## Supporting Information

# Effective Asymmetric Synthesis of CBI

David B. Kastrinsky and Dale L. Boger\*

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

| Compound                   | Page # |
|----------------------------|--------|
| S2                         | S3     |
| 5                          | S3     |
| 6                          | S4     |
| 7                          | S4     |
| 8                          | S5     |
| 10                         | S5     |
| 11                         | S6     |
| 12                         | S7     |
| ( <i>S</i> )-18            | S8     |
| <i>(S)</i> -19             | S8     |
| ( <i>R</i> )-21            | S9     |
| ( <i>R</i> )-22            | S10    |
| <i>(S)</i> -23             | S10    |
| ( <i>R</i> )-24            | S11    |
| ( <i>R</i> )-16            | S11    |
| ( <i>R</i> )-17            | S12    |
| ( <i>R</i> )-29            |        |
| ( <i>R</i> )-19            |        |
| S3                         |        |
| S4                         |        |
| <b>S5</b>                  |        |
| 25                         |        |
| (1 <i>S</i> )-26           |        |
| <i>(S)</i> -18             |        |
| ( <i>R</i> )-27            |        |
| ( <i>R</i> )-28            |        |
| ( <i>R</i> )-29            |        |
| Enzymatic resolution of 19 | S20    |

### <sup>1</sup>H NMR's

| S2              | S21 |
|-----------------|-----|
| 5               | S22 |
| 6               | S23 |
| 7               | S24 |
| 8               | S25 |
| 9               | S26 |
| 10              | S27 |
| 11              | S28 |
| 12              | S29 |
| <i>(S)</i> -13  | S30 |
| Diacetate       |     |
| ( <i>R</i> )-14 | S32 |
| (S)-15          | S33 |
| (S)-16          | S34 |
| (S)-17          | S35 |
| <i>(S)</i> -18  | S36 |
| <i>(S)</i> -19  | S37 |
| ( <i>R</i> )-21 | S38 |
| ( <i>R</i> )-22 | S39 |
| <i>(S)</i> -23  | S40 |
| ( <i>R</i> )-24 | S41 |
| S3              | S42 |
| S4              | S43 |
| S5              | S44 |
| 25              | S45 |
| <i>(S)</i> -26  | S46 |
| ( <i>R</i> )-27 | S47 |
| ( <i>R</i> )-28 | S48 |
| ( <i>R</i> )-29 |     |

**4-Acetoxy-1-(acetylamino)naphthalene (S2).** A solution of 4-aminonaphthol hydrochloride (**S1**, 10.0 g, 52 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (600 mL) was cooled to 0 °C and treated with Et<sub>3</sub>N (22 mL, 158 mmol). The dark brown solution was stirred for 30 min, treated dropwise with Ac<sub>2</sub>O (10.0 mL, 108 mmol), and stirred for 3 h at 0 °C. The mixture was quenched by addition of MeOH (40 mL) and concentrated in vacuo. The resulting dark brown product was suspended in cold H<sub>2</sub>O (300 mL), filtered, and dried in vacuo. The product could be recrystallized from EtOAc–hexanes, or simply suspended in 10% EtOAc–hexanes (300 mL) and washed with 10% EtOAc–hexanes to afford **S2** (9.24 g, 74%, typically 70–84%) as an off white powder: mp 152–154 °C (beige needles, EtOAc–hexanes); lit.<sup>37</sup> mp 158 °C (prisms, H<sub>2</sub>O); <sup>1</sup>H NMR (acetone-*d*<sub>6</sub>, 400 MHz) δ 9.19 (1H, br s), 8.13 (1H, dd, *J* = 6.3, 2.8 Hz), 7.94 (1H, dd, *J* = 6.2, 2.9 Hz), 7.85 (1H, d, *J* = 8.2 Hz), 7.54 (2H, m), 7.25 (1H, d, *J* = 8.2 Hz), 2.43 (3H, s), 2.23 (3H, s); <sup>13</sup>C NMR (acetone-*d*<sub>6</sub>, 100 MHz) δ 169.9, 169.4, 144.8, 132.7, 129.5, 128.2, 127.1, 127.0, 123.4, 122.5, 121.6, 118.8, 23.8, 20.7; IR (film) v<sub>max</sub> 3262, 1762, 1654, 1540, 1506, 1203 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 244.0971 (M+H<sup>+</sup>, C<sub>14</sub>H<sub>13</sub>NO<sub>3</sub> requires 244.0968).

**4-Acetoxy-1-acetylamino-2-nitronaphthalene (5)**. Compound **S2** (8.78 g, 36.1 mmol) was added in several portions to 90% HNO<sub>3</sub> (6.0 mL, 144 mmol, 4 equiv) at 0 °C. Upon complete addition of **S2**, the mixture was stirred at 18 °C for 1 h. The dark red mixture was poured into ice (200 mL), filtered, and washed with several portions of cold H<sub>2</sub>O. The orange solid was then dissolved in a minimal amount of EtOH and precipitated by the slow addition of H<sub>2</sub>O to afford **5** (7.18 g, 69%, typically 59–78%) as an orange solid: mp 212–213 °C (yellow needles, EtOH); lit.<sup>37</sup> mp 216–217 °C (crystals, EtOH); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz) δ 10.45 (1H, s), 8.31 (1H, m), 8.08 (1H, m), 7.91(1H, s), 7.82 (2H, m), 2.49 (3H, s) 2.19 (3H, s); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 100 MHz) δ 169.3, 169.3, 144.6, 141.9, 129.9, 129.8, 128.7, 127.6, 125.8, 125.4, 121.9,

113.7, 22.9, 20.8; IR (film)  $v_{max}$  2986, 1762, 1654, 1506, 1191 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) m/z 311.0640 (M+Na<sup>+</sup>, C<sub>14</sub>H<sub>12</sub>N<sub>2</sub>O<sub>5</sub> requires 311.0644).

**1-Acetylamino-4-hydroxy-2-nitronaphthalene (6)**. A solution of **5**<sup>37</sup> (7.18 g, 24.9 mmol) in MeOH (200 mL, dried over 4 Å molecular sieves) was treated with K<sub>2</sub>CO<sub>3</sub> (3.79 g, 27.4 mmol) in portions at 0 °C. The solution turned deep red and was stirred at 0 °C for 30 min. A solution of 1 M aqueous HCl was added until the pH was less than 6 and the solvent was removed in vacuo. The solid was suspended in cold H<sub>2</sub>O (100 mL), filtered, and washed several times with cold H<sub>2</sub>O to afford **6** (6.17 g, 99%) as a dark red solid which was used in the next reaction without further purification. Flash chromatography (SiO<sub>2</sub>, 66% EtOAc–hexanes) provided **6** as a light orange solid: mp 221–222 °C; <sup>1</sup>H NMR (acetone-*d*<sub>6</sub>, 600 MHz)  $\delta$  9.90 (1H, s), 9.34 (1H, s), 8.22 (1H, d, *J* = 7.3 Hz), 8.17 (1H, d. *J* = 7.3 Hz), 7.67 (1H, t, *J* = 6.4 Hz), 7.66 (1H, t, *J* = 6.4 Hz), 7.28 (1H, s), 2.24 (3H, s); <sup>13</sup>C NMR (acetone-*d*<sub>6</sub>, 150 MHz)  $\delta$  170.7, 153.5, 144.8, 132.1, 129.2, 128.8, 127.9, 125.9, 123.5, 120.8, 103.2, 23.3; IR (film) v<sub>max</sub> 3231, 1665, 1513, 1357 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 269.0537 (M+Na<sup>+</sup>, C<sub>12</sub>H<sub>10</sub>N<sub>2</sub>O<sub>4</sub> requires 269.0533).

1-Acetylamino-4-benzyloxy-2-nitronaphthalene (7). A solution of 6 (2.67 g, 10.8 mmol) in DMF (50 mL) at 25 °C was treated with Bu<sub>4</sub>NI (80 mg, 0.22 mmol), and K<sub>2</sub>CO<sub>3</sub> (2.09 g, 15.2 mmol) and the solution was stirred for 15 min. Benzyl bromide (1.36 mL, 11.4 mmol) was added dropwise, and the resulting solution was stirred for 1 h. The reaction mixture was poured into H<sub>2</sub>O (500 mL) and the yellow solid was collected by filtration. The solid was suspended in a small amount of cold acetone, filtered, and washed with cold acetone to afford 7 (2.23 g, 71%, typically 71–92%) as a bright yellow solid: mp 199–200 °C (yellow needles, acetone); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz)  $\delta$  10.26 (1H, s), 8.30 (1H, d, *J* = 9.1 Hz), 8.18 (1H, d, *J* = 9.1 Hz), 7.77 (2H, m), 7.58 (2H, d, *J* = 7.0 Hz), 7.52 (1H, s), 7.46 (2H, t, *J* = 7.3 Hz) 7.38 (1H, t, *J* = 7.2 Hz),

5.42 (2H, s), 2.16 (3H, s); <sup>13</sup>C NMR (DMSO- $d_6$ , 100 MHz)  $\delta$  169.3, 152.5, 143.3, 136.3, 130.0, 128.8, 128.6 (2C), 128.2, 127.7 (2C), 127.6, 126.8, 125.1, 122.1, 120.7, 100.5, 70.3, 22.8; IR (film)  $v_{\text{max}}$  3264, 1662 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) m/z 359.1005 (M+Na<sup>+</sup>, C<sub>19</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub> requires 359.1002).

**1-Amino-4-hydroxy-2-nitronaphthalene (8).** A sample of **7** (4.62 g, 13.7 mmol) was added as a solid to 2 N NaOH in MeOH (100 mL). A deep red color developed, and the solution was stirred for 3 h at 70 °C. The solution was cooled to 25 °C and poured into saturated aqueous NH<sub>4</sub>Cl (100 mL), followed by H<sub>2</sub>O (100 mL). The orange–red solid was collected by filtration, washed with cold H<sub>2</sub>O, and dried in vacuo. The solid was dissolved in a minimal amount of EtOAc and precipitated with hexanes to afford **8** (3.14 g, 78%, typically 74–78%) as a bright red solid: mp 150–151 °C (red needles, EtOAc–hexanes); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.31 (1H, d, *J* = 8.2 Hz), 7.97 (1H, d, *J* = 8.2 Hz), 7.69 (1H, t, *J* = 7.9 Hz), 7.61 (1H, t, *J* = 8.2 Hz), 7.52 (2H, d, *J* = 7.4 Hz), 7.49 (1H, s) 7.44 (2H, t, *J* = 7.2 Hz), 7.38 (1H, t, *J* = 7.2 Hz), 7.26 (2H, br s), 5.19 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 145.7, 140.5, 136.7, 130.5, 130.4, 128.8 (2C), 128.3, 127.8 (2C), 127.6, 126.2, 124.3, 123.6, 122.6, 99.3, 70.6; IR (film) v<sub>max</sub> 3563, 3339, 1597 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 295.1080 (M+H<sup>+</sup>, C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub> requires 295.1077).

**4-Benzyloxy-1-chloro-2-nitronaphthalene (10).** A solution of **8** (5.55 g, 18.9 mmol) in DME (5 mL) was added slowly to a solution of BF<sub>3</sub>–OEt<sub>2</sub> (3.6 mL, 28.4 mmol) in DME (40 mL) at – 15 °C, and the mixture was stirred for 30 min at –15 °C. *t*-BuONO (3.4 mL, 28.4 mmol) in DME (5 mL) was added dropwise, and the mixture was warmed to 0 °C and stirred for 1.5 h. Pentane (50 mL) was added to completely precipitate the diazonium salt. The solution was filtered and washed with cold Et<sub>2</sub>O to afford **9** (5.64 g, 76%) as a yellow solid: mp 126–128 °C; <sup>1</sup>H NMR (CD<sub>3</sub>CN, 400 MHz)  $\delta$  8.65 (1H, d, *J* = 8.5 Hz), 8.26–8.29 (2H, m), 8.24 (1H, s), 8.04 (1H, m),

7.63 (2H, dd, J = 6.3, 1.8 Hz), 7.51 (3H, m), 5.76 (2H, s); <sup>13</sup>C NMR (CD<sub>3</sub>CN, 100 MHz)  $\delta$  169.8, 136.8, 134.7, 132.9, 130.8, 130.4, 130.3, 130.0 (2C), 129.5 (2C), 129.4, 127.2, 126.6, 123.7, 106.8, 75.6; <sup>19</sup>F NMR (CD<sub>3</sub>CN, 376 MHz)  $\delta$  –151.21; IR (film)  $\nu_{max}$  1037, 743 cm<sup>-1</sup>.

A solution of CuCl (17.8 g, 180 mmol) and CuCl<sub>2</sub> (28.9 g, 215 mmol) in H<sub>2</sub>O (130 mL) cooled to 0 °C was treated slowly with **9** (5.64 g, 14.4 mmol) in CH<sub>3</sub>CN (80 mL). The mixture was warmed to 25 °C and stirred for 45 min. A saturated aqueous NaHCO<sub>3</sub> solution was added to adjust the pH to 7, H<sub>2</sub>O (200 mL) was added to dissolve the copper salts, and the mixture was extracted with EtOAc (3 × 200 mL). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The crude product was filtered through a SiO<sub>2</sub> plug with EtOAc to afford **10** (3.40 g, 75%) as a tan solid: mp 139–140 °C (tan prisms, EtOAc–hexanes); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.43 (1H, d, *J* = 8.5 Hz), 8.40 (1H, d, *J* = 8.5 Hz), 7.76 (1H, t, *J* = 8.2 Hz), 7.69 (1H, t, *J* = 8.4 Hz), 7.52 (2H, d, *J* = 8.5 Hz), 7.44 (3H, m), 5.29 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  154.1, 145.8, 135.6, 131.2, 129.6, 129.0 (2C), 128.9, 128.7, 127.8 (2C), 127.8, 126.3, 123.0, 117.4, 100.8, 71.1; IR (film) v<sub>max</sub> 1507, 1348 cm<sup>-1</sup>. Anal. Calcd for C<sub>17</sub>H<sub>12</sub>ClNO<sub>3</sub>: C, 65.08; H, 3.86; N, 4.46. Found: C, 65.46; H, 3.78; N, 4.16.

**Dimethyl 2-(4-Benzyloxy-2-nitronaphthalen-1-yl)malonate (11)**. A solution of dimethyl malonate sodium salt was prepared by suspending NaH (60% mineral oil dispersion, 0.592 g, 24.7 mmol) in DMF (40 mL). The solution was cooled to 0 °C and dimethyl malonate (2.83 mL, 24.7 mmol) was added slowly. Stirring was continued for 30 min at 0 °C before the solution was combined with a solution of **10** (1.55 g, 4.94 mmol) in DMF (10 mL). This mixture was warmed to 80 °C for 12 h. After cooling to 25 °C, saturated aqueous NaHCO<sub>3</sub> (50 mL) was added. The product was extracted into Et<sub>2</sub>O (3 × 50 mL). The combined organic extracts were washed with H<sub>2</sub>O (3 × 20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. The crude residue was dissolved in

a minimal amount of EtOAc and precipitated by the slow addition of hexanes to afford **11** (1.60 g, 79%, typically 75–86%) as a yellow solid: mp 121–122 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.44 (1H, d, *J* = 7.6 Hz), 8.10 (1H, d, *J* = 8.8 Hz), 7.68 (1H, td, *J* = 6.7, 1.5 Hz), 7.64 (1H, td, *J* = 7.0, 1.2 Hz), 7.53 (2H, d, *J* = 6.8 Hz), 7.44 (3H, m), 7.41 (1H, s), 5.65 (1H, s), 5.32 (2H, s), 3.76 (6H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  167.9 (2C), 155.6, 148.7, 135.8, 132.8, 129.1, 129.0 (2C), 128.7, 128.4, 128.0, 127.9 (2C), 126.1, 123.4, 117.9, 100.4, 71.1, 53.3 (2C), 51.0; IR (film)  $v_{max}$  1749, 1513, 1236 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 432.1069 (M+Na<sup>+</sup>, C<sub>22</sub>H<sub>19</sub>O<sub>7</sub>N requires 432.1054).

**2-(4-Benzyloxy-2-nitronaphthalen-1-yl)propane-1,3-diol (12)**. A solution of **11** (0.504 g, 1.23 mmol) in anhydrous dioxane (10 mL) was treated with BH<sub>3</sub>–SMe<sub>2</sub> (0.37 mL, 3.66 mmol). The mixture was stirred at 70 °C in a closed vessel for 16 h. The mixture was cooled to 25 °C and most of the solvent was removed by a stream of N<sub>2</sub>. The residue was cooled to 0 °C and treated dropwise with saturated aqueous NaHCO<sub>3</sub> (5 mL). The mixture was extracted into Et<sub>2</sub>O (3 × 30 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 50% EtOAc–hexanes) afforded **12** (0.316 g, 73%; typically 70–76%) as a yellow oil which solidified slowly: mp 120–121 °C (yellow prisms, THF–Et<sub>2</sub>O); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.43 (1H, dd, J = 9.2, 1.5 Hz), 8.24 (1H, br s), 7.66 (1H, t, J = 7.5 Hz), 7.61 (1H, t, J = 7.0 Hz), 7.52 (2H, d, J = 7.5 Hz), 7.45 (2H, t, J = 7.5 Hz), 7.40 (1H, t, J = 7.5 Hz), 7.03 (1H, s), 5.25 (2H, s), 4.43 (2H, br s), 4.13 (2H, t, J = 7.0 Hz), 3.87 (1H, br s), 2.44 (2H, br s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 154.4, 149.7, 135.7, 132.4, 128.8 (2C), 128.6, 128.5, 127.60 (2C), 127.56, 127.4, 126.0, 123.4, 121.7, 99.8, 70.7, 64.9 (2C), 46.3; IR (film) v<sub>max</sub> 3378, 1527, 1362 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 376.1162 (M+Na<sup>+</sup>, C<sub>20</sub>H<sub>19</sub>NO<sub>5</sub> requires 376.1661).

#### Alternative Synthesis of (S)-17

#### (S)-1-(Acetoxymethyl)-5-benzyloxy-3-(tert-butyloxycarbonyl)-1,2-dihydro-3H-

**benz**[*e*]**indole** ((*S*)-**18**). A solution of (*R*)-**14** (102 mg, 0.215 mmol) in THF (1.0 mL) was treated with PtO<sub>2</sub> (5 mg), Et<sub>3</sub>N (60.0 μL, 0.430 mmol), and Boc<sub>2</sub>O (189 mg, 0.861 mmol) and the mixture was stirred at 25 °C for 3 h under 1 atm of H<sub>2</sub>. The reaction mixture was filtered through Celite and stirred for an additional 6 h. The reaction mixture was then concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 1–10% EtOAchexanes) provided (*S*)-**18** (40.0 mg, 42%) as a white solid: mp 105–106 °C (white needles, 10% EtOAc–hexanes) [ $\alpha$ ]<sup>23</sup><sub>D</sub> +6 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.29 (1H, d, *J* = 8.3 Hz), 7.89 (1H, br s), 7.79 (1H, d, *J* = 8.3 Hz), 7.56 (2H, br s), 7.52 (1H, t, *J* = 7.0 Hz), 7.44 (1H, d, *J* = 6.5 Hz), 7.43 (1H, s), 7.38 (1H, t, *J* = 7.5 Hz), 7.34 (1H, t, *J* = 7.5 Hz), 5.28 (2H, s), 4.58 (1H, d, *J* = 7.8 Hz), 4.09 (2H, m), 3.96 (1H, td, *J* = 7.0, 3.5 Hz), 3.89 (1H, t, *J* = 10.0 Hz) 2.12 (3H, s), 1.62 (9H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 171.3, 156.0, 152.8, 141.8, 137.1, 130.8, 128.9, 128.8 (2C), 128.3, 128.2, 127.7 (2C), 123.5, 123.3, 122.6, 114.2, 96.6, 81.1, 70.4, 66.1, 52.8, 38.5, 28.7 (3C), 21.2; IR (film) v<sub>max</sub> 2979, 1741, 1701, 1582, 1332 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 470.1994 (M+Na<sup>+</sup>, C<sub>27</sub>H<sub>29</sub>NO<sub>5</sub> requires 470.1938).

The recrystallization of (S)-18 (EtOAc–hexanes) may be used to further enrich the optical purity of this and the following synthetic intermediates.

#### (S)-5-(Benzyloxy)-3-(tert-butyloxycarbonyl)-1-(hydroxymethyl)-1,2-dihydro-3H-

**benz**[*e*]**indole ((S)-19).** A solution of (S)-18 (40.0 mg, 0.089 mmol) in MeOH (0.5 mL) was treated with  $K_2CO_3$  (13.6 mg, 0.0983 mmol) and stirred at 25 °C for 30 min. A solution of 1 M aqueous HCl was added to adjust the pH to 6, and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo providing

(*S*)-**19** (33.6 mg, 93%) as a clear film which did not require further purification. The *ee* of (*S*)-**19** was determined by HPLC (Chiralcel OD column, 0.46 × 25 cm, 19:1 hexanes–*i*-PrOH, 1 mL/min, retention times: 15.4 min (*S*)-**19**), 18.7 min (*S*)-**19**): before recrystallization of (*S*)-**18** (96% *ee*), after recrystallization of (*S*)-**18** (99.9% *ee*). (*S*)-**19** correlates with the literature compound which can be converted to *seco-N*-Boc-CBI. For (*S*)-**19**:  $[\alpha]^{23}_{D}$  +5 (*c* 0.19, CHCl<sub>3</sub>); lit.<sup>11</sup>  $[\alpha]^{23}_{D}$  +5.1 (*c* 1.78, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.29 (1H, d, *J* = 8.8 Hz), 7.92 (1H, br s), 7.72 (1H, d, *J* = 7.5 Hz), 7.56 (2H, br s), 7.49 (1H, t, *J* = 7.5 Hz), 7.44 (2H, t, *J* = 7.9 Hz), 7.37 (1H, t, *J* = 7.5 Hz), 7.33 (1H, t, *J* = 7.0 Hz), 5.28 (2H, s), 4.21 (1H, m), 4.15 (1H, t, *J* = 9.2 Hz), 3.96 (1H, dd, *J* = 7.0, 3.5 Hz), 3.87 (1H, m), 3.80 (1H, m), 1.61 (9H, s).

#### Synthesis of ent-17

#### (R)-1-Acetoxy-2-(4-benzyloxy-2-nitronaphthalen-1-yl)-3-(tert-

**butyldimethylsilyloxy)propane ((***R***)-21).** A solution of (*S*)-13 (63.9 mg, 0.162 mmol) in DMF (1.6 mL) was treated with TBSCl (36.6 mg, 0.243 mmol) and imidazole (22.1 mg, 0.324 mmol) and the mixture was stirred for 2 h at 25 °C. H<sub>2</sub>O (5 mL) was added, and the solution was extracted with Et<sub>2</sub>O (3 × 20 mL). The combined organic extracts were washed with H<sub>2</sub>O (3 × 20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 10% EtOAc–hexanes) afforded (*R*)-21 (57.4 mg, 70%) as a yellow film:  $[\alpha]^{23}_{D}$  –19 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.44 (1H, d, *J* = 6.3 Hz), 8.24 (1H, br s), 7.64 (1H, br s), 7.61 (1H, t, *J* = 7.5 Hz), 7.53 (2H, d, *J* = 7.5 Hz), 7.46 (2H, t, *J* = 7.0 Hz), 7.40 (1H, t, *J* = 7.0 Hz), 7.06 (1H, s), 5.27 (2H, s), 4.90 (1H, br s), 4.57 (1H, br s), 4.24 (1H, br s), 4.14 (1H, br s), 3.83 (1H, br s), 2.00 (3H, s), 0.83 (9H, s), -0.01 (3H, s), -0.05 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz) δ 171.1, 154.5, 150.7, 136.0, 132.3, 129.0 (2C), 128.6, 128.2, 127.8 (2C), 127.6, 127.5, 127.2, 123.5, 122.3, 100.3, 70.9, 64.9, 63.9, 43.7, 25.9 (3C), 21.1, 18.3, -5.36, -5.41; IR (film) v<sub>max</sub> 1742, 1531,

1362, 1101 cm<sup>-1</sup>; MALDIFT-HRMS (DHB) m/z 532.2142 (M+Na<sup>+</sup>, C<sub>28</sub>H<sub>35</sub>NO<sub>6</sub>Si requires 532.2126).

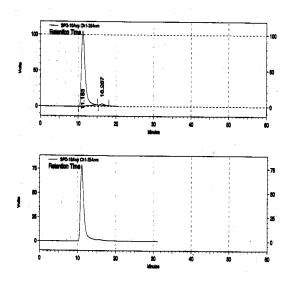
#### (R)-2-(4-Benzyloxy-2-nitronaphthalen-1-yl)-3-(tert-butyldimethylsilyloxy)propan-1-ol

((*R*)-22). A solution of (*R*)-21 (57.4 mg, 0.113 mmol) in MeOH (1.0 mL) was treated with K<sub>2</sub>CO<sub>3</sub> (62.3 mg, 0.450 mmol) at 25 °C. The mixture was stirred for 30 min before being diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The solution was washed with H<sub>2</sub>O (10 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 20% EtOAchexanes) afforded (*R*)-22 (44.4 mg, 83%) as a yellow film:  $[\alpha]^{23}_{D}$  +16 (*c* 1.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 8.43 (1H, d, *J* = 8.0 Hz), 8.29 (1H, br s), 7.67 (1H, br s), 7.62 (1H, t, *J* = 7.7 Hz), 7.52 (2H, d, *J* = 7.0 Hz), 7.47 (2H, t, *J* = 7.0 Hz), 7.40 (1H, t, *J* = 7.3 Hz), 7.03 (1H, br s), 5.26 (2H, s), 4.52 (1H, br s), 4.38 (1H, br s), 4.03 (1H, br s), 3.81 (1H, br s), 2.49 (1H, br s), 0.90 (9H, s), 0.08 (3H, s), 0.05 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 154.5, 150.3, 136.0, 132.7, 129.0 (2C), 128.6, 128.4, 127.82, 127.78 (2C), 127.6, 127.5, 127.2, 123.5, 100.1, 70.9, 65.7, 65.2, 46.5, 26.0 (3C), 18.3, 5.31, 5.34; IR (film)  $\nu_{max}$  3425, 1531, 1360, 1101 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 490.2015 (M+Na<sup>+</sup>, C<sub>26</sub>H<sub>33</sub>NO<sub>5</sub>Si requires 490.2020).

#### (S)-2-(4-Benzyloxy-2-nitronaphthalen-1-yl)-3-(tert-butyldimethylsilyloxy)-1-

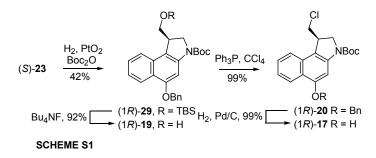
(methanesulfonyloxy)propane ((*S*)-23). A solution of (*R*)-22 (34.5 mg, 0.074 mmol) in pyridine (0.5 mL) cooled to 0 °C was treated dropwise with MsCl (11 µL, 0.15 mmol) and the mixture was stirred for 1 h at 0 °C and at 25 °C for 1 h. Ice H<sub>2</sub>O (5 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL), washed with aqueous 1 N HCl (3 × 10 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo to afford (*S*)-23 (37.2 mg, 93%) as a tan film which was used in the next reaction without further purification:  $[\alpha]^{23}_{D}$  –19 (*c* 1.6, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.45 (1H, d, *J* = 8.3 Hz), 8.18 (1H, br s), 7.67 (1H, br s), 7.65 (1H, t, *J* =

7.4 Hz), 7.52 (2H, d, J = 7.5 Hz), 7.46 (2H, t, J = 7.5 Hz), 7.41 (1H, t, J = 7.5 Hz), 7.10 (1H, s), 5.28 (2H, s), 4.99 (1H, br s), 4.76 (1H, br s), 4.29 (1H, br s), 4.19 (1H, br s), 3.92 (1H, br s), 2.89 (3H, s), 0.83 (9H, s), 0.01 (3H, s), -0.02 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  154.9, 150.7, 135.9, 132.2, 129.02, 129.01 (2C), 128.74, 128.69, 127.8 (2C), 127.6, 127.2, 123.6, 121.0, 100.2, 71.0, 69.7, 63.3, 43.9, 37.5, 25.9 (3C), 18.3, -5.3, -5.4; IR (film) v<sub>max</sub> 1531, 1389, 1177, 1101, 956 cm<sup>-1</sup>. Anal. Calcd for C<sub>27</sub>H<sub>35</sub>NO<sub>7</sub>SiS: C, 59.42; H, 6.46; N, 2.57. Found: C, 59.64; H, 6.08; N, 2.61.


#### (R)-1-(tert-Butyldimethylsilyloxymethyl)-3-(tert-butyloxycarbonyl)-5-hydroxy-1,2-

dihydro-3*H*-benz[*e*]indole ((*R*)-24). A solution of (*S*)-23 (67.5 mg, 0.084 mmol) in THF (3.0 mL) was treated with 10% Pd/C (10 mg), Et<sub>3</sub>N (32.0 μL, 0.247 mmol), and Boc<sub>2</sub>O (80.0 mg, 0.371 mmol) and the mixture was stirred at 25 °C for 24 h under 1 atm of H<sub>2</sub>. The reaction mixture was filtered through Celite and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 1–5% EtOAc–hexanes) provided (*R*)-24 (50.0 mg, 95%; typically 6695%) as a clear film:  $[\alpha]^{23}_{D}$  +17 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 8.21 (1H, d, *J* = 8.2 Hz), 7.87 (1H, s), 7.69 (1H, d, *J* = 8.5 Hz), 7.47 (1H, t, *J* = 7.0 Hz), 7.31 (1H, t, *J* = 7.3 Hz), 4.26 (1H, d, *J* = 11.5 Hz), 4.00 (2H, m), 3.77 (1H, m), 3.49 (1H, t, *J* = 9.9 Hz), 1.62 (9H, s), 0.91 (9H, s), 0.06 (3H, s), 0.00 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 153.6, 153.5, 141.1, 131.0, 127.2, 123.6, 122.8, 121.7, 121.4, 115.7, 99.5, 81.4, 64.9, 52.6, 41.9, 28.7 (3C), 26.1 (3C), 18.6, -5.2, -5.3; IR (film) v<sub>max</sub> 3344, 2929, 1666, 1258, 1142 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 429.2351 (M<sup>+</sup>, C<sub>24</sub>H<sub>35</sub>NO<sub>4</sub>Si requires 429.2335).

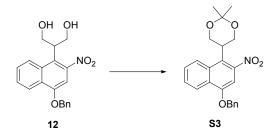
(*R*)-3-(*tert*-Butyloxycarbonyl)-5-hydroxy-1-hydroxymethyl-1,2-dihydro-3*H*-benz[*e*]indole ((*R*)-16). A solution of (*R*)-24 (125 mg, 0.290 mmol) in THF (4.0 mL) was treated with  $Bu_4NF$ (1.0 M in THF, 0.35 mL, 0.348 mmol) and the mixture was stirred for 1 h. Aqueous saturated NaCl (5.0 mL) was added and the mixture was extracted with EtOAc ( $3 \times 5$  mL). The combined organic layers were washed with aqueous saturated NaCl (5 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 33% EtOAc–hexanes) provided (*R*)-16 (82.5 mg, 90%; typically 90–98%) as a beige film: [ $\alpha$ ]<sup>23</sup><sub>D</sub> +1.6 (*c* 1.0, CHCl<sub>3</sub>), identical in all other respects with its enantiomer and authentic material.


#### (R)-3-(tert-Butyloxycarbonyl)-1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole

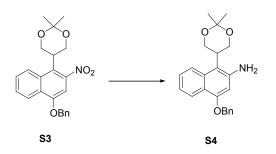
((*R*)-17). A solution of (*R*)-16 (19.3 mg, 0.0612 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at 25 °C was treated with Ph<sub>3</sub>P (48.3 mg, 0.184 mmol), and CCl<sub>4</sub> (53  $\mu$ L, 0.551 mmol) and the mixture was stirred for 3 h. The reaction mixture was concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 10–20% EtOAc–hexanes) provided (*R*)-17 (15.3 mg, 75%) as a white solid. (*R*)-17 was identical to authentic compound. The recrystallization of (*R*)-17 (EtOAc–hexanes) may be used to further enrich ( $\geq$ 99.9% *ee*) the optical purity of this and the following synthetic intermediates.



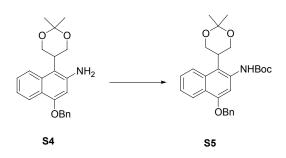
**Figure S1.** HPLC trace of (*R*)-17 before (97% *ee*) and after recrystallization ( $\geq$ 99.9% *ee*) from EtOAc–hexanes (CHIRALCEL<sup>®</sup> OD 0.46 × 25 cm, 49:1 hexanes–*i*-PrOH, 1 mL/min, retention times: 11.2 min (*R*)-17, 16.3 min (*S*)-17).


#### Alternative Synthesis of (*R*)-17.

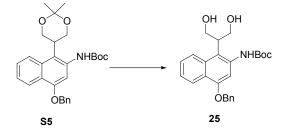



#### (R)-5-Benzyloxy-1-(tert-butyldimethylsilyloxymethyl)-3-(tert-butyloxycarbonyl)-1,2-

**dihydro-3***H***-benz[***e***]indole ((***R***)-29). A solution of (***S***)-23 (67.5 mg, 0.123 mmol) in THF (3.0 mL) was treated with PtO<sub>2</sub> (5 mg), Et<sub>3</sub>N (32 µL, 0.247 mmol), and Boc<sub>2</sub>O (80.8 mg, 0.371 mmol). The mixture was stirred at 25 °C for 3 h under 1 atm of H<sub>2</sub>. The reaction mixture was filtered through Celite and stirred for an additional 6 h. The mixture was then concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 1–5% EtOAc–hexanes) provided (***R***)-29 (26.2 mg, 41%) as a beige film: [\alpha]^{23}\_{D} +5 (***c* **0.7, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) \delta 8.28 (1H, d,** *J* **= 8.3 Hz), 7.89 (1H, br s), 7.70 (1H, d,** *J* **= 7.9 Hz), 7.56 (2H, br s), 7.49 (1H, t,** *J* **= 7.0 Hz), 7.44 (2H, t,** *J* **= 7.9 Hz), 7.37 (1H, t,** *J* **= 7.5 Hz), 7.32 (1H, t,** *J* **= 7.9 Hz), 5.28 (2H, s), 4.25 (1H, d,** *J* **= 10.1 Hz), 4.03 (1H, br s), 3.97 (1H, dd,** *J* **= 5.7, 4.0 Hz), 3.78 (1H, br s), 3.49 (1H, br s), 1.60 (9H, s), 0.90 (9H, s), 0.04 (3H, s), -0.02 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz) \delta 155.6, 153.0, 141.7, 137.3, 130.9, 128.8 (2C), 128.1, 127.8 (2C), 127.3, 123.5, 123.0, 122.8, 122.5, 115.9, 96.8, 80.7, 70.5, 65.0, 52.5, 41.9, 28.7 (3C), 26.1 (3C), 18.5, -5.0, -5.3; IR (film) v<sub>max</sub> 1703, 1144 cm<sup>-1</sup>; MALDIFT–HRMS (DHB)** *m/z* **542.2697 (M+Na<sup>+</sup>, C<sub>31</sub>H<sub>41</sub>NO<sub>4</sub>Si requires 542.2697).** 


(*R*)-5-Benzyloxy-3-(*tert*-butyloxycarbonyl)-1-(hydroxymethyl)-1,2-dihydro-3*H*benz[*e*]indole ((*R*)-19). A solution of (*R*)-29 (26.2 mg, 0.0504 mmol) in THF (0.5 mL) was treated with Bu<sub>4</sub>NF (1.0 M in THF, 60  $\mu$ L, 0.061 mmol) and stirred for 1 h. H<sub>2</sub>O (1 mL) was added, and the mixture was extracted into EtOAc (3 × 5 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 10% EtOAc–hexanes) provided (*R*)-**19** (18.7 mg, 92%) as a clear film:  $[\alpha]^{23}{}_{D}$  –4.3 (*c* 1.9, CH<sub>2</sub>Cl<sub>2</sub>); lit.<sup>11</sup>  $[\alpha]^{23}{}_{D}$  –5.2 (*c* 1.7, CH<sub>2</sub>Cl<sub>2</sub>) identical in all respects with authentic material.




**5-(4-Benzyloxy-2-nitronaphthalen-1-yl)-2,2-dimethyl-[1,3]dioxane (S3).** A sample of **12** (0.583 g, 1.65 mmol) in DMF (8.0 mL) was treated with 2,2-dimethoxypropane (0.28 mL, 2.31 mmol) and *p*-TsOH (44 mg, 0.231 mmol) and the mixture was stirred at 25 °C for 16 h. The mixture was diluted with Et<sub>2</sub>O (50 mL) and washed with saturated aqueous Na<sub>2</sub>CO<sub>3</sub> (10 mL). The organic phase was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 25% EtOAc–hexanes) afforded **S3** (0.402 g, 62%) as a yellow solid: mp 94–95 °C (yellow needles, Et<sub>2</sub>O); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.66 (1H, d, *J* = 7.9 Hz), 8.44 (1H, d, *J* = 8.5 Hz), 7.73 (1H, t, *J* = 7.0 Hz), 7.64 (1H, t, *J* = 7.1 Hz), 7.51 (2H, d, *J* = 7.6 Hz), 7.45 (2H, t, *J* = 7.6 Hz), 7.41 (1H, t, *J* = 7.0 Hz), 6.98 (1H, s), 5.26 (2H, s), 4.41 (2H, t, *J* = 9.7 Hz), 4.07 (1H, m), 4.00 (2H, m), 1.63 (3H, s), 1.51 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  154.7, 149.8, 135.9, 132.7, 129.0 (2C), 128.9, 128.7, 127.8 (2C), 127.4, 126.0, 123.5, 120.85, 120.80, 99.9, 99.4, 70.9, 62.1 (2C), 38.1, 27.2, 22.0; IR (film) v<sub>max</sub> 2990, 1593, 1101 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 416.1455 (M+Na<sup>+</sup>, C<sub>23</sub>H<sub>23</sub>NO<sub>5</sub> requires 416.1468).



**4-Benzyloxy-1-(2,2-dimethyl-[1,3]dioxan-5-yl)naphthalen-2-ylamine (S4).** A sample of **S3** (0.206 g, 0.525 mmol) in EtOAc (10.0 mL) was treated with 5% Pd/CaCO<sub>3</sub> poisoned with Lead (20 mg) and quinoline (0.062 mL, 0.525 mmol) and stirred for 8 h at 25 °C. The mixture was filtered through Celite and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 25% EtOAc–hexanes) afforded **S4** (0.130 g, 68%) as a yellow oil which solidified slowly: mp 153–154 °C (beige needles, EtOAc–hexanes); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.28 (1H, dd, *J* = 8.2, 0.9 Hz), 7.88 (1H, d, *J* = 7.9 Hz), 7.54 (2H, d, *J* = 7.3 Hz), 7.48 (1H, t, *J* = 7.6 Hz), 7.44 (2H, t, *J* = 7.4 Hz), 7.39 (1H, t, *J* = 7.3 Hz), 7.24 (1H, t, *J* = 7.3 Hz), 6.40 (1H, s), 5.21 (2H, s), 4.96 (2H, br s), 4.25 (1H, br s), 4.11 (2H, t, *J* = 7.9 Hz), 4.03, (2H, br s), 1.56 (3H, s), 1.54 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 154.5, 143.4, 137.2, 134.9, 128.8 (2C), 128.1, 127.6, 127.5 (2C), 122.3, 121.1, 121.0, 120.8, 106.2, 100.4, 99.8, 70.1, 60.4 (2C), 35.1, 24.4, 23.8; IR (film) ν<sub>max</sub> 3461, 3360, 2986, 1223 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 363.1837 (M<sup>+</sup>, C<sub>23</sub>H<sub>25</sub>NO<sub>3</sub> requires 363.1829).



**[4-Benzyloxy-1-(2,2-dimethyl-[1,3]dioxan-5-yl)naphthalen-2-yl]carbamic** Acid *tert*-Butyl Ester (S5). A sample of S4 (31.5 mg, 0.086 mmol) in THF (1.0 mL) was treated with Boc<sub>2</sub>O (37.8 mg, 0.173 mmol) and the mixture was warmed at 70 °C for 24 h. The solution was concentrated in vacuo and flash chromatography (SiO<sub>2</sub>, 25% EtOAc–hexanes) afforded S5 (32.3 mg, 80%) as a white solid: mp 138–139 °C (clear prisms, Et<sub>2</sub>Õhexanes); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 9.16 (1H, br s), 8.34 (1H, dd, J = 8.4, 1.1 Hz), 8.17 (1H, br s), 7.96 (1H, d, J = 6.6 Hz), 7.58 (2H, d, J = 8.0 Hz), 7.50 (1H, t, J = 8.8 Hz), 7.44 (2H, d, J = 7.3 Hz), 7.37 (2H, td, J = 7.4, 2.2), 5.30 (2H, s), 4.34 (1H, quintet, J = 6.6 Hz), 4.16 (2H, dd, J = 8.1, 4.0 Hz), 3.95 (2H, br s), 1.60 (3H, s), 1.59 (9H, s), 1.55 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 154.1, 154.0, 137.3, 136.4, 133.5, 128.7 (2C), 128.1, 128.0 (2C), 127.5, 123.5, 123.1, 123.0, 122.1, 114.2, 101.0, 100.7, 80.3, 70.3, 61.4 (2C), 34.9, 28.7 (3C), 24.5, 23.5; IR (film) v<sub>max</sub> 3418, 1699, 1506, 1250, 1157 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 463.2358 (M<sup>+</sup>, C<sub>28</sub>H<sub>33</sub>NO<sub>5</sub> requires 463.2353).



**2-(4-Benzyloxy-2-(***tert***-butyloxycarbonylamino)naphthalen-1-yl)-1,3-propanediol (25).** A sample of **S5** (32.3 mg, 0.0697 mmol) in MeOH (1.0 mL) was treated with *p*-TsOH (1 mg) and the mixture was stirred for 1 h at 25 °C. The solution was concentrated in vacuo and purified by flash chromatography (SiO<sub>2</sub>, 50% EtOAc–hexanes). The compound was then dissolved in a minimal amount of EtOAc and precipitated by the slow addition of hexanes to afford 25 (26.0 mg, 88%) as a snow white solid: mp 155–156 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.05 (1H, br s), 8.35 (1H, d, *J* = 8.2 Hz), 7.92 (1H, d, *J* = 7.3 Hz), 7.54 (2H, d, *J* = 7.3 Hz), 7.50 (1H, t, *J* = 7.0

Hz), 7.35–7.45 (4H, m), 7.12 (1H, br s), 5.24 (2H, s), 4.19 (4H, br s), 3.91 (1H, br s), 2.53 (2H, br s), 1.53 (9H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  154.5, 154.0, 137.2, 135.8, 135.3, 133.7, 128.8 (2C), 128.2, 127.8 (2C), 127.4, 124.2, 123.2, 122.6, 104.2, 103.9, 80.5, 70.4, 62.9 (2C), 42.9, 28.7 (3C); IR (film)  $\nu_{max}$  3390, 2976, 1682 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 423.2042 (M<sup>+</sup>, C<sub>25</sub>H<sub>29</sub>NO<sub>5</sub> requires 423.2046).

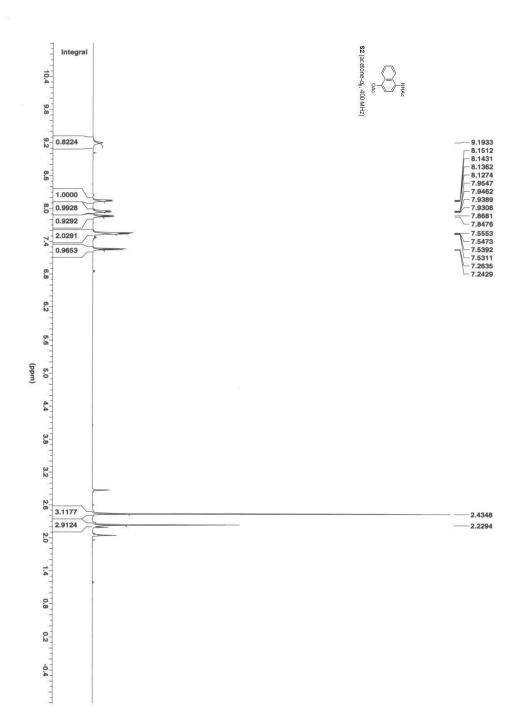
#### (1S)-1-Acetoxy-2-(4-benzyloxy-2-(tert-butyloxycarbonylamino)naphthalen-1-yl)-3-

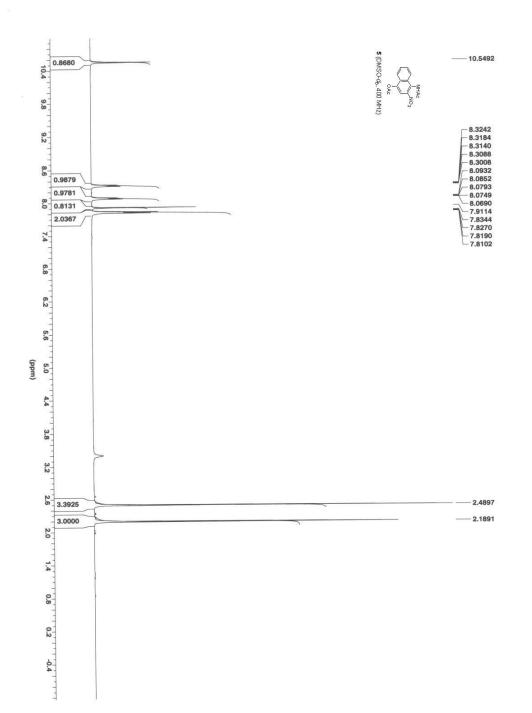
hydroxypropane ((1S)-26). A sample of 25 (50.0 mg, 0.118 mmol), 4 Å molecular sieves (50 mg), and Pseudomonas sp. Lipase (4 mg) from Sigma were dissolved in vinyl acetate (0.75 mL, distilled from CaCl<sub>2</sub>). The reaction mixture was stirred at 35 °C for 43 h and filtered through a Celite plug. The Celite was washed with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic solutions were concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 2050% EtOAc-hexanes) afforded (S)-26 (46.5 mg, 85%) and diacetate (6.9 mg, 12%). The sample of (S)-26 was determined to be 93% ee by HPLC (CHIRALCEL<sup>®</sup> OD column, 0.46 × 25 cm, 19:1 hexanes-*i*-PrOH, 1 mL/min, retention times: 15.7 min (S)-26, 27.0 min (R)-26). For (S)-26: mp 147-148 °C (white needles, EtOAchexanes);  $\left[\alpha\right]_{D}^{23}$  –40 (c 1.0 and 0.5, CH<sub>2</sub>Cl<sub>2</sub>), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 50 °C)  $\delta$  8.73 (1H, br s), 8.37 (1H, d, J = 7.3 Hz), 7.89 (1H, d, J = 7.7 Hz), 7.55 (2H, d, J = 7.3 Hz), 7.51 (1H, t, J Hz), 7.407.45 (4H, m), 7.37 (1H, t, J = 7.0 Hz), 5.27 (2H, dd, J = 11.4, 6.2 Hz), 4.99 (1H, br s), 4.39 (1H, dd, J = 6.6, 4.4 Hz), 4.20 (1H, q, J = 5.1 Hz), 4.04 (2H, br s), 2.73 (1H, br s), 2.03 (3H, s), 1.57 (9H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, 21 °C) δ 171.8, 154.2, 137.1, 135.9, 133.4, 128.7 (2C), 128.2, 127.9 (2C), 127.5, 125.2, 124.1, 123.2, 122.3, 119.9, 117.7, 103.8, 80.4, 70.4, 63.9, 63.5, 40.1, 28.6 (3C), 21.2; IR (film) v<sub>max</sub> 3418, 2929, 1716, 1251, 1159 cm<sup>-1</sup>; MALDIFT-HRMS (DHB) m/z 465.2139 (M<sup>+</sup>, C<sub>27</sub>H<sub>31</sub>NO<sub>6</sub> requires 465.2146).

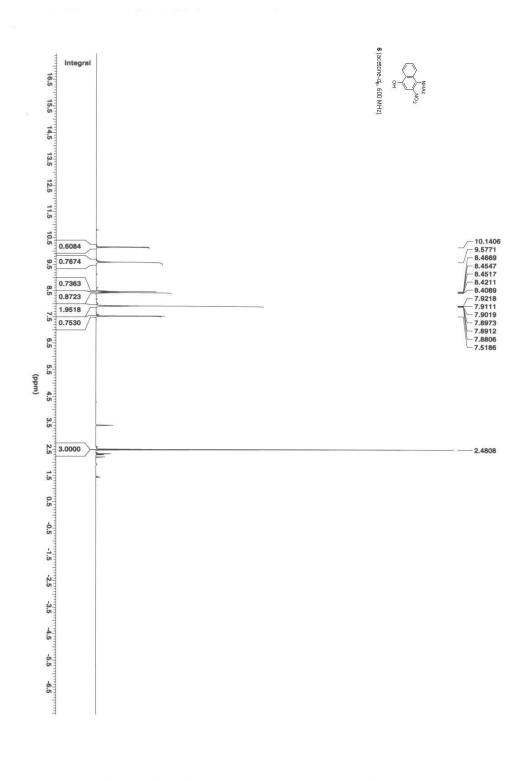
(*S*)-1-Acetoxy-5-benzyloxy-3-(*tert*-butyloxycarbonyl)-1,2-dihydro-3*H*-benz[*e*]indole ((*S*)-18). A solution of (*S*)-26 (25.2 mg, 0.0542 mmol) in pyridine (0.5 mL) cooled to 0 °C was treated dropwise with MsCl (8.0  $\mu$ L, 0.108 mmol) and the mixture was stirred at 0 °C for 1 h and at 25 °C for 12 h. Ice (5 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with 1 M aqueous HCl (3 × 5 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 20% EtOAc–hexanes) provided (*S*)-18 (21.8 mg, 90%) as a white solid which was identical in all respects to authentic compound.

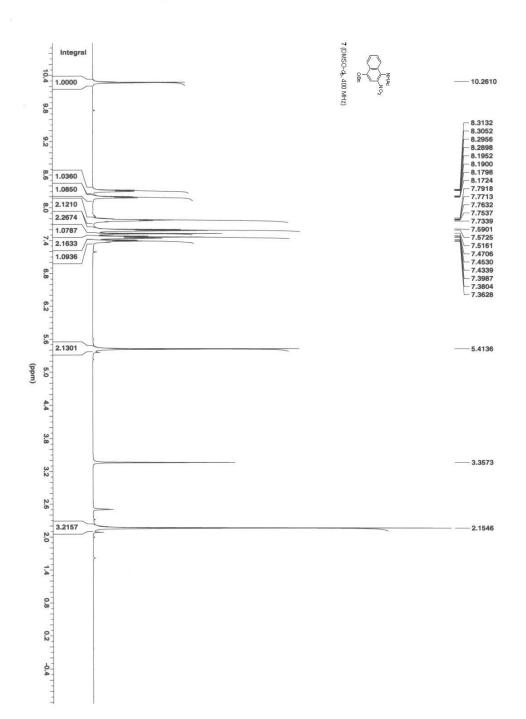
#### (R)-1-Acetoxy-2-(4-benzyloxy-2-(tert-butyloxycarbonylamino)naphthalen-1-yl)-3-(tert-

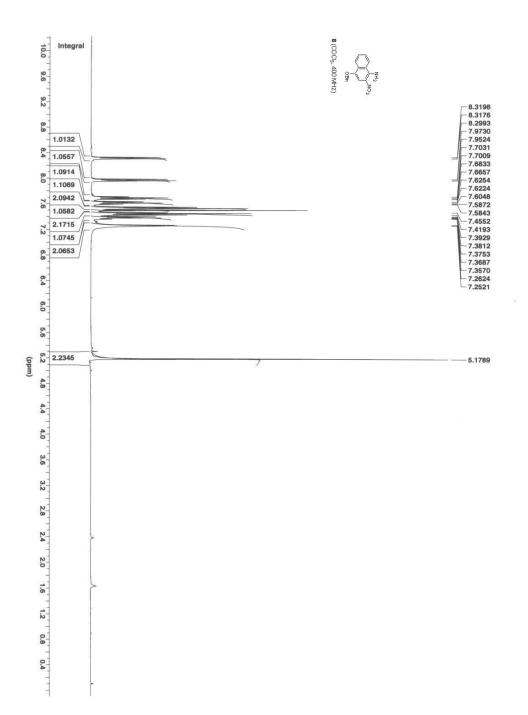
**butyldimethylsilyloxy)propane ((***R***)-27).** A solution of (*S*)-26 (33.4 mg, 0.0717 mmol) in DMF (0.8 mL) was treated with TBSCl (19.1 mg, 0.127 mmol) and imidazole (11.5 mg, 0.169 mmol) and the mixture was stirred for 2 h at 25 °C. H<sub>2</sub>O (5 mL) was added, and the solution was extracted with Et<sub>2</sub>O (3 × 10 mL). The combined organic extracts were washed with H<sub>2</sub>O, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 20% EtOAc–hexanes) afforded (*R*)-27 (30.9 mg, 74%) as a clear oil:  $[\alpha]^{23}{}_{D}$  –42 (*c* 1.0 and 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.83 (1H, br s), 8.36 (1H, d, *J* = 8.2 Hz), 7.87 (1H, d, *J* = 8.8 Hz), 7.57 (2H, d, *J* = 7.3), 7.52 (1H, t, *J* = 7.0 Hz), 7.36–7.46 (5H, m), 5.27 (2H, dd, *J* = 9.4, 5.6), 5.03 (1H, t, *J* = 10.6 Hz), 4.38 (1H, dd, *J* = 7.0, 5.1 Hz), 4.27 (1H, dd, *J* = 7.0, 3.2 Hz), 4.01 (2H, d, *J* = 7.9 Hz), 2.07 (3H, s), 1.58 (9H, s), 0.92 (9H, s), 0.12 (3H, s), 0.07 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 171.0, 154.0, 153.9, 137.2, 136.2, 133.4, 128.7 (2C), 128.1, 128.0 (2C), 127.3, 124.2, 124.0, 123.3, 122.3, 117.9, 103.9, 80.4, 70.4, 65.4, 63.9, 40.0, 28.7 (3C), 26.2 (3C), 21.2, 18.8, – 5.37, –5.40; IR (film) v<sub>max</sub> 3318, 1742, 1727, 1249, 1153, 837 cm<sup>-1</sup>; MALDIFT–HRMS (DHB) *m/z* 602.2887 (M+Na<sup>+</sup>, C<sub>33</sub>H<sub>45</sub>NO<sub>6</sub>Si requires 602.2908).

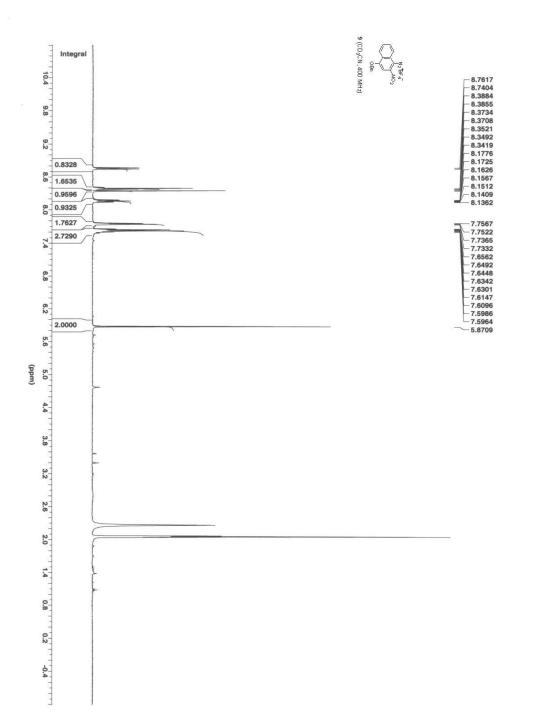

#### (R)-2-(4-Benzyloxy-2-(tert-butyloxycarbonylamino)naphthalen-1-yl)-3-(tert-

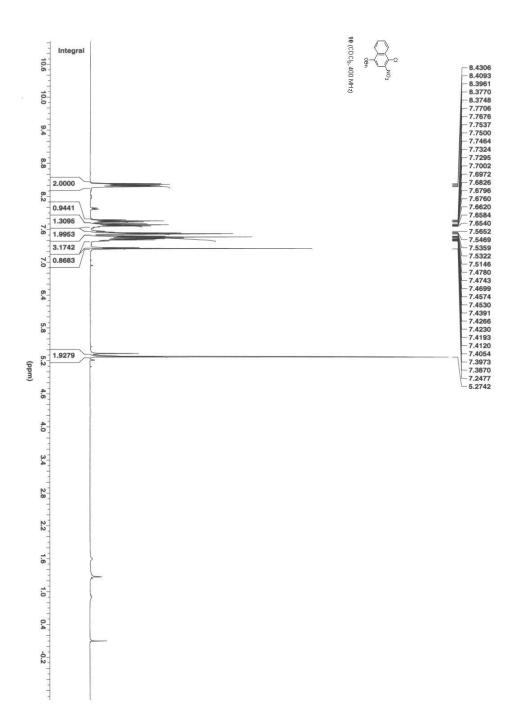

butyldimethylsilyloxy)-1-propanol ((R)-28). A solution of (R)-27 (25.0 mg, 0.0431 mmol) in MeOH (0.4 mL) was treated with K<sub>2</sub>CO<sub>3</sub> (7.2 mg, 0.0518 mmol) at 25 °C. The mixture was stirred for 30 min then diluted with  $CH_2Cl_2$  (5.0 mL). The solution was washed with  $H_2O$  (5 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. The crude residue was dissolved in Et<sub>2</sub>O and filtered through a plug of SiO<sub>2</sub>. Most of the solvent was removed by a stream of N<sub>2</sub> and the compound was precipitated by the slow addition of petroleum ether. The solid was collected by filtration and washed with petroleum ether, affording (R)-28 (21.2 mg, 92%) as a white solid: mp 150–151 °C;  $[\alpha]^{23}_{D}$  –15 (c 1.0 and 0.5, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.94 (1H, br s), 8.35 (1H, d, J = 8.2 Hz), 7.92, (1H, d, J = 8.8 Hz), 7.56 (2H, d, J = 7.4 Hz), 7.52 (1H, t, J = 7.0 Hz), 7.36–7.46 (5H, m), 5.26 (2H, d, J = 2.1 Hz), 4.34 (1H, dt, J = 6.8, 2.7 Hz), 4.20 (2H, sextet, J = 3.2 Hz, 4.13 (1H, m), 3.88 (1H, br s), 1.56 (9H, s), 0.93 (9H, s), 0.11 (3H, s), 0.08 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 154.1, 154.0, 137.3, 136.0, 133.7, 128.7 (2C), 128.1, 128.0 (2C), 127.3, 124.2, 124.0, 123.2, 122.5, 118.1, 103.7, 80.2, 70.4, 64.6, 62.7, 43.6, 28.8 (3C), 26.3 (3C), 18.8, -5.3 (2C); IR (film) v<sub>max</sub> 3391, 3236, 2928, 1688, 1163, 838 cm<sup>-1</sup>; MALDIFT-HRMS (DHB) m/z 560.2809 (M+Na<sup>+</sup>, C<sub>31</sub>H<sub>43</sub>NO<sub>5</sub>Si requires 560.2803).

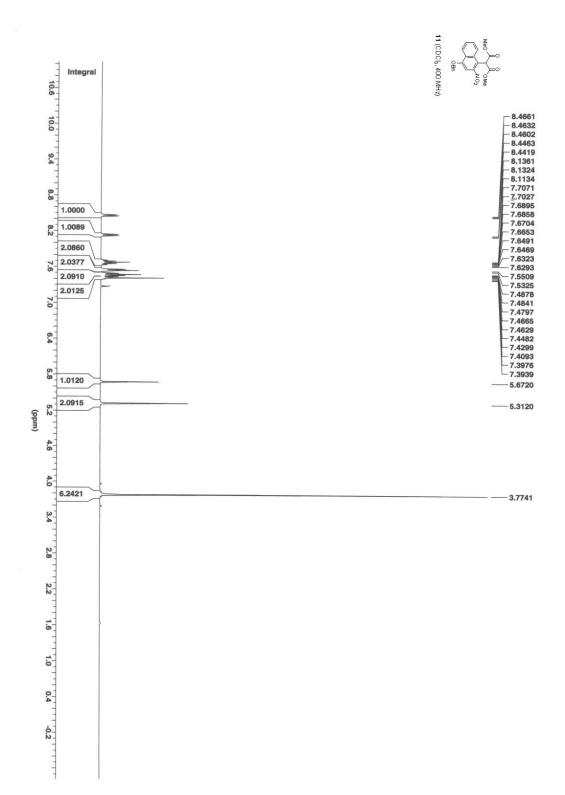

# (*R*)-5-Benzyloxy-1-(*tert*-butyldimethylsilyloxymethyl)-3-(*tert*-butyloxycarbonyl)-1,2dihydro-3*H*-benz[*e*]indole ((*R*)-29). A solution of (*R*)-28 (12.5 mg, 0.0233 mmol) in pyridine (0.2 mL) cooled to 0 °C was treated dropwise with MsCl (3.6 $\mu$ L, 0.0465 mmol) and the mixture was stirred at 0 °C for 1 h and at 25 °C for 12 h. Ice (5 mL) was added and the mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with 1 M aqueous HCl (3 × 5 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 10%

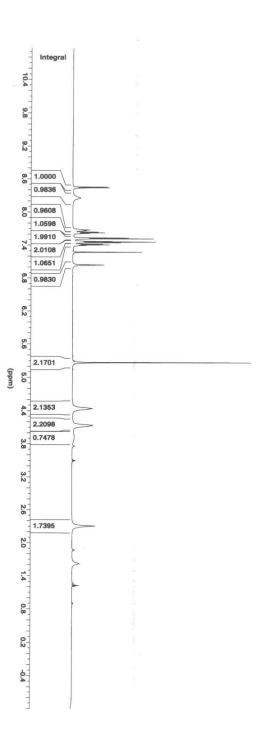

EtOAc-hexanes) provided (R)-29 (10.0 mg, 83%) as a clear oil which was identical in all respects to authentic compound.


**Enzymatic resolution of 19.** A solution of ( $\pm$ )-**19** (50.0 mg, 0.123 mmol) in vinyl acetate (1.0 mL, distilled from CaCl<sub>2</sub>) was treated with *Pseudomonas sp.* Lipase (2 mg) from Sigma and 4Å molecular sieves. The reaction mixture was stirred at 35 °C for 24 h. The mixture was filtered through Celite and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>, 20–33% EtOAc–hexanes) provided (*S*)-**18** (30.0 mg, 54%, 56% *ee*) as a white solid and (*R*)-**19** (17.0 mg, 34%, 99% *ee*) as a clear film. The *ee* of (*R*)-**19** was determined by HPLC (CHIRALCEL<sup>®</sup> OD column, 0.46 cm × 25 cm, 19:1 hexanes–*i*-PrOH, 1 mL/min, retention times: 15.4 min (*S*)-**19**, 18.7 min (*R*)-**19**). The *ee* of (*S*)-**18** was determined upon conversion to (*S*)-**19**. Successive recrystallization of (*S*)-**18** (54% *ee*) from EtOAc–hexanes afforded enantiomerically pure material (1×, 91% *ee*; 2×, 99.9% *ee*).



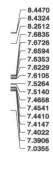



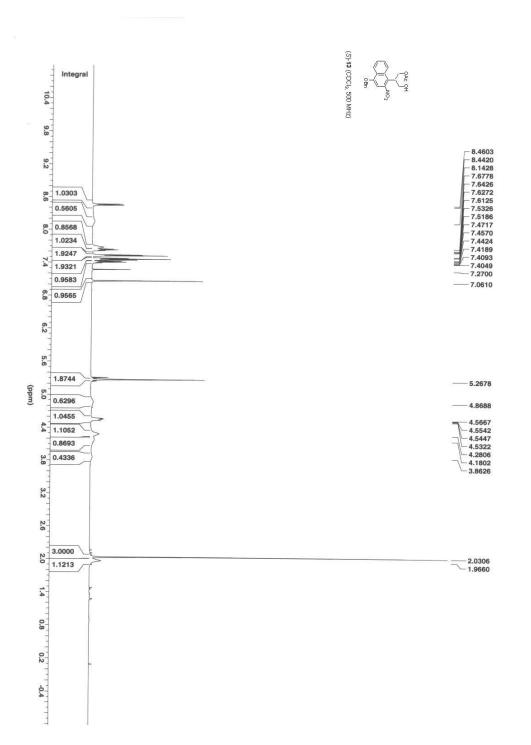


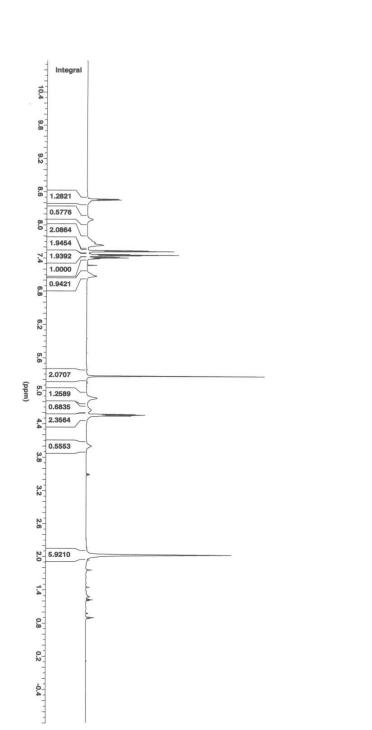






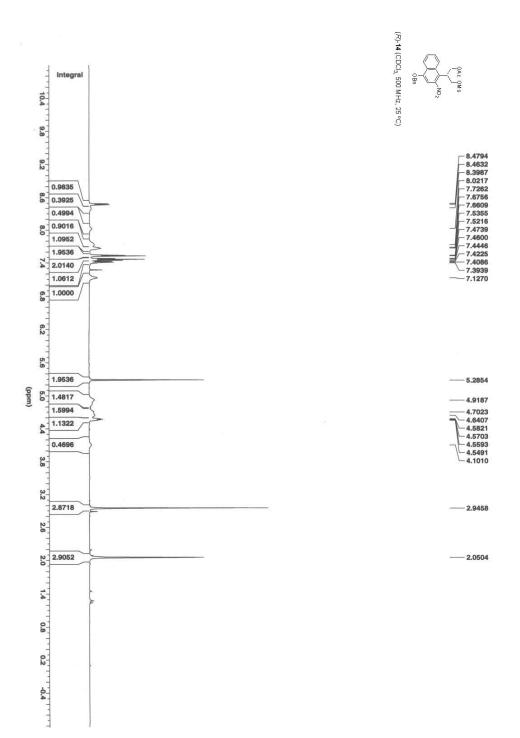



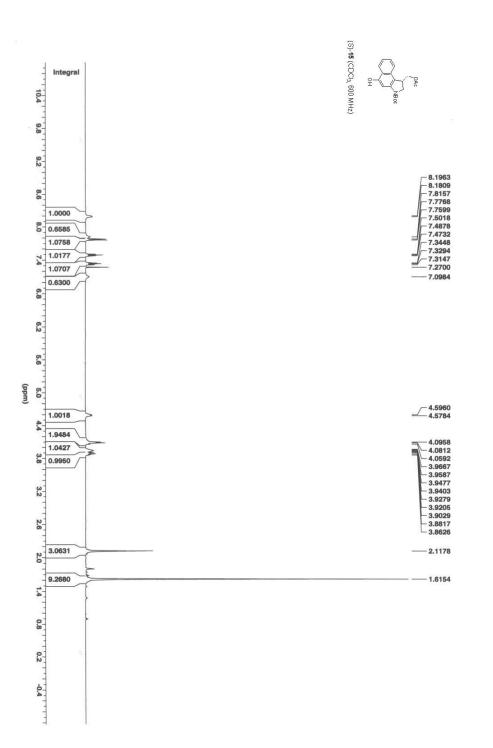


< Cºª ₽

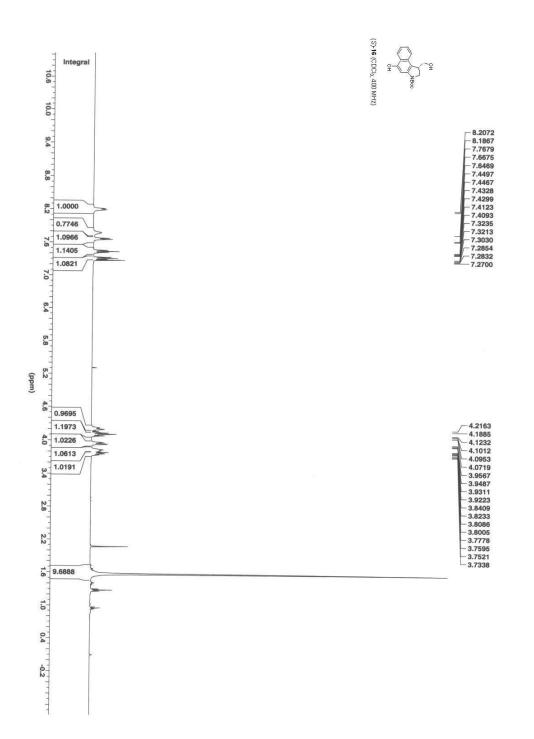


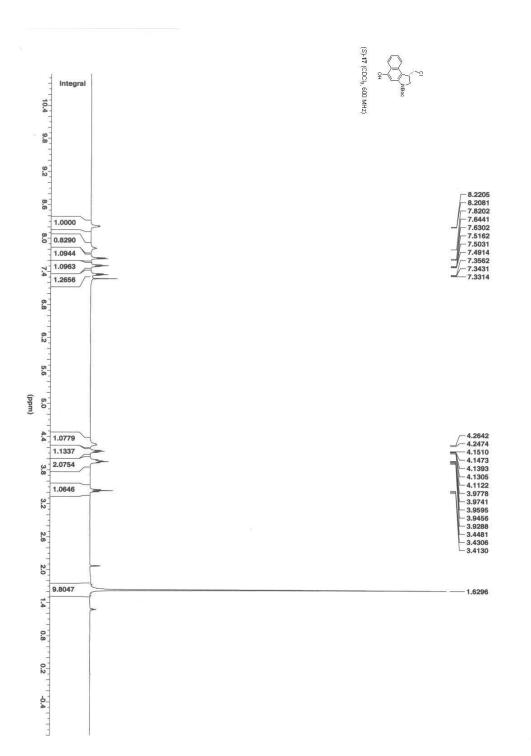
----- 5.2644

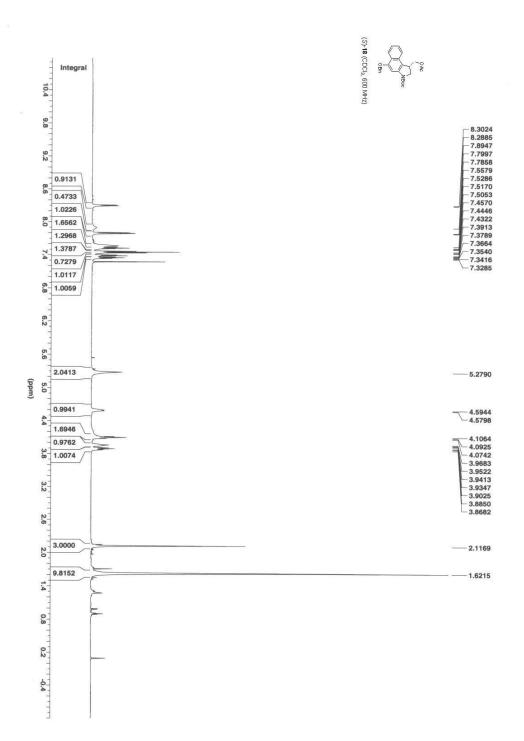
----- 4.4359 ----- 4.1298 ----- 3.9091





|   | <b></b> | 8.4 | 660 |
|---|---------|-----|-----|
|   | -       | 8.4 | 522 |
|   | Ŀ       | 8.0 | 985 |
|   | 1-      | 7.6 | 792 |
| - | F       | 7.6 | 317 |
|   |         | 7.5 | 308 |
|   | F       | 7.5 | 184 |
|   | ⊢       | 7.4 | 651 |
|   | -       | 7.4 | 527 |
| - | -       | 7.4 | 402 |
|   | -       | 7.4 | 125 |
| = | _       | 7.4 | 008 |
|   | 5       | 7.3 | 884 |
| - | _       | 7.0 | 720 |
|   |         |     |     |


|     | - 5.2630 |
|-----|----------|
|     | - 4.8619 |
| 1   | -4.6419  |
| 7   | -4.5674  |
| L   | - 4.5565 |
| F   | -4.5484  |
| _ L | -4.5382  |
| 1   | - 3.9983 |
|     |          |

