Trimethylsilylnitrate-Trimethylsilylazide: A Novel Reagent System for the Synthesis of 2-Deoxy Glycosyl Azides from Glycals: Application in the Synthesis of 2-Deoxy- β -N-glycopeptides

B. Gopal Reddy, a K.P. Madhusudanan and Yashwant D. Vankara, *

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India Fax: 0091-512-259 0007

^bCentral Drug Research Institute, Lucknow 226 001, India. Fax: 0091-522-2223405

E mail: vankar@iitk.ac.in

Supporting Information

Table of Contents

Spectral and analytical data for compounds **4a-8** are given on pages S2 to S10 whereas ¹³C NMR spectra of these compounds are reproduced on pages S11 to S24 as indicated below:

Compound No.	Page No.	Compound No.	Page No.
4a	S11	5a	S18
4b	S12	5b	S19
4c	S13	5c	S20
4d	S14	5d	S21
4e	S15	6	S22
4f	S16	7	S23
4g	S17	8	S24

3,4,6-Tri-*O*-benzyl-2-deoxy-α-D-*lyxo*-hexopyranosyl azide (4a).

 $[\alpha]_D^{25} = + 126 \text{ (c 1, CH}_2\text{Cl}_2); \text{ IR: } (\text{CH}_2\text{Cl}_2) \text{ v}_{\text{max}}: 2113 \text{ cm}^{-1}; \text{ }^{-1}\text{H NMR } (400 \text{ MHz, CDCl}_3): \delta 1.82-1.90 \text{ }^{-1}\text{CM}_2\text{Cl}_2); \text{ IR: } (\text{CH}_2\text{Cl}_2) \text{ v}_{\text{max}}: 2113 \text{ cm}^{-1}; \text{ }^{-1}\text{H NMR } (400 \text{ MHz, CDCl}_3): \delta 1.82-1.90 \text{ }^{-1}\text{CM}_2\text{CM}_2\text{CM}_2); \text{ }^{-1}\text{CM}_2\text{CM}_2\text{CM}_2; \text{ }^{-1}\text{CM}_2\text{CM}_2\text{CM}_2; \text{ }^{-1}\text{CM}_2\text{CM}_2; \text{ }^{-1}\text{CM}_2; \text{ }^{-1}\text{CM}_2;$

3,4-Di-O-benzyl-6-O-(tert-butyldimethylsilyl)-2-deoxy-\alpha-D-lyxo-hexopyranosyl azide (4b).

 $[\alpha]_D^{25} = +\ 107.3\ (c\ 1.5,\ CH_2Cl_2\);\ IR:\ (CH_2Cl_2)\ v_{max}$: 2116 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.83 (s, 9H), 1.76-1.80 (dd, J=13.06, 4.02 Hz, 1H), 2.15-2.21 (dt, J=12.44, 4.40 Hz, 1H), 3.63-3.65 (br d, J=6.60 Hz, 2H), 3.71-3.77 (m, 2H), 3.87 (br s, 1H), 4.52-4.89 (m, 4H), 5.47-5.50 (d, J=3.68 Hz, 1H), 7.20-7.30 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ 18.2, 25.8, 30.4, 62.9, 70.5, 72.5, 73.9, 74.2, 74.4, 87.9, 127.3-138.7 (m, aromatic); MSES⁺: 506 [M + Na]⁺; Anal. calc. for $C_{26}H_{37}SiN_3O_4$ (483.67) C 64.56, H 7.70, N 8.68; found: C 64.57, H 7.68, N 8.67.

6-O-Benzyl-3,4-O-isopropylidene-2-deoxy- β -D-lyxo-hexopyranosyl azide (4c).

 $[\alpha]_D^{25} = + 125.5$ (c 0.90, CH₂Cl₂); IR: (CH₂Cl₂) v_{max} : 2109 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.32 (s, 3H), 1.46 (s, 3H), 1.58-1.65 (m, 1H), 2.17-2.23 (m, 1H), 3.65-3.69 (dd, J = 10.24, 5.36 Hz, 2H), 3.97-4.01 (dt, J = 5.36, 2.0 Hz, 1H), 4.18-4.21 (dd, J = 7.44, 2.00 Hz, 1H), 4.45-4.49 (dd, J = 10.72, 3.40 Hz, 1H), 4.55-4.58 (br d, J = 12.00 Hz, 1H), 4.62-4.65 (br d, J = 12.20 Hz, 1H), 5.43-5.47 (dd, J = 8.04, 5.60 Hz, 1H), 7.25-7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 25.0, 26.4, 29.8, 69.1, 69.9, 70.0, 72.5, 73.4, 85.1, 109.2, 127.5, 127.6, 128.3, 138.1.; MSES⁺: 337 [M + NH₄]⁺; Anal. calc. for C₁₆H₂₁N₃O₄ (319.35) C 60.17, H 6.62, N 13.15; found: C 60.20, H 6.68, N 13.18.

6-*O*-(*tert*-Butyldimethylsilyl)-3,4-*O*-isopropylidene-2-deoxy-β-D-*lyxo*-hexopyranosyl azide (4d).

 $[\alpha]_D^{25} = + 129.5$ (c 2.1, CH₂Cl₂); IR: (CH₂Cl₂) v_{max} : 2109 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.82 (s, 9H), 1.23 (s, 3H),1.40 (s, 3H), 1.50-1.56 (m, 1H), 2.05-2.11 (m, 1H), 3.70-3.75 (m, 3H), 4.10-4.12 (dd, J = 7.46, 1.34 Hz, 1H), 4.36-4.40 (m, 1H), 5.32-5.35 (dd, J = 8.10, 5.60 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 18.3, 25.0, 25.8, 26.5, 30.1, 62.0, 69.9, 71.5, 72.0, 85.1, 109.0; MSES⁺: 366 [M + Na]⁺; Anal. calc. for C₁₅H₂₀SiN₃O₄ (343.48) C 52.45, H, 8.50, N 12.23; found: C 52.43, H 8.60, N, 12.19.

4,6-Di-*O*-benzyl-2,3-dideoxy-α-D-*erythro*-hexopyranosyl azide (4e).

 $[\alpha]_D^{25} = +62.0$ (c 2.5, CH₂Cl₂); IR: (CH₂Cl₂) v_{max} : 2112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.42-1.45(br d, J = 13.64 Hz, 1H), 1.70-1.79 (ddt, J = 14.16, 4.16, 2.44 Hz, 1H), 1.90-1.95(qd, J = 14.16, 3.10 Hz, 1H), 2.04-2.13 (tt, J = 13.64, 4.16Hz, 1H), 3.57 (br s, 1H), 3.59-3.63 (dd, J = 9.76, 6.36 Hz, 1H) 3.64-3.68 (dd, J = 9.76, 6.36 Hz, 1H), 4.09-4.12 (dt, J = 6.22, 1.24 Hz, 1H), 4.38-4.62 (m, 2H), 4.45-4.58 (br d, J = 11.72 Hz, 1H), 4.59-4.62 (br d, J = 11.96 Hz, 1H), 5.46 (d, J = 3.68 Hz, 1H),7.23-7.34 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ 20.5, 23.6, 69.6, 70.2, 70.9, 71.6, 73.6, 87.5, 127.5-138.1(m, aromatic); MSES⁺: 376 [M + Na]⁺; Anal. calc. for $C_{20}H_{23}N_3O_3$ (353.41) C 67.98, H 6.56, N 11.89; found: C 67.93, H 6.49, N 11.18.

3,4,6-Tri-O-benzyl-2-deoxy- α/β -D-arabino-hexopyranosyl azide (4f).

 $[\alpha]_D^{25}$ = + 84 (c 0.5, CH₂Cl₂); IR: (CH₂Cl₂) v_{max} : 2111 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): (mixture of anomers α:β, 2:1) δ 1.58-1.66(q, J = 11.48 Hz, 1H, α- anomer), 1.70-1.77 (dt, J = 13.40, 3.76 Hz, 1H, β-anomer), 2.11-2.15 (dd, J = 13.06, 4.02 Hz, 1H, α-anomer), 2.26-2.30 (dd, J = 12.68, 2.68 Hz, 1H, β-anomer), 3.46-3.88 (m, 5H, both anomers), 4.49-4.68 (m, 7H, both anomers), 5.52-5.53 (d, J = 3.16 Hz, 1H, α-anomer), 7.16-7.51 (m, 15H, both anomers); ¹³C NMR (100 MHz, CDCl₃): (mixture of anomers) δ 34.6, 36.1, 68.3, 68.6, 71.6, 71.9, 73.0, 73.4, 74.9, 75.0, 76.8, 77.5, 79.1, 86.3, 87.3, 127.6-138.2 (m,

aromatic); MSES⁺: 482 [M + Na]⁺; Anal. calc. for $C_{27}H_{29}N_3O_4$ (459.53) C 70.57, H 6.37, N 9.15; found: C 70.59, H 6.33, N 9.12.

4,6-Di-O-benzyl-2,3-dideoxy-α/β-D-threo-hexopyranosyl azide (4g).

[α]_D²⁵ = + 138.9 (c 2.9, CH₂Cl₂); IR (CH₂Cl₂) ν _{max}: 2111 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): (mixture anomers α:β 1.6:1) δ 1.44-1.59 (m, 2H, β-anomer), 1.63-1.79 (m, 3H, H-2, α-anomer), 1.85-1.89 (m, 1H, β-anomer), 2.0-2.05 (m, 1H, α-anomer), 2.20-2.25 (m, 1H, β-anomer), 4.37-4.68 (m, 5H, both anomers), 5.40-5.41 (d, J = 2.68 Hz, 1H, α-anomer), 7.20-7.35 (m, 10H, both anomer); ¹³C NMR (100 MHz, CDCl₃): (mixture anomers): δ 23.7, 27.4, 28.3, 29.6, 68.6, 69.0, 70.7, 71.1, 71.8, 71.9, 73.3, 73.4, 79.7, 86.8, 88.1, 127.4-138.1 (m, aromatic); MSES⁺: 376 [M + Na]⁺; Anal. calc. for C₂₀H₂₃N₃O₃ (353.41) C 67.98, H 6.56, N 11.89; found: C 67.99, H 6.53, N 11.86.

N-tert-Butoxycarbonyl-*N*-(3,4,6 tri-*O*-benzyl- 2-deoxy- β -D-*lyxo*-hexopyranosyl)-glycylglycine (5a).

Procedure: To a stirred solution of glycosyl azide **4a** (60 mg, 0.130 mmol) in dry THF (2 mL) at room temperature were added triphenyl phosphine (41 mg, 0.156 mmol) and water (10μL). The mixture was stirred for 1 h followed by evaporation of THF and extraction of the reaction mixture with diethyl ether (2 x 30 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated to give the crude amine. To the crude amine dissolved in dry THF (2 mL) was added *1-succinimidyl-N-tert-butyloxycarbonylglycylglycinate* (Boc-Gly-Gly-NHSE) (42 mg, 0.127 mmol) at room temperature. The reaction mixture was stirred for 1 h and after completion of reaction (TLC

monitoring) it was extracted with ethyl acetate (2 x 20 mL). The organic layer was washed with 1N HCl (2 x 5 mL) followed by saturated aqueous NaHCO₃ solution (2 x 5 mL) and then with brine. Evaporation of the solvent gave a residue which was purified by column chromatography to give (46 mg, 55%, over two steps) as a semi-solid.

[α]_D²⁵ = - 10.0 (c 3.45, CH₂Cl₂); IR (CH₂Cl₂) ν _{max}: 1682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.39 (s, 9H), 1.88-1.91 (br d, J = 11.96 Hz, 1H), 2.02-2.11 (q, J = 11.48 Hz, 1H), 3.53-3.63 (m, 4H), 3.72-3.73 (br d, J = 4.40 Hz, 2H), 3.85 (br s, 3H), 4.38-4.90 (m, 6H), 5.15-5.20 (br t, J = 9.00 Hz, 1H), 5.33-5.36 (t, J = 5.60 Hz, 1H), 6.84 (br s, 1H), 7.08-7.10 (br d, J = 9.00 Hz, 1H), 7.22-7.35 (m, 15H); ¹³C NMR (100 MHz, CDCl₃): δ 28.5, 32.0, 42.9, 44.4, 68.9, 70.5, 72.2, 73.7, 74.8, 75.5, 76.6, 80.4, 127.5-128.8 (m, aromatic),137.9, 138.3, 138.8, 156.4, 169.2, 170.6; MSES⁺: 670 [M + Na]⁺; Anal. calc. for $C_{36}H_{35}N_3O_3$ (647.75); C 66.75, H 7.00, N 6.49. found; C 66.78, H 7.02, N 6.47.

N-tert-Butoxycarbonyl-*N*-(3,4,6 tri-*O*-benzyl- 2-deoxy-β-D-*lyxo*-hexopyranosyl)-L-leucine (5b).

Procedure: The same experimental procedure was followed as for compound **5a** but Boc-L-Leu-NHSE was used instead of Boc-Gly-Gly-NHSE.

Yield: 57% (47 mg, over two steps). [α]_D²⁵ = - 17.3 (c 0.75, CH₂Cl₂); IR (CH₂Cl₂) ν _{max}: 1685 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.90-0.92 (2 d, J = 7.5 Hz, 6H), 1.42 (s, 9H), 1.58-1.70 (m, 3H), 1.98-2.02 (m, 2H), 3.54-3.60 (m, 4H), 3.88-3.89 (d, J = 2.20 Hz, 1H), 4.05 (br s, 1H), 4.39-4.93 (m, 6H), 4.79 (br s, 1H), 5.14-5.19 (q, J = 8.55 Hz, 1H), 6.59-6.62 (d, J = 9.0 Hz, 1H), 7.25-7.36 (m, 15H); ¹³C NMR (100 MHz CDCl₃): δ 21.7, 23.1, 24.6, 28.2, 32.5, 41.0, 68.5, 70.3, 71.5, 73.4, 74.5, 75.5, 76.5, 77.4, 127.3-

138.6 (m, Aromatic), 169.0, 172.0; MSES⁺: 664.3 [M + NH₄]⁺; Anal. calc. for $C_{38}H_{50}N_2O_7$ (646.36); C 70.56, H 7.79, N 4.33. found: C 70.58, H 7.81, N 4.30.

Fluorenylmethyloxycarbonyl-N-(3,4,6 tri-O-benzyl-2-deoxy- β -D-lyxo-hexopyranosyl)-O-(tert-butyl)-L-serine (5c).

Procedure: The same experimental procedure was followed as for compound **5a** but Fmoc-(O-t-butyl)-L-Ser-NHSE was used instead of Boc-Gly-Gly-NHSE.

Yield: 57% (59 mg, over two steps); $[\alpha]_D^{25} = -6.6$ (c 0.6, CH₂Cl₂); IR (CH₂Cl₂) ν_{max} : 1726, 1696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.16 (s, 9H), 1.92-2.03 (m, 2H), 3.36-3.40 (t, J = 8.06 Hz, 2H), 3.55-3.65 (m, 4H), 3.78-3.79 (br. d, J = 4.64 Hz, 1H), 3.90-3.91 (d, J = 2.20 Hz, 1H), 4.20-4.23 (t, J = 7.08 Hz), 4.38-4.95 (m, 8H), 5.15-5.21 (q, J = 9.04 Hz, 1H), 5.66-5.68 (d, J = 6.56 Hz, 1H), 7.23-7.76 (m, 24H); ¹³C NMR(100 MHz, CDCl₃): δ 24.8, 25.5, 27.2, 27.3, 32.6, 33.7, 47.1, 67.1, 68.5, 70.3, 71.6, 73.4, 74.3, 75.3, 119.9, 125.1-138.8 (m, aromatic), 141.2, 170.0; MSES⁺: 821 [M + Na]⁺; Anal. calc. for $C_{10}H_{2}$, $N_{2}O_{3}$ (798.96); C 73.66, H 6.81, N 3.51. found: C 73.64, H 6.78, N 3.49.

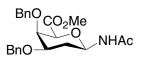
N-tert-Butoxycarbonyl-*N*-(3,4,6 tri-*O*-benzyl- 2-deoxy-β-D-*arabino*-hexopyranosyl)-glycylglycine (5d).

Procedure: The same experimental procedure was followed as for compound **5a** but 2-deoxy-glucopyranosyl azide was used instead of 2-deoxy-galactopyranosyl azide.

Yield: 50% (42 mg, over two steps); $[α]_D^{25} = +2.4$ (c 1.25, CH₂Cl₂); IR (CH₂Cl₂) v_{max} : 1711, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.43 (s, 9H), 1.53-1.62 (q, J = 11.72 Hz, 1H), 2.04-2.06 (m, 1H) 3.50-3.83 (m, 9H), 4.36-4.90 (m, 7H), 5.15-5.20 (br t, J = 9.76 Hz, 1H), 7.16-7.18 (d, J = 7.56 Hz, 2H), 7.26-7.34 (m, 15H); ¹³C NMR (100 MHz, CDCl₃): δ 28.3, 35.8, 42.5, 44.2, 68.7, 71.48, 72.2, 73.5, 74.9, 75.9, 76.1, 79.6, 127.6-129.7 (m, aromatic), 137.3, 138.1, 138.2, 169.0, 170.5; MSES⁺: 670 [M + Na]⁺; Anal. calcd for $C_{36}H_{45}N_3O_8$ (647.75); C 66.75, H 7.00, N 6.49. Found: C, 66.72; H, 7.68; N, 6.43.

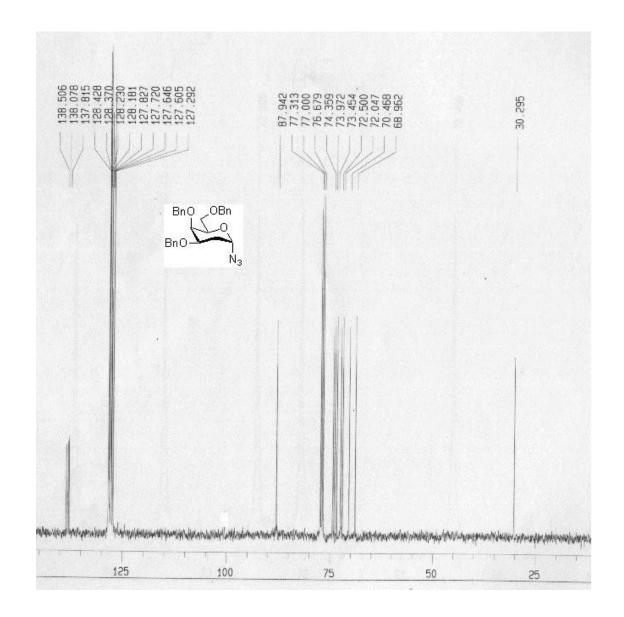
N-Acetyl [3,4-di-*O*- benzyl- 6-*O*-(*tert*- butyldimethylsilyl)-2 -deoxy-β-D-*lyxo*-hexopyranosyl] amine (6).

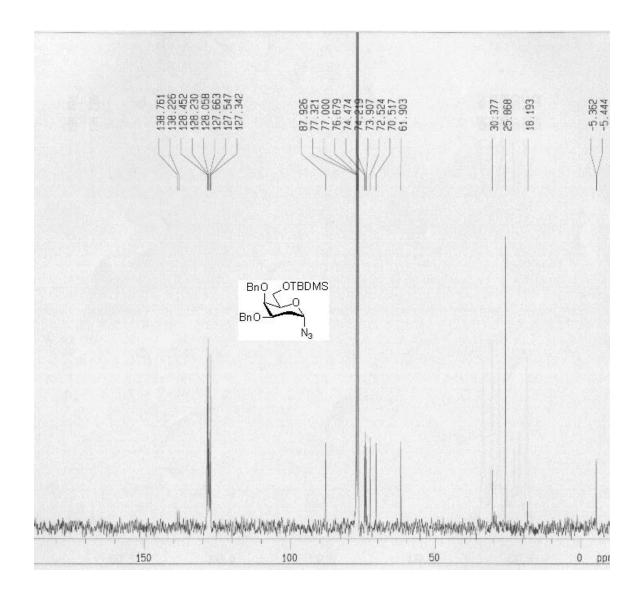
Procedure: To a stirred solution of the glycosyl azide **4b** (300 mg, 0.621 mmol) in THF (5 mL) at room temperature were added triphenyl phosphine (195 mg, 0.744 mmol) and water (50 μL). The reaction mixture was stirred for 1 h followed by evaporation of THF and extraction with diethyl ether (2 x 30 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated to give crude amine which was acetylated using pyridine and acetic anhydride (2:0.5, 2.5 mL) at room temperature (4 h). The reaction mixture was extracted with ethyl acetate (2 x 15 mL) and the organic layer was washed twice with 1N HCl (2 x 10 mL) and finally with brine. Evaporation of the solvent gave a crude product whose purification by column chromatography yielded compound **6** (217 mg, 70% over two steps) as a viscous liquid.

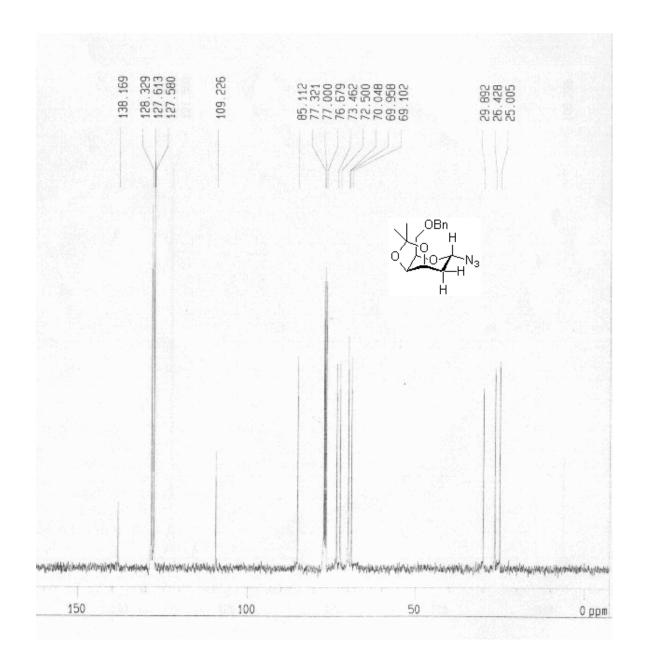

 $[\alpha]_D^{25} = -3.52 \text{ (c } 3.45, \text{CH}_2\text{Cl}_2); \text{ IR (CH}_2\text{Cl}_2) \text{ v}_{\text{max}}: 1677 \text{ cm}^{-1}; \text{ } ^{1}\text{H NMR (} 400 \text{ MHz, CDCl}_3): \delta 0.84, 0.86$ (2s, 9H), 1.90 (br s, 3H), 1.91-2.0 (m, 2H),3.41-3.44 (dd, J = 8.56, 5.40 Hz, 1H), 3.55-3.60 (ddd, J = 14.16, 4.16, 2.20 Hz, 1H), 3.62-3.73 (m, 2H), 3.88 (br s, 1H), 4.50-4.94 (m, 4H), 5.13-5.20 (dt, J = 11.00, 2.20 Hz, 1H), 6.29-6.31 (d, J = 9.28 Hz), 6.33-6.35 (d, J = 9.20 Hz, 1H), 7.20-7.60 (m, 10H); ¹³C NMR (100MHz, CDCl₃): (mixture of anomers): δ 23.2, 25.7, 25.8, 26.0, 29.6, 32.3, 35.5, 60.9, 68.5, 70.2, 71.4, 71.6, 73.3, 74.5, 74.6, 74.8, 75.0, 75.9, 76.1, 76.7, 77.4, 127.2-128.4 (m, aromatic), 137.7, 138.0, 138.8, 169.7; MSES⁺: 522 [M + Na]⁺; Anal. calc. for $C_{28}H_{41}SiNO_{5}$ (499.71); C 67.30, H 8.27, N 2.80., found: C 67.31, H 8.24, N 2.79.

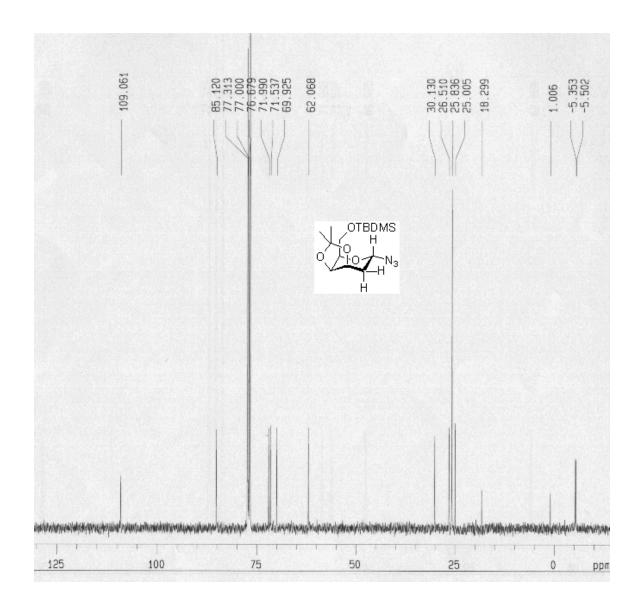
N-Acetyl [3,4-di-O- benzyl-6-(hydroxy)-2 -deoxy- β -D-lyxo-hexopyranosyl] amine (7).

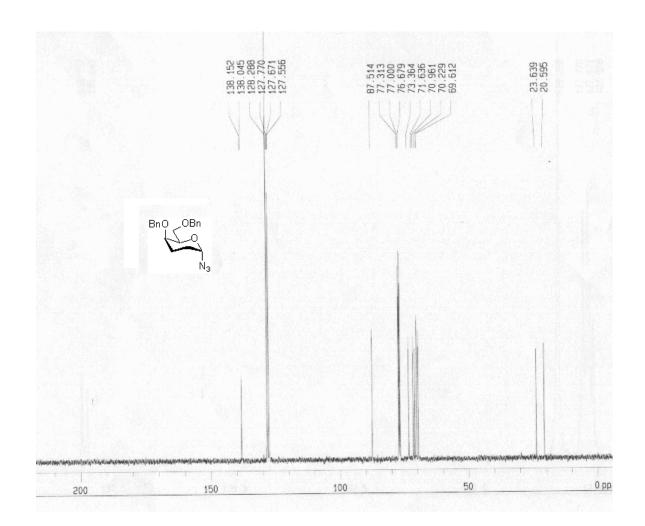
Procedure: To a stirred solution of compound **6** (200 mg, 0.40 mmol) in dry THF (4 mL) was added dropwise 1M solution of TBAF (0.48 mL, 0.48 mmol) at 0 °C. The cooling bath was removed and the reaction mixture stirred for 1 h at room temperature and then extracted with ethyl acetate (2 x 30 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a crude product which was purified by column chromatography to obtain compound **7** (141 mg, 92%) as a semi-solid.


[α]_D²⁵ = -4.7 (c 1.75, CH₂Cl₂); IR (CH₂Cl₂) v_{max} : 3305, 1669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (mixture of anomers, α:β, 1:6.7): δ 1.93, 1.94 (2 s, 3H), 1.95-2.10 (m, 2H), 2.79 (br s, 1H), 3.44-3.47(t, J = 5.62 Hz, 1H), 3.49-3.53 (dd, J = 11.24, 4.88 Hz, 1H), 3.58-3.61 (m, 1H), 3.71-3.75 (dd, J = 11.20, 6.46 Hz, 1H), 3.77 (br s 1H), 4.58-4.94 (m, 4H), 5.11-5.17 (dt, J = 9.28, 2.44 Hz, 1H), 6.60-6.62 (d, J = 9.16 Hz,1H), 6.67-6.69 (d, J = 9.00 Hz 1H), 7.26-7.37 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): (mixture of anomer): δ 23.2, 29.6, 31.8, 35.2, 62.4, 68.1, 69.1, 70.4, 71.9, 73.3, 74.1, 74.6, 74.7, 75.2, 75.9, 76.2, 77.5, 127.3-138.1 (m, aromatic), 170.1, 170.5; MSES⁺: 408 [M + Na]⁺; Anal. calc. for C₂₂H₂₇NO₅ (385.45); C 68.55, H 7.05, N 3.63, found: C 68.58, H 7.08, N 3.61.


Methyl [N-(1-acetamido)]-3,4-di-O- benzyl-2-deoxy- β -D-lyxo-hexopyranosyl derivative (8).




Procedure: Compound 7 (80 mg, 0.207 mmol) was dissolved in acetone (3 mL) and aqueous 5% NaHCO₃ solution (0.6 mL) was added to it. The reaction mixture was cooled to 0 °C and treated with KBr (3 mg, 0.025 mmol) and TEMPO (32 mg, 0.205 mmol). NaOCl (0.5 mL, 0.255 mmol) was then added dropwise to this reaction mixture which was stirred for 1 h at same temperature. Additional NaOCl (0.2 mL, 0.107 mmol) was added to it and stirring continued for further 1 h at 0 °C followed by addition of 5% NaHCO₃ solution (0.8 mL). Evaporation of acetone under reduced pressure was followed by washing of the aqueous layer with ether (2 x 10 mL). The reaction mixture was then acidified to pH 6 with 10% aqueous citric acid and extracted with ethyl acetate (2 x 10 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and solvent evaporated to obtain the crude acid which was dissolved in dry THF, cooled to 0 °C and reacted with excess of CH₂N₂. The mixture was stirred for 30 min. at the same temperature followed by evaporation of the solvent to give the crude product which was purified by column chromatography to yield compound 8 (61 mg, 72%, over two steps) as a colorless solid. m.p. 184-186 °C (dec).


 $[\alpha]_D^{25} = + 8.0 \text{ (c } 0.5 \text{ CH}_2\text{Cl}_2); \text{ IR (CH}_2\text{Cl}_2) \text{ v}_{\text{max}}: 1756,1665 \text{ cm}^{-1}; ^{1}\text{H NMR (400 MHz, CDCl}_3): \delta 1.92-1.94 \text{ (br d, } J = 11.24 \text{ Hz, 1H), } 1.99 \text{ (s, 3H) } 2.42-2.51 \text{ (q, } J = 11.90, 1H), } 3.51 \text{ (s, 3H), } 3.65-3.68 \text{ (ddd, } J = 11.96, 4.12, 2.44 \text{ Hz, 1H), } 4.13-414 \text{ (br d, } J = 3.64 \text{ Hz, 2H), } 4.52-4.55 \text{ (br d, } J = 12.20 \text{ Hz, 2H), } 4.63-4.66 \text{ (br d, } J = 12.44 \text{ Hz, 1H), } 4.91-4.94 \text{ (br d, } J = 12.48 \text{ Hz, 1H), } 5.21-5.26 \text{ (dt, } J = 9.52, 2.00 \text{ Hz, 1H), } 7.22-7.31 \text{ (m, 10H)} 7.47-7.49 \text{ (d, } J = 9.52 \text{ Hz, 1H); } ^{13}\text{C NMR(100 MHz, CDCl}_3): \delta 23.0, 30.7, 51.9, 70.3, } 72.5, 73.5, 75.9, 76.2, 127.2, 127.5, 127.7, 128.1, 128.2, 128.4, 137.7, 138.4, 169.0, 170.8; MSES^+: 431 \text{ [M + NH}_4]^+, 414 \text{ [M + H]}^+; \text{ Anal. calc. for } \text{C}_{23}\text{H}_{27}\text{NO}_6 \text{ (413.18); C 66.81, H 6.58, N 3.39. found: C 66.83, H 6.56, N 3.40.}$

