Synthesis and Self-Association, Absorption, and Fluorescence Properties of Differentially Functionalized Hexakis(*p*-substituted-phenylethynyl)benzenes

Kenji Kobayashi* and Norifumi Kobayashi

Contribution from the Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan. E-mail: skkobay@ipc.shizuoka.ac.jp

Supporting Information

Contents

- Absorption and Fluorescence Spectral Data of **3** (Table S1; page S2–S4)
- Absorption and Fluorescence Spectra of **3** (Figures S1–S17; page S4–S9)
- ¹H NMR spectra of **3–13** (page S10–S24)

General. Et₃N was distilled from CaH_2 under an argon atmosphere. The other solvents and all commercially available reagents were used without any purification. ¹H and ¹³C NMR spectra were recorded at 300 MHz and 75 MHz, respectively. Recycle preparative GPC was performed on a Japan Analytical Industry LC-918 with polystyrene gel columns (JAIGEL 1H and 2H).

 $\lambda_{\max}(abs) (nm)$ $\lambda_{\max}(em) (nm)^b$ Stokes shift (nm) compd solvent log ε $\lambda_{\text{cut-off}}$ (nm) 3a CHCl₃ 363.8 5.19 416.0 459.0 95.2 **3b** CHCl₃ 362.3 5.22 414.3 458.0 95.7 benzene 361.2 5.21 412.0 454.8 93.6 1,4-dioxane 359.5 5.24 410.4 454.2 94.7 **3d** CHCl₃ 360.2 5.28 409.8 456.0 95.8 benzene 360.0 5.21 410.2 456.8 96.8 1,4-dioxane 358.8 5.24 408.0 455.8 97.0 3f 422.7 466.0 CHCl₃ 364.5 5.19 101.5 3g CHCl₃ 5.20 426.2 466.8 99.2 367.6 3h CHCl₃ 368.8 5.20 425.6 462.6 93.8 332.6 5.17 316.6 5.16 367.2 5.16 421.6 460.4 93.2 benzene 310.0 4.62 1,4-dioxane 364.5 5.19 420.3 460.0 95.5 308.9 4.65 **3i** CHCl₃ 367.4 5.17 425.2 466.6 99.2 3j CHCl₃ 364.0 5.16 421.4 466.8 102.8 31 CHCl₃ 378.3 5.09 458.6 NA NA 318.1 4.80 benzene 380.6 5.08 443.4 469.6 89.0 317.6 4.73 1,4-dioxane 89.6 380.0 5.11 443.2 469.6 316.8 4.75 CH_2Cl_2 386.2 5.11 456.6 NA NA 318.3 4.80 NA 3m CHCl₃ 464.0 4.97 558.2 NA 340.2 4.95 4.90 hexane 438.8 538.9 NA NA 333.0 4.93 benzene 454.2 4.99 531.6 NA NA 334.4 4.97 1,4-dioxane 453.2 5.01 534.8 NA NA 332.4 4.96 CH_2Cl_2 4.99 NA NA 465.5 560.9 338.2 4.95 3n CHCl₃ 433.2 5.01 566.6 NA NA 332.0 4.85 hexane 424.9 4.97 531.3 NA NA 327.7 4.83 NA NA CH_2Cl_2 439.5 5.00 568.7 327.0 4.84

TABLE S1. Absorption and Fluorescence Spectral Data of 3^a

compd	solvent	$\lambda_{\max}(abs) (nm)$	log ε	$\lambda_{\text{cut-off}}$ (nm)	$\lambda_{\max}(\text{em}) (\text{nm})^b$	Stokes shift (nm)
30	CHCl ₃	428.6	5.08	485.0	504.8	76.2
		319.8	4.89			
	hexane	418.6	5.12	455.8	472.2	53.6
		401.2	5.12		501.8	100.6
		321.0	4.90			
	1,4-dioxane	423.8	5.08	477.0	492.6	68.8
		318.6	4.88			
	CH_2Cl_2	434.2	5.15	496.6	530.8	96.6
		318.8	4.98			
	CH ₃ CN	434.0	5.11	514.6	569.6	135.6
		315.2	5.03			
3р	CHCl ₃	418.6	5.07	508.4	515.1	96.5
	hexane	398.0	5.12	479.2	479.2	81.2
	1,4-dioxane	411.0	5.05	497.4	500.6	89.6
3q	CHCl ₃	448.6	5.02	527.8	555.6	107.0
		329.0	5.00			
	benzene	440.8	5.03	510.1	527.2	86.4
		325.3	4.99			
	1,4-dioxane	440.4	5.05	512.4	541.2	100.8
		323.8	4.99			
	CH_2Cl_2	452.4	5.03	533.2	575.2	122.8
		328.6	5.00			
3r	CHCl ₃	434.8	5.01	547.0	563.8	129.0
		323.4	4.91			
	hexane	415.8	5.07	512.0	508.4	92.6
		316.2	4.90			
	benzene	427.4	5.02	529.6	533.6	106.2
		319.4	4.90			
	1,4-dioxane	426.0	5.04	529.6	540.4	114.4
		317.4	4.92			
3s	CHCl ₃	480.8	4.92	595.6	NA	NA
		375.2	5.08			
	benzene	468.2	4.90	567.2	NA	NA
		370.1	5.01			
	CH_2Cl_2	477.3	4.91	594.1	NA	NA
		372.1	5.04			
3t	CHCl ₃	436.0	5.04	601.0	NA	NA
		384.8	5.05			
	hexane	422.9	5.02	601.6	NA	NA
		378.8	5.10			
	CH_2Cl_2	437.9	5.10	607.0	NA	NA
		381.1	5.10			

 TABLE S1. Absorption and Fluorescence Spectral Data of 3^a (continued)

^{*a*} Absorption and fluorescence spectra were measured at $[\mathbf{3}] = 1.0 \times 10^{-5}$ M and $[\mathbf{3}] = 1.0 \times 10^{-6}$ M, respectively, at room temperature. ^{*b*} The excitation wavelength is almost the same as $\lambda_{max}(abs)$ in each case because the excitation spectrum of each **3** almost matched the absorption spectrum.

Figure S1. Normalized (a) absorption and (b) fluorescence spectra of 3a in CHCl₃.

Figure S2. Normalized absorption spectra of **3b** in (a) $CHCl_3$, (b) benzene, and (c) 1,4-dioxane. Normalized fluorescence spectra of **3b** in (d) $CHCl_3$, (e) benzene, and (f) 1,4-dioxane.

Figure S3. Normalized absorption spectra of **3d** in (a) $CHCl_3$, (b) benzene, and (c) 1,4-dioxane. Normalized fluorescence spectra of **3d** in (d) $CHCl_3$, (e) benzene, and (f) 1,4-dioxane.

Figure S4. Normalized (a) absorption and (b) fluorescence spectra of 3f in CHCl₃.

Figure S5. Normalized (a) absorption and (b) fluorescence spectra of 3g in CHCl₃.

Figure S6. Normalized absorption spectra of **3h** in (a) $CHCl_3$, (b) benzene, and (c) 1,4-dioxane. Normalized fluorescence spectra of **3h** in (d) $CHCl_3$, (e) benzene, and (f) 1,4-dioxane.

Figure S7. Normalized (a) absorption and (b) fluorescence spectra of 3i in CHCl₃.

Figure S8. Normalized (a) absorption and (b) fluorescence spectra of 3j in CHCl₃.

Figure S9. Normalized absorption spectra of **31** in (a) $CHCl_3$, (b) benzene, (c) 1,4-dioxane, and (d) CH_2Cl_2 . Normalized fluorescence spectra of **31** in (e) $CHCl_3$, (f) benzene, (h) 1,4-dioxane, and (h) CH_2Cl_2 .

Figure S10. Absorption spectra of **3m** in (a) $CHCl_3$, (b) hexane, (c) benzene, (d) 1,4-dioxane, and (e) CH_2Cl_2 .

Figure S11. Absorption spectra of 3n in (a) CHCl₃, (b) hexane, and (c) CH₂Cl₂.

Figure S12. Normalized absorption spectra of **30** in (a) $CHCl_3$, (b) hexane, (c) 1,4-dioxane, (d) EtOAc, (e) CH_2Cl_2 , and (f) CH_3CN . Normalized fluorescence spectra of **30** in (g) $CHCl_3$, (h) hexane, (i) 1,4-dioxane, (j) EtOAc, (k) CH_2Cl_2 , and (l) CH_3CN .

Figure S13. Normalized absorption spectra of **3p** in (a) $CHCl_3$, (b) hexane, (c) 1,4-dioxane, and (d) EtOAc. Normalized fluorescence spectra of **3p** in (e) $CHCl_3$, (f) hexane, (g) 1,4-dioxane, and (h) EtOAc.

Figure S14. Normalized absorption spectra of 3q in (a) CHCl₃, (b) benzene, (c) 1,4-dioxane, and (d) CH₂Cl₂. Normalized fluorescence spectra of 3q in (e) CHCl₃, (f) benzene, (g) 1,4-dioxane, and (h) CH₂Cl₂.

Figure S15. Normalized absorption spectra of $3\mathbf{r}$ in (a) CHCl₃, (b) hexane, (c) benzene, and (d) 1,4dioxane. Normalized fluorescence spectra of $3\mathbf{r}$ in (e) CHCl₃, (f) hexane, (g) benzene, and (h) 1,4dioxane.

Figure S16. Absorption spectra of 3s in (a) $CHCl_3$, (b) benzene, (c) CH_2Cl_2 , and (d) THF.

Figure S17. Absorption spectra of 3t in (a) CHCl₃, (b) hexane, and (c) CH₂Cl₂.

¹H NMR Spectra of 3–13.

