Supporting Information

General Procedure for the Preparation of Thioacids 4, 7, 10 and 12.

To a stirred solution of the appropriate peptide $(0.6 \mathrm{mmol})$ and N-hydroxysuccinimide (0.6 $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added $\mathrm{DCC}(0.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2}. Then the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , warmed to room temperature and stirred overnight. The resulting precipitate was removed by filtration and washed several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was concentrated to about one-fifth of its original volume and left to stand in the refrigerator for about 2 h . The mixture was filtered again and concentrated to give the corresponding activated ester as a colourless foam, which was immediately dissolved in dry THF (12 mL) followed by addition of DIPEA (0.6 mmol). This mixture was cooled to $0^{\circ} \mathrm{C}$ and bubbled with $\mathrm{H}_{2} \mathrm{~S}$ gas for 1 h , then stirred at room temperature overnight. The solvent was removed in vacuo, and EtOAC- $\mathrm{H}_{2} \mathrm{O}$ was added. The pH was adjusted to a value of ~ 3 by careful addition of 1 N HCl , upon which the organic layer was collected, washed several times with water, dried over MgSO_{4} and concentrated in vacuo. The resulting thioacid was dried under vacuum and directly used in the next step without purification.

A Typical Procedure for the Synthesis of Thioglycosides 3, 5, 8, 11 and 13.

To a stirred solution of azide $\mathbf{1}(126 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added 2,6-lutidine ($48 \mathrm{mg}, 0.45 \mathrm{mmol}$) followed by addition of thioacid $2(82 \mathrm{mg}, 0.4 \mathrm{mmol})$. The mixture was refluxed overnight under N_{2}, then concentrated in vacuo to give a residue which was purified by flash column chromatography (petroleum ether/EtOAc, 1:1) to afford the recovered azide $\mathbf{1}$ (43 mg) and the desired thioglycoside $3(88 \mathrm{mg}, 79 \%$ based on recovered starting material): TLC $R_{f}=0.11$ (petroleum ether/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}=-17.5^{\circ}\left(\mathrm{c} 1.2 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $6.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=14.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (overlapped dd, $J=14.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=$ $9.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08,2.01,2.00,1.98(4 \mathrm{~s}, 12 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.7,170.8,170.0,169.5,169.3,155.4,82.6,80.1,73.7,69.9,68.1,61.6$, 39.1, 28.3, 20.8, 20.6, 20.5, 18.3; MALDI-MS m/z $586.8\left[\mathrm{M}+\mathrm{Na}^{+}\right], 602.9\left[\mathrm{M}+\mathrm{K}^{+}\right]$. HRMS (MALDI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 587.1888$, found 587.1903.

5: The reaction procedure was identical with that for $\mathbf{3}$ except thioacid $\mathbf{4}$ was used instead of 2. Product $5(43 \mathrm{mg})$ was obtained from $1(48 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $4(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ after purification by flash column chromatography (petroleum ether/EtOAc, 1:2 $\rightarrow \mathrm{EtOAc}$) in 83% yield based on recovered azide $1(13 \mathrm{mg})$: TLC $R_{f}=0.26(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}=-16.1^{\circ}$ (c 1.0 $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=17.1,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{dt}, J=9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07,2.00,1.99,1.95(4 \mathrm{~s}, 12 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.5,171.1,170.0,169.6,169.4,169.2,155.9,82.9$, 80.5, 76.2, 73.8, 69.8, 68.2, 61.7, 50.8, 43.0, 39.4, 28.3, 20.8, 20.6, 20.5, 17.7; MALDI-MS $\mathrm{m} / \mathrm{z} 644.1\left[\mathrm{M}+\mathrm{Na}^{+}\right], 660.0\left[\mathrm{M}+\mathrm{K}^{+}\right]$. HRMS (MALDI) calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{SNa}(\mathrm{M}+$ Na^{+}) 644.2102, found 644.2096.

8: The reaction procedure was identical with that for $\mathbf{3}$ except azide $\mathbf{6}$ was used in place of $\mathbf{1}$ and thioacid $\mathbf{7}$ was used instead of 2. Product $\mathbf{8}(49 \mathrm{mg})$ was obtained from $\mathbf{6}(58 \mathrm{mg}, 0.14$ mmol) and $7(70 \mathrm{mg}, 0.18 \mathrm{mmol})$ after purification by flash column chromatography (petroleum ether/EtOAc, 1:1 \rightarrow 1:2) in 76% yield based on recovered azide $6(21 \mathrm{mg})$: TLC $R_{f}=0.15$ (petroleum ether/EtOAc, 2:3); $[\alpha]_{\mathrm{D}}=+1.8^{\circ}\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=3.2,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.58 (dd, $J=14.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=8.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=14.3,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=11.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ ($\mathrm{s}, 3 \mathrm{H}$), $2.82(\mathrm{dd}, J=15.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16,2.05,2.04,1.96$ $(4 \mathrm{~s}, 12 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.42$ (overlapped m, 1H), $1.21(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.9,171.12,171.07,170.5,170.2$, 169.9, 155.7, 82.7, 80.3, 75.2, 71.7, 67.5, 67.1, 61.6, 56.8, 52.0, 50.9, 38.7, 37.5, 28.3, 24.9, 20.75, 20.72, 20.6, 20.5, 15.5, 11.5; MALDI-MS m/z 758.1 [$\left.\mathrm{M}+\mathrm{Na}^{+}\right], 774.1\left[\mathrm{M}+\mathrm{K}^{+}\right]$. HRMS (MALDI) calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 758.2783$, found 758.2811.

11: The reaction procedure was identical with that for $\mathbf{3}$ except azide $\mathbf{9}$ was used in place of $\mathbf{1}$ and thioacid $\mathbf{1 0}$ was used instead of 2. Product $\mathbf{1 1}(48 \mathrm{mg})$ was obtained from $9(77 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ and $\mathbf{1 0}$ ($67 \mathrm{mg}, 0.15 \mathrm{mmol}$) after purification by flash column chromatography (toluene/acetone, 3:1 $\rightarrow 1: 1$) in 65% yield based on recovered azide $9(29 \mathrm{mg})$: TLC $R_{f}=0.07$ (petroleum ether/EtOAc, 1:2); $[\alpha]_{\mathrm{D}}=-5.4^{\circ}\left(\mathrm{c} 0.7 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 10 \mathrm{H})$,
$7.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}-\mathrm{like}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.01(\mathrm{~m}, 8 \mathrm{H}), 4.95(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=12.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=$ $14.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=$ $12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{m}, 2 \mathrm{H}), 2.10,2.06,2.00,1.99,1.96(5 \mathrm{~s}, 21 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $172.8,172.4,170.9,170.4,170.2,169.8,169.6,169.2,168.9,156.4,136.3,135.4,128.6$, $128.5,128.4,128.12,128.09,127.96,100.7,82.9,75.9,73.2,72.9,72.0,71.6,70.3,67.7$, $67.1,67.0,61.5,61.2,54.3,48.2,39.5,32.3,28.7,21.0,20.6,20.5,17.9$; MALDI-MS m/z $1128.9\left[\mathrm{M}+\mathrm{Na}^{+}\right], 1144.9\left[\mathrm{M}+\mathrm{K}^{+}\right]$. HRMS (MALDI) calcd for $\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{23} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 1128.3472, found 1128.3448. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{23} \mathrm{~S}$ (1106.11): C, 54.29; H, 5.74; N, 3.80. Found: C, 54.77; H, 5.88; N, 4.15.

13: The reaction procedure was identical with that for $\mathbf{3}$ except azide $\mathbf{6}$ was used in place of $\mathbf{1}$ and thioacid $\mathbf{1 2}$ was used instead of $\mathbf{2}$. Product $\mathbf{1 3}(41 \mathrm{mg})$ was obtained from $\mathbf{6}(53 \mathrm{mg}, 0.13$ mmol) and $\mathbf{1 2}$ ($87 \mathrm{mg}, 0.17 \mathrm{mmol}$) after purification by flash column chromatography (petroleum ether/EtOAc, $1: 1 \rightarrow 1: 3$) in 72% yield based on recovered azide $6(25 \mathrm{mg})$: TLC $R_{f}=0.42(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}=-40.3^{\circ}\left(\mathrm{c} 0.7 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}-\mathrm{like}, 2 \mathrm{H}), 4.46-4.32(\mathrm{~m}$, $3 \mathrm{H}), 4.24(\mathrm{dd}, J=11.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.16, 2.05, 2.04, $1.96(4 \mathrm{~s}, 12 \mathrm{H}$), 2.15-1.90 (overlapped m, 5H), 1.42 (s, 18H), 1.00 (d, J=6.7 $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.2,170.9,170.5,170.2,170.0$, $169.9,155.8,82.8,81.3,80.4,75.2,71.7,67.5,67.2,61.6,59.8,55.8,51.4,47.2,38.8,37.4$, 31.2, 29.1, 28.3, 27.9, 24.9, 20.79, 20.75, 20.67, 20.5, 19.4, 17.6; MALDI-MS m/z 883.8 [M $\left.+\mathrm{Na}^{+}\right], 899.7\left[\mathrm{M}+\mathrm{K}^{+}\right]$. HRMS (MALDI) calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 883.3625$, found 883.3640. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{~S}$ (860.97): C, 53.01; H, 7.02; N, 6.51. Found: C, 53.44; H, 7.06; N, 6.30.

General Procedure for the Preparation of GTM-Br 14-22.

To a stirred solution of the appropriate glycosylthiol (0.8 mmol) in $\mathrm{CH}_{2} \mathrm{Br}_{2}(12 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.6 \mathrm{mmol})$. The resulting mixture was stirred at room temperature until the disappearance of the starting material, as determined by TLC (typically 5 h). At this time, the
solid was removed by filtration and the filtrate was concentrated. The residue was purified by flash column chromatography to give the corresponding glycosylthiomethyl bromide.

14: TLC $R_{f}=0.38$ (petroleum ether/EtOAc, 1.3:1); $[\alpha]_{\mathrm{D}}=-118.0^{\circ}\left(\mathrm{c} 1.1 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.25(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73,4.52(\mathrm{AB}$ peak, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=12.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (dd, $J=12.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{ddd}, J=10.0,4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04,2.01,1.99,1.97(4 \mathrm{~s}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.5,170.0,169.3,81.8,76.2,73.6,69.7,68.1,61.8,31.9,20.6$, 20.5; MALDI-MS m/z $479.5\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, $495.5\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{9} \mathrm{~S}$ (457.29): C, 39.40; H, 4.63. Found: C, 39.25; H, 4.61.

15: $\mathrm{TLC} R_{f}=0.49$ (petroleum ether/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}=-27.2^{\circ}\left(\mathrm{c} 1.1 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09-7.80(\mathrm{~m}, 8 \mathrm{H}), 7.60-7.26(\mathrm{~m}, 12 \mathrm{H}), 6.03(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{t}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85,4.55(\mathrm{AB}$ peak, $J=10.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.66(\mathrm{dd}, J=12.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=9.8,5.6$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.8,165.5,165.0,164.9,133.3,133.1,133.0,129.7$, 129.6, 129.51, 129.45, 129.3, 128.5, 128.4, 128.2, 128.1, 81.9, 76.4, 73.8, 70.4, 69.3, 62.9, 32.0; MALDI-MS m/z $727.0\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, $743.0\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{BrO}_{9} \mathrm{~S}$ (705.58): C, 59.58; H, 4.14. Found: C, 59.55; H, 4.36.

16: TLC $R_{f}=0.26$ (petroleum ether/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}=-70.1^{\circ}\left(\right.$ c $\left.1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.33(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76,4.52(\mathrm{AB}$ peak, $J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.72(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=9.8,5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13,2.10,2.04,2.03,1.94(5 \mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.9,169.8,169.6,169.3,168.7,100.5,81.1,76.7,75.6,73.2,70.6,70.4$, 69.8, 68.8, 66.4, 61.6, 60.7, 31.8, 20.5, 20.4, 20.3, 20.1; MALDI-MS m/z $768.5\left[\mathrm{M}+\mathrm{Na}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{17} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$ (763.55): C, 42.47; H, 5.15. Found: C, 42.44; H, 5.00.

17: $\operatorname{TLC} R_{f}=0.28$ (petroleum ether/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}=-97.2^{\circ}\left(\right.$ c $\left.1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.22(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70,4.50(\mathrm{AB}$ peak, $J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=12.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=12.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=9.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 2.09,2.05,2.01,2.00,1.99,1.97,1.94(7 \mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $170.0,169.8,169.7,169.2,169.1,168.9,168.6,100.3,81.2,76.7,75.9,72.9,72.5,71.5,71.2$, 69.7, 67.5, 61.5, 61.3, 31.8, 20.4, 20.2, 20.1; MALDI-MS m/z $768.4\left[\mathrm{M}+\mathrm{Na}^{+}\right], 784.4[\mathrm{M}+$ K^{+}]. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BrO}_{17} \mathrm{~S}$ (745.54): C, $43.50 ; \mathrm{H}, 5.00$. Found: C, 43.38; H, 5.07.

18: $\operatorname{TLC} R_{f}=0.26$ (petroleum ether/EtOAc, 2.3:1); $[\alpha]_{\mathrm{D}}=-152.6^{\circ}\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 2 \mathrm{H}), 4.72,4.53(\mathrm{AB}$ peak, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$, 2.05, $2.03(3 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 169.3,169.2,168.9,81.8,70.7,69.0,67.9,64.5$, 32.4, 20.4, 20.3. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{7} \mathrm{~S}$ (385.23): C, 37.41; H, 4.45. Found: C, 37.60; H, 4.16.

19: TLC $R_{f}=0.27$ (petroleum ether/EtOAc, 2.3:1); $[\alpha]_{\mathrm{D}}=-127.6^{\circ}\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=8.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74,4.54(\mathrm{AB}$ peak, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=12.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10,2.07,2.03(3 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.8,169.5,169.2$, 82.1, 69.7, 68.1, 67.1, 65.0, 32.8, 20.6, 20.5, 20.4; MALDI-MS m/z $406.8\left[\mathrm{M}+\mathrm{Na}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{7} \mathrm{~S}$ (385.23): C, 37.41; H, 4.45. Found: C, 37.20; H, 4.80.

20: $\operatorname{TLC} R_{f}=0.52(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}=-185.5^{\circ}\left(\mathrm{c} 0.8 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$, 4.56 (AB peak, $J=10.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.20(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{ddd}, J=9.5,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$, 2.02, $1.94(3 \mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.1,170.6,170.2,169.2,82.8,76.2,73.6,68.3$, $62.0,52.7,33.0,23.1,20.7,20.6,20.5$; MALDI-MS m/z $478.0\left[\mathrm{M}+\mathrm{Na}^{+}\right], 494.0\left[\mathrm{M}+\mathrm{K}^{+}\right]$.

21: TLC $R_{f}=0.28$ (petroleum ether/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}=-81.9^{\circ}\left(\right.$ c $\left.1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77,4.57(\mathrm{AB}$ peak, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76,4.64(\mathrm{AB}$ peak, $J=12.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{ddd}, J=9.9,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06,2.01,2.00(3 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.7$, $170.6,169.3,154.1,95.2,82.5,76.1,74.5,73.1,68.5,62.0,54.7,32.4,20.7,20.5$; MALDIMS m/z $609.6\left[\mathrm{M}+\mathrm{Na}^{+}\right], 625.7\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrCl}_{3} \mathrm{NO}_{9} \mathrm{~S}$ (589.67): C, 32.59; H, 3.59; N, 2.38. Found: C, 32.63; H, 3.83; N, 2.18.

22: TLC $R_{f}=0.14$ (petroleum ether/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}=-23.0^{\circ}\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{dd}, J=10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{dd}, J=10.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71,4.48$ (AB peak, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33$ (dd, $J=12.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (ddd, $J=10.2$, $4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10,2.02,1.84(3 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.5,169.9,169.4,167.4$, $167.0,134.5,131.4,131.0,123.7,80.1,76.1,71.2,68.6,61.9,53.2,31.7,20.7,20.5,20.3$; MALDI-MS m/z $566.0\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, $581.9\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{9} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (553.38): C, 45.58; H, 4.19; N, 2.53. Found: C, 45.59; H, 3.75; N, 2.54.

General Procedure for the Synthesis of Thioglycosides 24, 26 and 30.

To a solution of the appropriate GTM- $\mathrm{Br}(0.14 \mathrm{mmol})$ and Cys or HCy derivative $(0.13$ mmol) in EtOAc (2 mL) was added 2 mL of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ followed by addition of TBAHS $(170 \mathrm{mg}, 0.5 \mathrm{mmol})$. The mixture was vigorously stirred at room temperature for 8 h , then diluted with EtOAc and washed successively with saturated aqueous NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, concentrated in vacuo to give a residue which was purified by flash column chromatography to afford the corresponding desired product.

24: TLC $R_{f}=0.28$ (petroleum ether/EtOAc, 3:2); $[\alpha]_{\mathrm{D}}=-86.1^{\circ}\left(\right.$ c $\left.1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 5.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{q}-\mathrm{like}, 2 \mathrm{H})$, $5.02(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (dd, $J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=12.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{AB}$ peak, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.64 (ddd, $J=9.9,4.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.1,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.00,1.96,1.945,1.937(4 \mathrm{~s}, 12 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.6,170.5$, 170.0, 169.3, 155.0, 135.0, 128.62, 128.56, 128.4, 81.4, 80.3, 75.9, 73.8, 69.7, 68.2, 67.5, 61.9, 53.4, 33.5, 33.1, 28.2, 20.6, 20.5; MALDI-MS m/z $710.7\left[\mathrm{M}+\mathrm{Na}^{+}\right], 726.7\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{13} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (705.79): C, $51.05 ; \mathrm{H}, 6.14$; N, 1.98. Found: C, 50.78; H, 5.55; N, 1.96.

26: $\operatorname{TLC} R_{f}=0.28$ (petroleum ether/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}=-59.6^{\circ}\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.27(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{dd}, J=12.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.62$ (m, 1H), $3.21(\mathrm{dd}, J=14.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15,2.10,2.05$, 2.04, 2.03, $1.97(6 \mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.2,170.0,169.9,169.6,169.0,155.7$, 143.7, 141.3, 131.2, 127.7, 127.1, 125.0, 120.0, 119.3, 101.0, 81.2, 76.9, 76.1, 73.7, 70.9, $70.7,70.1,69.1,67.2,66.6,66.4,62.0,60.8,53.5,47.1,33.4,33.1,20.75,20.69,20.5,20.4$; MALDI-MS m/z $1070.9\left[\mathrm{M}+\mathrm{Na}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{57} \mathrm{NO}_{21} \mathrm{~S}_{2}$ (1048.10): C, 55.01; H, 5.48; N, 1.34. Found: C, 54.65; H, 5.60; N, 1.27.

30: $\operatorname{TLC} R_{f}=0.47$ (petroleum ether/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}=-78.8^{\circ}\left(\right.$ c $\left.1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (overlapped, 1 H), $4.70(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=$ $8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.2,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90,3.76$ (AB peak, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, 3 H), $2.70(\mathrm{t}-\mathrm{like}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.05,1.99,1.98(3 \mathrm{~s}, 9 \mathrm{H}), 2.00$ (overlapped, 3 H), $1.41(\mathrm{~s}$, $9 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.1,171.2,170.6,170.2,169.3,155.5,154.2,95.5,82.4,80.3,75.7,74.3,73.4$, 68.7, 62.1, 56.5, 54.6, 53.3, 52.1, 37.5, 33.6, 28.2, 27.5, 24.9, 20.6, 20.4, 15.4, 11.4; MALDIMS m/z $892.1\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, $908.1\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}_{2}$ (871.24): C, 44.12; H, 5.78; N, 4.82. Found: C, 44.31; H, 5.49; N, 4.80.

Compound $\mathbf{3 0}$ was further transformed into $\mathbf{3 1}$ according to our previous procedure. ${ }^{24}$ 31: TLC $R_{f}=0.14$ (petroleum ether/EtOAc, 1:2); $[\alpha]_{\mathrm{D}}=-76.0^{\circ}\left(\mathrm{c} 0.4 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=8.6,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22$ (dd, $J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (overlapped, 2H), 4.11 (dd, $J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (AB peak, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (overlapped, 1 H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.05$, 2.00, 1.99, 1.94 (4s, 12H), 1.95 (overlapped, 3H), 1.42 (s, 9H), 1.41 (m, 1H), 1.20 (m, 1H), $0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.1,171.4,170.8$, $170.7,170.5,169.3,155.7,82.6,80.4,75.9,73.7,68.6,62.2,56.6,53.6,52.9,52.1,37.7,33.0$, $32.0,28.3,27.6,25.0,23.2,20.7,20.62,20.56,15.5,11.5 ;$ MALDI-MS m/z $760.7\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 776.7 [M + K ${ }^{+}$]. HRMS (MALDI) calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{~S}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 760.2763$, found 760.2775. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{~S}_{2}$ (737.88): C, 50.46 ; H, 6.97; N, 5.69. Found: C, 50.90; H, 7.34; N, 5.44.

28: To a solution of GTM-Br $16(60 \mathrm{mg}, 80 \mu \mathrm{~mol})$ and tripeptide $27(29 \mathrm{mg}, 77 \mu \mathrm{~mol})$ in 2 mL of DMF was added 0.45 mL of pH 8.5 solution of NaHCO_{3} followed by addition of 0.85 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was stirred at room temperature for 7 h , then diluted with EtOAc and washed successively with saturated aqueous NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, concentrated in vacuo to give a residue which was purified by flash column chromatography (petroleum ether/EtOAc, $1: 1 \rightarrow 1: 3$) to afford the desired product 28 ($58 \mathrm{mg}, 73 \%$) as a white amorphous solid: $\operatorname{TLC} R_{f}=0.57(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}=-59.4^{\circ}$ (c 1.0 $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~m}$, $4 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66$ (overlapped m, 1H), $3.00(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$, 2.08, 2.04, 2.02, 2.00, 1.92 ($6 \mathrm{~s}, 21 \mathrm{H}$), 1.40 (s, 9 H), 1.37 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ (d, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.0,171.2,170.4,170.2,170.04,169.96,169.6,168.9,155.4$, $101.0,81.3,80.4,76.8,76.1,73.6,71.0,70.7,70.3,69.1,66.7,61.9,60.8,53.4,52.4,48.9$, 48.1, 34.1, 33.0, 28.2, 20.8, 20.7, 20.6, 20.5, 20.4, 18.1, 17.9; MALDI-MS m/z $1064.1[\mathrm{M}+$ $\left.\mathrm{Na}^{+}\right]$, $1080.1\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{23} \mathrm{~S}_{2}$ (1042.09): C, 48.41; H, 6.09; N, 4.03. Found: C, 48.38; H, 6.05; N, 4.34.

33: The reaction procedure was identical with that for 28 except GTM-Br $\mathbf{1 7}$ was used in place of $\mathbf{1 6}$ and peptide $\mathbf{3 2}$ was used instead of $\mathbf{2 7}$. Column chromatography was performed with EtOAc/MeOH 30:1. The S-neoglycopeptide 33 was isolated as a white amorphous solid in 69% yield: TLC $R_{f}=0.49(\mathrm{EtOAc} / \mathrm{MeOH}, 20: 1) ;[\alpha]_{\mathrm{D}}=-47.8^{\circ}\left(\mathrm{c} 0.6 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 2 \mathrm{H})$, 4.49 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=12.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.12,2.06,2.03,2.00$, $1.98,1.96$ ($6 \mathrm{~s}, 21 \mathrm{H}$), 2.10 (overlapped m, 2H), 1.43 (s, 9H), 1.39 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.19 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.6,171.6,170.7,170.5,170.1,170.0,169.9,169.4$, $169.3,156.3,100.7,81.4,80.6,76.3,73.4,72.9,72.0,71.6,70.1,67.9,67.2,61.9,61.6,59.1$, $52.9,48.9,33.0,31.2,29.7,28.3,27.8,21.0,20.7,20.6,20.5,18.9,17.9 ;$ MALDI-MS m/z $1093.4\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, $1109.4\left[\mathrm{M}+\mathrm{K}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{23} \mathrm{~S}_{2}$ (1071.13): C, 48.22; H, 6.21; N, 5.23. Found: C, 48.40; H, 6.52; N, 5.07.

