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FCF distortion under the saturation of the fluorescence intensity

The fluorescence intensity of a fluorescent molecule is proportional to the probability of the singlet
excited state,P(S1) which is given byP(S1) = k12/{ktot + (1+ k23/k31)k12}, as a stationary solution
of the Jablonski scheme. The excitation ratek12 at positionr in 3D Gaussian field is given by
k12 = I0 exp{−2(x2 + y2)/ω2

0 − 2z2/ω2
z} = I0Φ(r) whereI0 = σIex. The observed fluorescence

intensity of the molecule can be expressed asiem = ηφk12/(1 + αk12) whereα = (1 + k23/k31)/ktot

with iem = ηk21P(S1) andφ = k21/ktot. The average intensity of the molecule can be expanded
with the parameterξ = αI0/(1 + αI0) as:
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whereΦ = Φ(r). The abbreviationΦ will be used hereafter when the meaning is clear from
context. Sinceξ and 1−Φ are less than 1, the series will converge whenn→ ∞. ξ is proportional
to the intensity of the molecule at the center of the excitation field. The total intensity at a certain
time t is given by totaling the intensity of each molecule at positionr i(t). Therefore,I (t) =∑N

i=1 iem(r i(t)) whereN is the total number of molecules in the total volumeV. Then, the average
intensity is given by〈I (t)〉 =
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dr iem(r i(t))ν(r i(t)) where the molecule distribution function
is ν(r) = 1/V when the molecules are distributed homogeneously. Here,〈·〉 denotes the ensemble
average. When the volumeV is large enough compared with the excitation-detection field, the
finite integration can extend to the infinite one. Consequently, one can obtain
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wherev = π3/2ω2
0ωz is the volume element andC is the number density of the moleculeN/V,

respectively. This series expression does not converge with a saturated value of the emission
intensity with I0 → ∞ because of the infinite space integral. Therefore, this expression cannot
describe the experiments under a very high excitation intensity.

When the triplet-singlet conversion is ignored, the fluorescence fluctuation is determined only
by the diffusion of molecules in the excitation-detection field. If one considers the non-interacting
molecules, the correlation function can be calculated as:
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whereP(r, r′; τ) is the probability for the detection of a molecule at positionr′ at timeτ when the
molecule is at positionr at time 0. The last term of the equation comes from the finite number
of molecules in the finite space and will vanish when the volume is large enough. When the
molecules are diffusing in free space, the diffusion can be characterized by the probability function
P(r, r′; τ) = (4πDτ)−3/2 exp(−|r − r′|2/4Dτ) if the volumeV is infinite. Therefore, the task is the
calculation of the equation,
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The inside of the integration is the product of the Gaussian functions and the integration can be
made analytically. By using eq 1, the inside of the integral can be expanded as a series form of the
product of Gaussian functionsΦ,
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The integration of the product ofΦ produces the higher order correlation functions as the following
schematically written expression,
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0 andq = ωz/ω0, respectively. Consequently, the
integration of the right hand side of eq 5 is given by
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The first term in the brackets is the correlation function in the absence of saturation and other
terms are additional terms due to saturation. The final form can be expressed as:
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using a relationξ/α = I0(1−ξ). The product,Cv, is the number of molecules (n0) in the excitation-
detection volume(v).
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