ₂ CH ₃); 7.23-7.27 (m, 2H, 5-H, 6-H); 7.46-7.55 (m, 6H, Ar-H); 8.05-8.10 (m, 1H, 4-H); 8.49 (t, 1H, J=5.6Hz, CONH, exch. with D ₂ O).	0.82 (t, 3H, J=6.2Hz, CH ₃); 1.17-1.19 (m, 4H, CH ₂ (CH ₂) ₂ CH ₃); 2.72-2.75 (m, 2H, CH ₂ (CH ₂) ₂ CH ₃); 7.23-7.28 (m, 2H, 5-H, 6-H); 7.46-7.52 (m, 6H, Ar-H); 8.06-8.10 (m, 1H, 4-H); 8.43 (t, 1H, J=5.3Hz, CONH, exch. with D ₂ O); 12.38 (bs, 1H, 1-NH, exch. with D ₂ O).	0.78 (t, 3H, J=7.1Hz, CH ₃); 1.01 (t, 3H, J=6.9Hz, CH ₃); 3.00 (q, 2H, J=7.0Hz, CH ₂); 3.14 (q, 2H, J=7.0Hz, CH ₂); 7.25-7.29 (m, 2H, 5-H, 6-H); 7.46-7.59 (m, 6H, Ar-H); 8.07-8.11 (m, 1H, 4-H); 12.42 (bs, 1H, NH, exch. with D ₂ O).	
Z Z	R	H	щ	щ	
s 1-27.	R,	н	Ħ	Н	
TABLE 2. Spectral Data of Compounds 1	R ₂	H	H	$\mathrm{CH}_2\mathrm{CH}_3$	
LE 2. Spec		(CH ₂) ₂ CH ₃	(CH ₂) ₃ CH ₃	CH ₂ CH ₃	
TAB	A.			5	
1	Ė	-	7	n	

3170, 1610, 1580, 1420, 1075, 740.	3200, 1620, 1590, 1420, 1100, 740.	3200, 1610, 1580, 1420, 1100, 750.	3200, 1615, 1580, 1420, 1100, 750.	3200, 1620, 1590, 1420, 1140, 750.
0.65-0.78 (m, 6H, 2 CH ₃); 1.17-1.24 (m, 2H, CH ₂ CH ₂ CH ₂ CH ₃); 1.39-1.46 (m, 2H, CH ₂ CH ₂ CH ₃); 2.90 (t, 2H, <i>J</i> =7.8 <i>Hz</i> , CH ₂ CH ₂ CH ₃); 3.03 (t, 2H, <i>J</i> =7.6 <i>Hz</i> , CH ₂ CH ₂ CH ₃); 7.24-7.28 (m, 2H, 5-H, 6-H); 7.46-7.57 (m, 6H, Ar-H); 8.03-8.07 (m, 1H, 4-H).	0.69-0.87 (m, 6H, 2 CH ₃); 1.04-1.40 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.94-3.09 (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃); 7.21-7.32 (m, 2H, 5-H, 6-H); 7.46-7.63 (m, 6H, Ar-H); 8.04-8.08 (m, 1H, 4-H); 12.43 (bs, 1H, NH, exch. with D ₂ O).	0.71-0.86 (m, 6H, 2 CH ₃); 1.24-1.45 (m, 8H, 2 CH ₂ CH ₂ (CH ₂) ₂ CH ₃); 1.57-1.63 (m, 4H, 2 CH ₂ CH ₂ (CH ₂) ₂ CH ₃); 2.92-3.08 (m, 4H, 2 CH ₂ CH ₂ (CH ₂) ₂ CH ₃); 7.24-7.27 (m, 2H, 5-H, 6-H); 7.47-7.63 (m, 6H, Ar-H); 7.99-8.03 (m, 1H, 4-H); 12.40 (bs, 1H, NH, exch. with D ₂ O).	0.82 (t, 3H, $J=6.6Hz$, CH ₃); 0.90 (t, 3H, $J=6.4Hz$, CH ₃); 1.06-1.27 (m, 12H, 2 CH ₂ CH ₂ (CH ₂) ₃ CH ₃); 1.33-1.42 (m, 4H, 2 CH ₂ CH ₂ (CH ₂) ₃ CH ₃); 2.94-3.19 (m, 4H, 2 CH ₂ CH ₂ (CH ₂) ₃ CH ₃); 7.23-7.31 (m, 2H, 5-H, 6-H); 7.49-7.61 (m, 6H, Ar-H); 8.03-8.07 (m, 1H, 4-H); 12.44 (bs, 1H, NH, exch. with D ₂ O).	0.98 (d, 6H, $J=6.6Hz$, $CH(CH_3)_2$); 1.13 (d, 6H, $J=6.6Hz$, $CH(CH_3)_2$); 3.32-3.38 (m, 1H, CH); 3.61-3.68 (m, 1H, CH); 7.24-7.29 (m, 2H, 5-H, 6-H); 7.45-7.51 (m, 4H, Ar-H); 7.62-7.65 (m, 2H, Ar-H); 8.09-8.13 (m, 1H, 4-H); 12.42 (bs, 1H, NH, exch. with D ₂ O).
Ħ	H	H	н	н
Ħ	н	н	H ,	ш
$(\mathrm{CH}_2)_2\mathrm{CH}_3$	$(\mathrm{CH}_2)_3\mathrm{CH}_3$	(CH ₂) ₄ CH ₃	(CH ₂) ₅ CH ₃	$\mathrm{CH}(\mathrm{CH}_3)_2$
(CH ₂) ₂ CH ₃	(CH ₂) ₃ CH ₃	(CH ₂) ₄ CH ₃	(CH ₂) ₅ CH ₃	CH(CH ₃) ₂

•	CH(сҢ(СН3)СН2СН3	$\mathrm{CH}(\mathrm{CH_3})\mathrm{CH_2}\mathrm{CH_3}$	н	H	0.64 (t, 3H, J=7.3Hz, CH ₂ CH ₃); 0.78 (t, 3H, J=7.5Hz, CH ₂ CH ₃); 1.07 (d, 3H, J=6.6Hz, CHCH ₃); 1.14 (d, 3H, J=6.6Hz, CHCH ₃); 1.14 (d, 3H, J=6.6Hz, CHCH ₃); 1.43-1.60 (m, 2H, CH ₂); 1.71-1.89 (m, 2H, CH ₂); 2.94-3.05 (m, 2H, 2 CH); 7.23-7.28 (m, 2H, 5-H, 6-H); 7.45-7.52 (m, 4H, Ar-H); 7.63-7.68 (m, 2H, Ar-H); 8.06-8.11 (m, 1H, 4-H); 12.42 (bs, 1H, NH, exch. with D ₂ O).	3150, 1610, 1580, 1420, 1190, 750.
10)	-(CH ₂) ₄ -	н	Н	1.54-1.72 (m, 4H, CH ₂ (CH ₂) ₂ CH ₂), 2.79 (t, 2H, J=6.4Hz, CH ₂ N), 3.21 (t, 2H, J=6.8Hz, CH ₂ N), 7.22-7.36 (m, 2H, 5-H, 6-H), 7.46-7.51 (m, 6H, Ar-H), 8.14-8.18 (m, 1H, 4-H), 12.45 (bs, 1H, NH, exch. with D ₂ O).	3200, 1630, 1590, 1410, 1180, 750.
Ξ .	and the second s)	-(CH ₂) ₅ -	н	н	1.18-1.46 (m, 6H, CH ₂ (CH ₂) ₃ CH ₂); 3.01-3.11 (m, 4H, CH ₂ NCH ₂); 7.23-7.30 (m, 2H, 5-H, 6-H); 7.41-7.59 (m, 6H, Ar-H); 8.12-8.16 (m, 1H, 4-H); 12.48 (bs, 1H, NH, exch. with D ₂ O).	3200, 1620, 1590, 1420, 1100, 750.
12))-	-(CH ₂) ₆ -	н	Н	1.28-1.51 (m, 8H, $CH_2(CH_2)_4CH_2$); 2.94 (t, 2H, $J=5.4Hz$, CH_2N); 3.19 (t, 2H, $J=5.5Hz$, CH_2N); 7.25-7.29 (m, 2H, 5-H, 6-H); 7.46-7.58 (m, 6H, Ar-H); 8.11-8.16 (m, 1H, 4-H); 12.46 (bs, 1H, NH, exch. with D_2O).	3190, 1620, 1590, 1420, 1100, 750.
13	(CH	(CH ₂) ₂ CH ₃	(CH ₂) ₂ CH ₃	Ü	Ħ	0.63-0.81 (m, 6H, 2 CH ₃); 1.15-1.29 (m, 2H, CH ₂ CH ₂ CH ₃); 1.39-1.50 (m, 2H, CH ₂ CH ₂ CH ₃); 2.92-3.07 (m, 4H, 2 CH ₂ CH ₂ CH ₃); 7.24-7.27 (m, 2H, 5-H, 6-H); 7.47-7.60 (m, 5H, Ar-H); 8.02-8.05 (m, 1H, 4-H); 12.50 (bs, 1H, NH, exch. with D ₂ O).	3200, 1615, 1580, 1420, 1090, 750
41	<u>H</u> O	(CH ₂) ₃ CH ₃	(CH ₂) ₃ CH ₃	ū	н	0.73 (t, 3H, J=7.2Hz, CH ₃); 0.87 (t, 3H, J=6.3Hz, CH ₃); 1.00-1.49 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.96-3.08 (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃); 7.22-7.33 (m, 2H, 5-H, 6-H); 7.45-7.64 (m, 5H, Ar-H); 8.04-8.08 (m, 1H, 4-H); 12.47 (bs, 1H, NH, exch. with D ₂ O).	3220, 1610, 1570, 1440, 1100, 750.
-							

$\overline{}$	(CH ₂);CH ₃	(CH ₂) ₅ CH ₃	Ö	H	0.74 (t, 3H, $J=6.5Hz$, CH ₃); 0.87 (t, 3H, $J=6.4Hz$, CH ₃); 1.07-1.40 (m, 16H, 2 CH ₂ (CH ₂) ₄ CH ₃); 3.00-3.07 (m, 4H, 2 CH ₂ (CH ₂) ₄ CH ₃); 7.24-7.30 (m, 2H, 5-H); 7.47-7.64 (m, 5H, Ar-H); 8.04-8.07 (m, 1H, 4-H); 12.50 (bs, 1H, NH, exch. with D ₂ O).
	(CH ₂) ₂ CH ₃	$(\mathrm{CH}_2)_2\mathrm{CH}_3$	庇	н	0.65-0.80 (m, 6H, 2 CH ₃); 1.18-1.30 (m, 2H, CH ₂ CH ₂ CH ₃); 1.39-1.51 (m, 2H, CH ₂ CH ₂ CH ₃); 2.91-3.07 (m, 4H, 2 CH ₂ CH ₃ CH ₃); 7.20-7.70 (m, 7H, Ar-H); 8.01-8.06 (m, 1H, 4-H); 12.50 (bs, 1H, NH, exch. with D ₂ O).
	(CH ₂) ₃ CH ₃	(CH ₂) ₃ CH ₃	IL.	н	0.72 (t, 3H, J=7.3Hz, CH ₃), 0.85 (t, 3H, J=6.3Hz, CH ₃); 1.04-1.48 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.98-3.10 (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃), 7.23-7.67 (m, 7H, Ar-H); 8.05-8.09 (m, 1H, 4-H); 12.40 (bs, 1H, NH, exch. with D ₂ O).
	(CH ₂) ₅ CH ₃	(CH ₂) ₅ CH ₃	ш.	н	0.74 (t, 3H, $J=6.5Hz$, CH ₃); 0.87 (t, 3H, $J=6.6Hz$, CH ₃); 1.06-1.50 (m, 16H, 2 CH ₂ (CH ₂) ₄ CH ₃); 2.88-3.07 (m, 4H, 2 CH ₂ (CH ₂) ₄ CH ₃); 7.20-7.68 (m, 7H, Ar-H); 8.03-8.07 (m, 1H, 4-H); 12.45 (bs, 1H, NH, exch. with D ₂ O).
\sim	(CH ₂) ₂ CH ₃	(CH ₂) ₂ CH ₃	CH3	ш	0.65-0.80 (m, 6H, 2 CH ₃); 1.13-1.24 (m, 2H, CH ₂ CH ₂ CH ₃); 1.38-1.49 (m, 2H, CH ₂ CH ₂ CH ₃); 2.39 (s, 3H, 4'-CH ₃); 2.90-3.05 (m, 4H, 2 CH ₂ CH ₂ CH ₃); 7.13-7.32 (m, 4H, Ar-H); 7.44-7.49 (m, 3H, Ar-H); 8.01-8.05 (m, 1H, 4-H); 12.39 (bs, 1H, NH, exch. with

		-				
20	(CH ₂) ₃ CH ₃	(CH ₂) ₃ CH ₃	СН3	н	0.72 (t, 3H, $J=7.2Hz$, CH ₃); 0.84 (t, 3H, $J=6.4Hz$, CH ₃); 1.03-1.44 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.39 (s, 3H, 4'-CH ₃); 2.94-3.07 (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃); 7.22-7.32 (m, 4H, Ar-H); 7.44-7.49 (m, 3H, Ar-H); 8.03-8.07 (m, 1H, 4-H); 12.37 (bs, 1H, NH, exch. with D ₂ O).	3200, 1610, 1590, 1420, 1100, 750.
21	(CH ₂) ₅ CH ₃	(CH ₂) ₅ CH ₃	CH ₃	н	0.74 (t, 3H, $J=6.6Hz$, CH ₃); 0.87 (t, 3H, $J=6.6Hz$, CH ₃); 1.06-1.39 (m, 16H, 2 CH ₂ (CH ₂) ₄ CH ₃); 2.38 (s, 3H, 4'-CH ₃); 2.90-3.10 (m, 4H, 2 CH ₂ (CH ₂) ₄ CH ₃); 7.22-7.32 (m, 4H, Ar-H); 7.45-7.49 (m, 3H, Ar-H); 8.05-8.09 (m, 1H, 4-H); 12.39 (bs, 1H, NH, exch. with D ₂ O).	3220, 1610, 1580, 1420, 1100, 750.
22	$(\mathrm{CH}_2)_2\mathrm{CH}_3$	(CH ₂) ₂ CH ₃		CI	0.66-0.78 (m, 6H, 2 CH ₃); 1.13-1.31 (m, 2H, CH ₂ CH ₂ CH ₂ CH ₃); 1.34-1.51 (m, 2H, CH ₂ CH ₂ CH ₃); 2.90 (t, 2H, <i>J</i> =7.7 <i>Hz</i> , CH ₂ CH ₂ CH ₃); 3.03 (t, 2H, <i>J</i> =7.8 <i>Hz</i> , CH ₂ CH ₂ CH ₃); 7.31 (dd, 1H, <i>J</i> =8.6,2.2 <i>Hz</i> , 6-H); 7.48-7.70 (m, 6H, Ar-H); 8.05 (d, 1H, <i>J</i> =2.0 <i>Hz</i> , 4-H).	3170, 1610, 1580, 1420, 1100, 700.
23	(CH ₂) ₃ CH ₃	(CH ₂) ₃ CH ₃	н	CI	0.70-0.91 (m, 6H, 2 CH ₃); 1.04-1.44 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.95-3.08 (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃); 7.31 (dd, 1H, J=8.6,2.1Hz, 6-H); 7.48-7.61 (m, 6H, Ar-H); 8.05 (d, 1H, J=2.0Hz, 4-H); 12.65 (bs, 1H, NH, exch. with D ₂ O).	3180, 1620, 1590, 1380, 1100, 760
24	(CH ₂)5CH ₃	(CH ₂) ₅ CH ₃	н	ū	0.74 (t, 3H, $J=6.2$ Hz, CH ₃); 0.86 (t, 3H, $J=6.1$ Hz, CH ₃); 1.07-1.42 (m, 16H, 2 CH ₂ (CH ₂) ₄ CH ₃); 2.96-3.08 (m, 4H, 2 CH ₂ (CH ₂) ₄ CH ₃); 7.31 (dd, 1H, $J=9.0.1.8$ Hz, 6-H); 7.48-7.60 (m, 6H, Ar-H); 8.02 (d, 1H, $J=1.6$ Hz, 4-H); 12.72 (bs, 1H, NH, exch. with D ₂ 0).	3200, 1610, 1580, 1420, 1100, 740

10

0.66-0.81 (m, 6H, 2 CH ₃); 1.13-1.29 (m, 2H, 3200, 1620, CH ₂ CH ₂ CH ₂ CH ₃); 1.39-1.52 (m, 2H, CH ₂ CH ₂ CH ₃); 2.92- 1580, 1420, 3.07 (m, 4H, 2 CH ₂ CH ₂ CH ₃); 7.33 (dd, 1H, 1100, 720. J=8.5, 2.1Hz, 6-H); 7.51 (d, 1H, J=8.6Hz, 7-H); 7.60- 7.62 (m, 4H, ArH); 8.03 (d, 1H, J=1.6Hz, 4-H); 12.74 (bs. 1H, NH, exch. with D ₂ O).	0.74 (t, 3H, $J=7.2Hz$, CH ₃); 0.87 (t, 3H, $J=6.3Hz$, 3230, 1610, CH ₃); 1.05-1.50 (m, 8H, 2 CH ₂ (CH ₂) ₂ CH ₃); 2.90-3.08 1580, 1420, (m, 4H, 2 CH ₂ (CH ₂) ₂ CH ₃); 7.33 (dd, 1H, $J=8.7, 2.1Hz$, 1100, 730. 6-H); 7.51 (d, 1H, $J=8.6Hz$, 7-H); 7.59-7.62 (m, 4H, Ar. H); 8.05 (d, 1H, $J=2.2Hz$, 4-H); 12.72 (bs, 1H, NH, exch. with D ₂ O).	0.75 (t, 3H, $J=6.6Hz$, CH ₃); 0.87 (t, 3H, $J=6.5Hz$, 3210, 1630, CH ₃); 1.07-1.41 (m, 16H, 2 CH ₂ (CH ₂) ₄ CH ₃); 2.99- 1600, 1420, 3.07 (m, 4H, 2 CH ₂ (CH ₂) ₄ CH ₃); 7.32 (dd, 1H, 1100, 730. $J=8.5, I.9Hz$, 6-H); 7.51 (d, 1H, $J=8.6Hz$, 7-H); 7.55- 7.65 (m, 4H, Ar-H); 8.03 (d, 1H, $J=I.8Hz$, 4-H); 12.74 (bs, 1H, NH, exch. with D ₂ O).
5	Ċ	ט
2	D .	ū
(CH ₂) ₂ CH ₃	(CH ₂) ₃ CH ₃	(CH ₂) ₅ CH ₃
(CH ₂) ₂ CH ₃	(CH ₂) ₃ CH ₃	(CH ₂) ₅ CH ₃
25 (0	26 (C	27 (C

2. Biological Methods

Materials. [3 H]PK 11195 (A.S. 85.5 Ci/mmol) and [3 H]flumazenil (A.S. 78.6 Ci/mmol) were purchased from Perkin-Elmer Life Sciences. Culture medium, Fetal Bovine Serum (FBS), L-glutamine and antibiotics were purchased from Cambrex Bio Science. PK 11195 and Ro5-4864 were obtained from Sigma-Aldrich. 1,2,3,4-tetrahydro-4-oxo-7-chloro-2-naphthylpyridine (SU10603) and $2\alpha,4\alpha,5\alpha,17\beta$ -4,5epoxy-17-hydroxy-3-oxoandrostane-2-carbonitrile (trilostane) were gifts from Novartis Farma S.p.a. and Dr D. Zister, University of Dublin, respectively. All other reagents were obtained from commercial suppliers.

[3H]PK 11195 binding to rat kidney mitochondrial membranes

For binding studies, crude mitochondrial membranes were incubated with 0.6 nM [3 H]PK 11195 in the presence of a range of concentrations of the tested compounds (0.1 nM-10 μ M) in a total volume of 0.5 mL of Tris-HCl, pH 7.4, as previously described. Drugs were dissolved in DMSO, and the level of this solvent did not exceed 0.5% and was maintained constant in all tubes. For the active compounds, the IC50 values were determined and K_i values were derived in accordance with the equation of Cheng and Prusoff. 11

[3H]Flumazenil binding to rat cerebral cortex membranes

Rat cerebral cortex membranes, subjected to washing procedures to remove endogenous GABA, were incubated with 0.2 nM [³H]flumazenil in the presence of the test compounds for 90 min at 0°C in 0.5 mL of 50 mM Tris-citrate buffer, pH 7.4, as previously described. ¹²

Cell Culture

Rat C6 glioma cells were cultured in Dulbecco's Modified Eagles Medium supplemented with 10 % FBS, 2 mM L-glutamine, 100 units/mL penicillin, and 100 μ g/mL streptomycin. Cultures were maintained in a humidified atmosphere of 5% CO₂/95% air at 37 °C.

Steroid Biosynthesis

The measurement of pregnenolone production of C6 cells exposed to the novel compounds or PK 11195, Ro5-4864, or clonazepam (40 μ M) was performed by radioimmunoassay (RIA), as previously described. ¹⁰

References

- (1) Grammaticakis, P. Medium Ultraviolet and Visible Absorption of N-aroylarylamines. II. Chloro- and Methylbenzoylarylamines. Bull. Soc. Chim. Fr. 1963, 862-871.
- (2) Grammaticakis, P. Remarks about the Preparation and Ultraviolet Absorption of Some o-, m-, and p-Methylbenzoylarylamines. Compt. Rend. 1962, 255, 1456-1458. Beilstein Registry Number 2647995.
- (3) Houlihan, W.J.; Parrino, V. A.; Uike, Y. Lithiation of N-(2-Alkylphenyl)alkanamides and Related Compounds. A Modified Madelung Indole Synthesis. *J. Org. Chem.* 1981, 46, 4511-4515.
- (4) Dinnel, K.; Elliott, J. M.; Hollingworth, G. J.; Ridgill, M. P.; Shaw, D. E. Preparation of 2-Arylindole Derivatives for Use as Tachykinin Receptor Antagonists. U.S. Pat. Appl. Publ. 20010039286; Chem. Abstr. 2001, 135, 357843.
- (5) El-Desoki, S. I.; Kandeel, E. M.; Abd-el-Rahman, A. H.; Schmidt, R. R. Synthesis and Reactions of 4H-3,1-Benzothiazines. J. Heterocycl. Chem. 1999, 36, 153-160.
- (6) Brown, F.; Mann, F. G. Mechanism of Indole Formation from Phenacylarylamines. II. The Stability and Reaction of Phenacyl-N-alkylarylamines. J. Chem. Soc. 1948, 847-858.
- (7) Julia, M.; Melamed, R.; Gombert, R. Research in the Indole Series. XVI. 2-Aryltryptamines and homologous Amines. Ann. Inst. Pasteur 1965, 109(3), 343-362. Beilstein Registry Number 410984.
- (8) Joshi, K. C.; Pathak, V. N.; Singh R. P. Synthesis of some new Fluorine containing 3-Dialkylaminomethylindoles, 3-Indolylglyoxamides and tryptamines. *Monatsh. Chem.* 1980, 11, 1343-1350.
- (9) Purohit, M. G.; Badiger, G. R.; Kalaskar, N. J. Synthesis and Antiserotonin Activity of Ethyl 5-O-(4-Methylpiperazin-1-ylacetyl)-2-methylindole-3-carboxylate and 3-(4-Methyl-1-piperazinylglyoxylyl)indoles. *Indian J. Chem. Sect. B.* 1995, 34B(9), 796-801.

- (10) Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Costa, B.; Martini, C. 2-Arylpyrazolo[1,5-a]pyrimidin-3-yl Acetamides. New Potent and Selective Peripheral Benzodiazepine Receptor Ligands. *Bioorg. Med. Chem.* 2001, 9, 2661-2671.
- (11) Cheng, Y.; Prusoff, W.H. Relationship between constant (K_i) and the concentration of inhibitor which causes 50 percent inhibition (IC 50) of an enzymatic reaction. *Biochem. Pharmacol.* 1973, 22, 3099-3108.
- (12) Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Marini, A.M.; Novellino, E.; Greco, G.; Gesi, M.; Martini, C.; Giannaccini, G.; Lucacchini, A. N'-Phenylindol-3-ylglyoxylohydrazide Derivatives: Synthesis, Structure-Activity Relationships, Molecular Modeling Studies, and Pharmacological Action on Brain Benzodiazepine Receptors. J. Med. Chem. 1998, 41, 3821-3830.