Stereospecific Pd(O)-Catalyzed Malonate Additions to Allylic Hydroxy Phosphonate Derivatives: A Formal Synthesis of (-) Enterolactone

Bingli Yan and Christopher D. Spilling*

Department of Chemistry and Biochemistry, University of Missouri-St. Louis,

8001 Natural Bridge Road, St. Louis, Missouri 63121.

cspill@umsl.edu

Supporting Material

Table of Contents:	
General experimental	S2
Experimental procedure and characterization data for (±)1a	S3
Experimental procedure for (R)1a	S3
Experimental procedure and characterization data for 3a	S3
Experimental procedure and characterization data for (R)1b	S4
Experimental procedure and characterization data for 3b	S5
Experimental procedure and characterization data for 6	S5
Experimental procedure for the formation of $(1R)$ (2E) Dimethyl [1-(methoxycarbonylos	xy)-4-
(3-methoxyphenyl)-2-butenyl]phosphonate 3d from Phosphonate 1b	S6
A General Procedure for the Addition of Malonates to Allylic Carbonates 3b-d	S7
Experimental procedure and characterization data for 11a	S 7

Experimental procedure and characterization data for 11b	S 8
Experimental procedure and characterization data for 12	S 8
Experimental procedure and characterization data for 11c	S9
References	S9
¹ H and ¹³ C NMR spectra for 1a	S10
¹ H and ¹³ C NMR spectra for $3a$	S11
¹ H and ¹³ C NMR spectra for 1b	S12
¹ H and ¹³ C NMR spectra for 3b	S13
¹ H and ¹³ C NMR spectra for 6	S14
¹ H and ¹³ C NMR spectra for 3d	S15
¹ H and ¹³ C NMR spectra for 11a	S16
¹ H and ¹³ C NMR spectra for 11b	S17
¹ H and ¹³ C NMR spectra for 12	S18
¹ H and ¹³ C NMR spectra for 11c	S19
¹ H and ¹³ C NMR spectra for 11d	S20
¹ H and ¹³ C NMR spectra for 13	S21
¹ H and ¹³ C NMR spectra for 14	S22
HPLC data for (\pm) and non racemic 1b	S24
HPLC data for (±) and non racemic 3b	S24
HPLC data for (±) and non racemic 11a	S25
HPLC data for (\pm) and non racemic 3d	S26
HPLC data for (\pm) and non racemic 14	S27

General Experimental: ¹H, ¹³C, and ³¹P NMR spectra were recorded at 300, 75 and 121 MHz, repectively in CDCl₃. ¹H NMR spectra are referenced to internal tetramethylsilane (TMS, δ = 0.00) or CHCl₃ (7.27 ppm), ¹³C NMR spectra to the center-line of CDCl₃ (77.23 ppm) and ³¹P NMR spectra to external 85% H₃PO₄. Coupling constants, *J*, are reported in Hz. Enantiomer ratios were measured by chiral stationary-phase HPLC on a (*S*,*S*)-Whelk-O column, a ChiralPak

AS or AD column, or a Chirobiotic T column. Optical rotations were determined using a polarimeter set at 589 nm.

(±) **Dimethyl [1-hydroxy-2-propenyl] phosphonate 1a.** To a mixture of dimethyl phosphite (27.5 mL, 300 mmol) and acrolein (24 mL, 360 mmol) was added Et₃N (21 mL, 150 mmol). The reaction mixture was stirred overnight and then the excess acrolein and Et₃N were evaporated in vacuo to give hydroxy phosphonate **1a** in quantative yield. IR (neat) 3288 cm⁻¹; ¹H NMR (CDCl₃) δ 5.95 (1H, m), 5.47 (1H, m), 5.27 (1H, m), 4.88 (1H, brd S), 3.77 (6H, d, J_{HP} = 11 Hz); ¹³C NMR (CDCl₃) δ 132.7 (d, J_{CP} = 3.4 Hz), 117.4 (d, J_{CP} = 12 Hz), 69.3 (d, J_{CP} = 160 Hz), 53.9 (d, J_{CP} = 7 Hz), 53.7 (d, J_{CP} = 7 Hz); ³¹P NMR (CDCl₃) δ 24.5; HRMS (EI, M⁺) calcd. for C₅H₁₂O₄P: 167.0473. Found 167.0476.

(1*R*) Dimethyl [1-hydroxy-2-propenyl] phosphonate (*R*)1a. To a solution of anhydrous dimethyl (L)-tartrate (3.24g, 18.2 mmol) in freshly distilled THF (140 mL) was added distilled Ti(O*i*Pr)₄ (5.17 g, 18.2 mmol). The mixture was stirred at –15 °C for 30 minutes to insure complete complexation. Acrolein (5.1 g, 91 mmol) was added and the mixture was stirred for an additional 15 minutes. Dimethyl phosphite (20 g, 182 mmol) was added and the reaction mixture was placed in the freezer (approx. -15°C) overnight. The reaction mixture was removed from the freezer and chelex[®] (approx 57g) was added. The mixture was stirred at r.t. for 2 days. The chelex[®] was removed by filtration and washed several times with CH₂Cl₂. The filtrate was concentrated and placed on a vacuum line until all dimethyl phosphite had evaporated (³¹P NMR). The crude product was purified by chromatography (SiO₂, EtOAc) to give the hydroxy phosphonate **1a** (11.8 g, 78%). The enantiomeric excess was determined by ³¹P NMR spectroscopy (Karfarski's quinine method)¹ to be 70%.

Dimethyl [1-(methoxycarbonyloxy)-2-propenyl] phosphonate 3a. Hydroxy phosphonate **1a** (4.78 g, 28.8 mmol) was dissolved in anhydrous CH₂Cl₂ (40 mL) and the solution was cooled to 0°C. Pyridine (3.7 mL, 43.2 mmol) and DMAP (0.049 g, 0.40 mmol) were added to the reaction, followed by the slow addition of methyl chloroformate (4.9 mL, 63.3 mmol). After addition of methyl chloroformate was complete, the reaction mixture was allowed to warm to room temperature and then it was stirred until the reaction was complete (TLC, 24hr). The reaction mixture was washed with H₂O (2x) and saturated CuSO₄ (2x), and then the organic layer was dried over anhydrous MgSO₄. The solvent was evaporated in vacuo and the crude product was purified by chromatography (SiO₂, EtOAc, 100%) to give **3a** as a colorless oil (5.25 g, 81%). IR (neat) 1756.5 cm⁻¹; ¹H NMR (CDCl₃) δ 5.79 (1H, m), 5.36 (1H, m), 5.31 (1H, m), 5.24 (1H, m), 3.66 (3H, s), 3.65 (6H, d, *J*_{HP} = 12 Hz); ¹³C NMR (CDCl₃) δ 154.5 (d, *J*_{CP} = 6.9 Hz), 53.5 (d, *J*_{CP} = 4.1 Hz), 119.5 (d, *J*_{CP} = 11 Hz), 72.7 (d, *J*_{CP} = 169 Hz) 55.2, 53.8 (d, *J*_{CP} = 6.9 Hz), 53.5 (d, *J*_{CP} = 6.5 Hz); ³¹P NMR (CDCl₃) δ 19.5; HRMS(EI, M⁺) calcd. for C₇H₁₃O₆P: 224.0450. Found 224.0444.

(1*R*) (2*E*) Dimethyl (1-hydroxy-3-phenyl-2-propenyl) phosphonate (*R*)1b.² To a solution of dimethyl (L)-tartrate (2.79 g, 15.25 mmol) in freshly distilled diethyl ether (130 mL) was added distilled $Ti(OiPr)_4$ (4.5 mL, 15.2 mmol). The mixture was stirred at -15 °C for 30 minutes to insure complete complexation. Cinnamaldehyde (9.54 mL, 76.2 mmol) was added and the mixture was stirred for an additional 15 minutes. Dimethyl phosphite (10.5 g, 114 mmol) was added and the reaction mixture was placed in the freezer (approx. -15°C). After the reaction was complete (TLC, SiO₂, EtOAc), the reaction mixture was quenched with deionized H₂O and extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and evaporated in vacuo to give crude product (15.6 g, 85% y, 70% e.e.). The crude product was dissolved in hot EtOAc

and cooled to give an initial crystalline fraction (5.2g, 28%) with an e.e. of 42%. The mother liquor (e.e. 89%) was decanted, concentrated and recooled to give an additional batch of crystals (5.6 g, 30%) with an e.e. of 98%. The remaining mother liquor was evaporated to dryness and purified by chromatography (SiO₂, EtOAc) to give a third batch of phosphonate (2.2 g, 12 %) with an e.e. of 79% (total yield 13g, 71%). ¹H NMR (CDCl₃) δ 7.40 (2H, m), 7.28 (3H, m), 6.80 (1H, ddd, *J*_{HH} = 15, 1.5 Hz, *J*_{HP} = 4.9 Hz), 6.35 (1H, ddd, *J*_{HH} = 16, 6.2 Hz, *J*_{HP} = 5.6 Hz), 4.73 (1H, ddd, *J*_{HH} = 6.2, 1.6 Hz, *J*_{HP} = 13 Hz), 3.85 (3H, d, *J*_{HP} = 10 Hz), 3.81 (3H, d, *J*_{HP} = 10 Hz); ¹³C NMR (CDCl₃) δ 136.1 (d, *J*_{CP} = 2.9 Hz), 132.2 (d, *J*_{CP} = 13 Hz), 128.4, 127.8, 126.5, 123.5 (d, *J*_{CP} = 4.3 Hz), 69.2 (d, *J*_{CP} = 161 Hz), 53.9 (d, *J*_{CP} = 7.1 Hz), 53.7 (d, *J*_{CP} = 7.4 Hz); ³¹P NMR (CDCl₃) δ 23.8.

(2*E*) Dimethyl [1-(methoxycarbonyloxy)-3-phenyl-2-propenyl] phosphonate 3b. Hydroxy phosphonate 1b (2.0 g, 8.26 mmol) was dissolved in anhydrous CH₂Cl₂ (30 mL) and the solution was cooled to 0°C. Pyridine (1 mL, 12.4 mmol) and DMAP (0.014 g, 0.11 mmol) were added, followed by the slow addition of methyl chloroformate (1.3 mL, 16.5 mmol). After addition of methyl chloroformate was allowed to warm to room temperature and then it was stirred until the reaction was complete (TLC). The reaction mixture was washed with H₂O (2x) and saturated CuSO₄ (2x), then the organic layer was dried over anhydrous MgSO₄. The solvent was evaporated in vacuo and the crude product was purified by chromatography (SiO₂, EtOAc, 100%) to give phosphonate **3b** as a colorless oil (2.35 g, 95%). IR (neat) 1755.1 cm⁻¹; ¹H NMR (CDCl₃) δ 7.21 (2H, m), 7.09 (3H, m), 6.59 (1H, app. dd, *J*_{HH} = 16 Hz, *J*_{HP} = 4.0 Hz), 6.04 (1H, m), 5.45 (1H, ddd, *J*_{HH} = 1.2, 7.4 Hz, *J*_{HP} = 14 Hz), 3.61 (6H, d, *J*_{HH} = 11 Hz), 3.62 (3H, s); ¹³C NMR (CDCl₃) δ 154.9 (d, *J*_{CP} = 9.7 Hz), 135.8 (d, *J*_{CP} = 12 Hz),

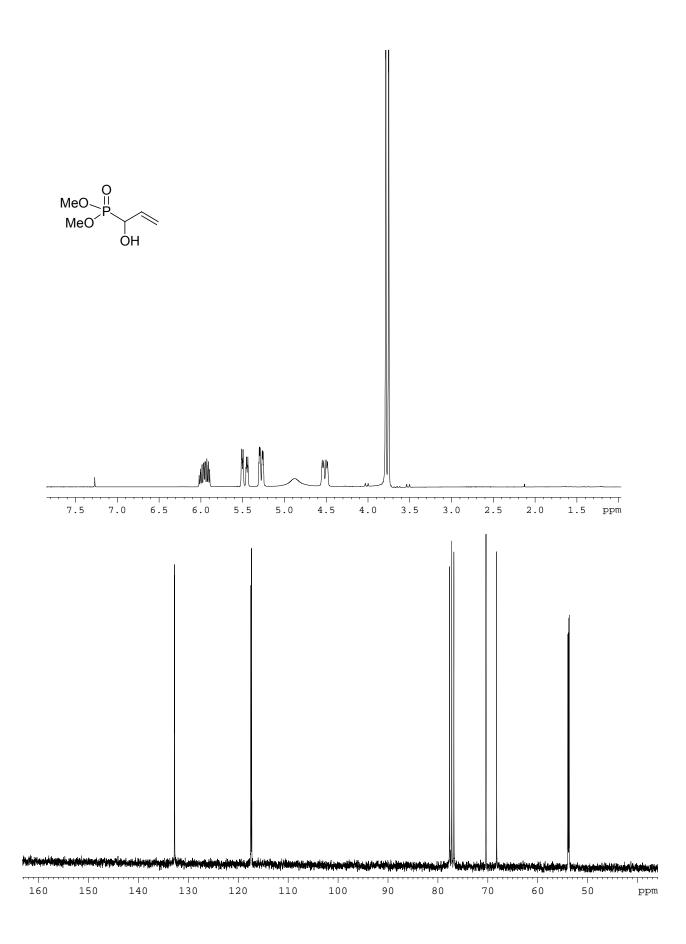
135.7 (d, $J_{CP} = 2.2$ Hz), 128.8, 127.1 (d, $J_{CP} = 1.4$ Hz), 119.5 (d, $J_{CP} = 4.4$ Hz), 73.3 (d, $J_{CP} = 170$ Hz), 55.6, 54.2 (d, $J_{CP} = 7.0$ Hz), 54.0 (d, $J_{CP} = 6.4$ Hz); ³¹P NMR (CDCl₃) δ 19.6.

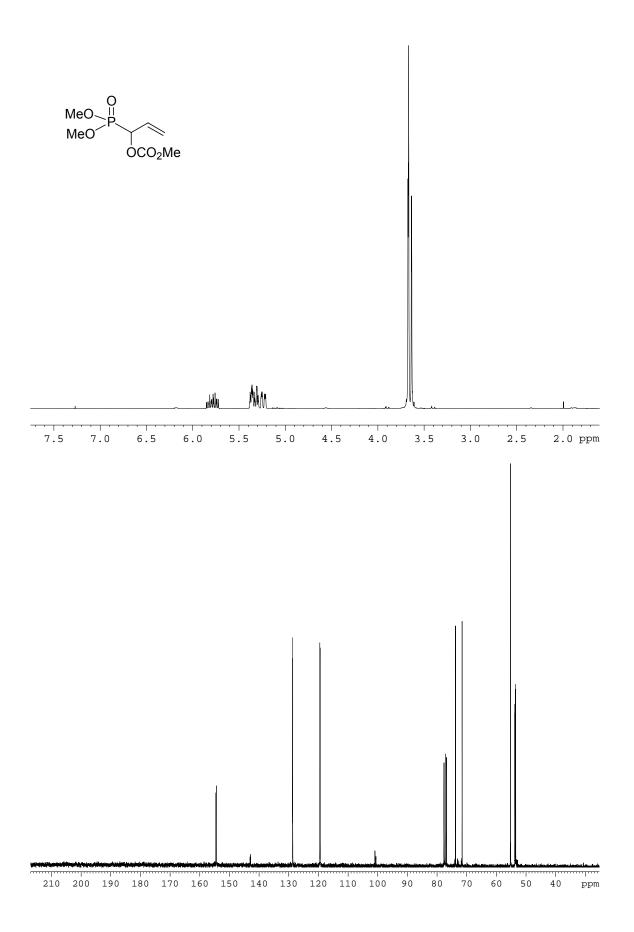
3-(3-methoxyphenyl)propene 6. To 3-methoxyphenylmagnesium bromide (30 mL, 1.0M solution in THF) was added allyl bromide (5.2 mL, 60 mmol) slowly. The reaction was stirred at room temperature for 24h. The reaction mixture was partitioned between Et₂O and saturated NH₄Cl. After separation, the aqueous layer was re-extracted with Et₂O, and the combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo. The crude product was purified by chromatography (SiO₂, hexane) to give 3-(3-methoxyphenyl)propene **6** as a colorless liquid (4.4 g, 97% yield); ¹H NMR (CDCl₃) δ 7.25 (1H, m), 6.80 (3H, m), 6.01 (1H, m), 5.13 (2H, m), 3.83 (3H, s), 3.41 (2H, d, *J* = 6.7 Hz); ¹³C NMR (CDCl₃) δ 159.9, 141.9, 137.4, 129.5, 121.2, 116.1, 114.5, 111.6, 55.3, 40.4.

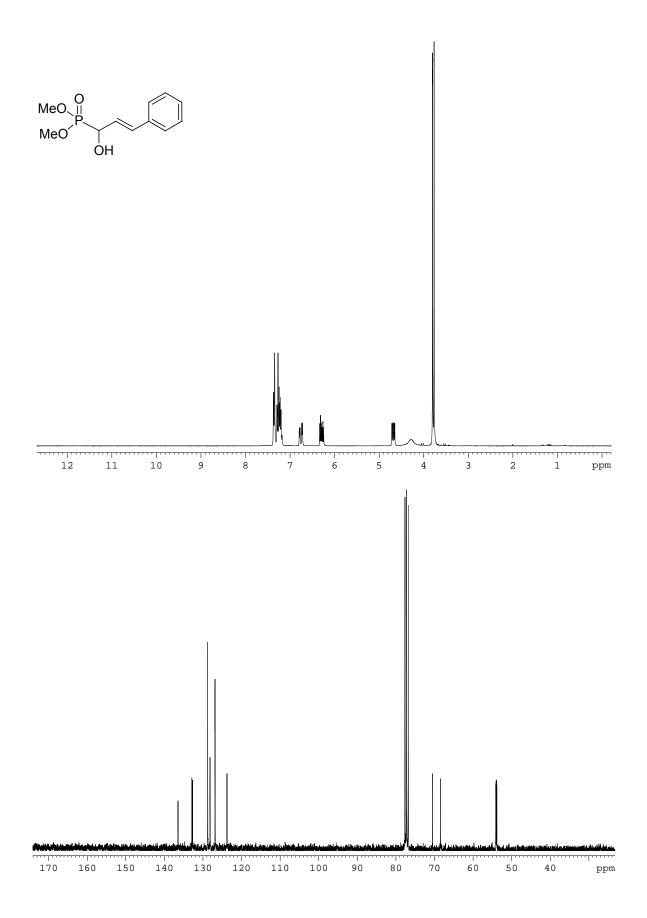
(1*R*) (2*E*) Dimethyl [1-(methoxycarbonyloxy)-4-(3-methoxyphenyl)-2butenyl]phosphonate 3d from Phosphonate 1b. 2^{nd} generation Grubbs catalyst (0.211 g, 0.249 mmol) was dissolved in CH₂Cl₂ (23 mL). Phosphonate 1b (2.35 g, 9.69 mmol) and 3-(3methoxyphenyl)propene 6 (2.49 g, 16.8 mmol) were added and the reaction flask was placed in a pre-heated oil bath and heated at 40°C for 12h. The reaction mixture was allowed to cool and then the solvent was evaporated in vacuo. The crude product was purified by chromatography (SiO₂, CH₂Cl₂:EtOAc, 20:80) to give a mixture of phosphonate 1b and dimethyl [1-hydroxy-4-(3-methoxyphenyl)-2-butenyl]phosphonate 3d as a pale yellow oil (1.96 g). The isolated mixture was cycled through the metathesis reaction three more times to give dimethyl [1-hydroxy-4-(3methoxyphenyl)-2-butenyl]phosphonate 3d (1.0 g, 36%). ³¹P NMR (CDCl₃) δ 24.5. The hydroxy phosphonate 1d (1.0 g, 3.49 mmol) was dissolved in anhydrous CH₂Cl₂ (15 mL) and the solution was cooled to 0°C. Pyridine (0.45 mL, 5.24 mmol) and DMAP (0.006 g, 0.04 mmol) were added to the reaction, followed by the slow addition of methyl chloroformate (0.7 mL, 8.47 mmol). After addition of methyl chloroformate was complete, the reaction mixture was allowed to warm to room temperature and then it was stirred until the reaction was complete (TLC, 24hr). The reaction mixture was washed with H₂O (2x) and saturated CuSO₄ (2x), and then the organic layer was dried over anhydrous MgSO₄. The solvent was evaporated in vacuo and the crude product was purified by chromatography (SiO₂, EtOAc, 100%) to give **3d** as a colorless oil (1.14 g, 95%).

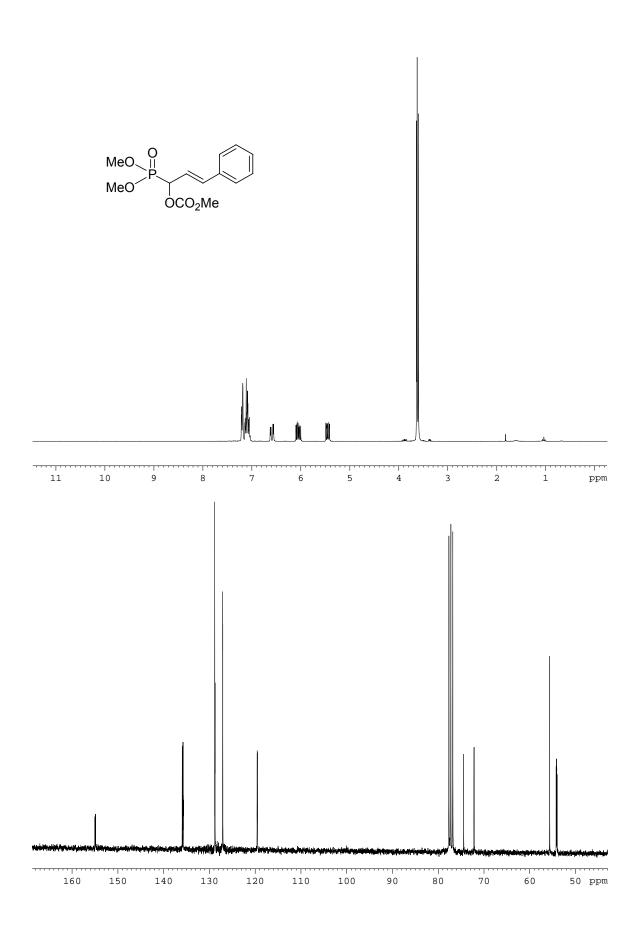
A General Procedure for the Addition of Malonates to Allylic Carbonates 3b-d. NaH (3.47 mmol) was suspended in anhydrous THF (16 mL) and then the malonate (3.47 mmol) in THF (1 mL) was added. The mixture was stirred at room temperature for 3-4 minutes. The phosphonate (2.9 mmol) was added, followed by $Pd(PPh_3)_4$ (0.09 mmol, 3 mol%). The reaction flask was placed in a pre-heated oil bath and heated at 70°C for 1h. The reaction mixture was allowed to cool, and then it was partitioned between brine and Et₂O. After separation, the aqueous layer was re-extracted with Et₂O and the combined organic layers were dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo to give the crude product.

Addition of Dimethyl Malonate 10a to (1*R*) (2*E*) Dimethyl [1-(methoxycarbonyloxy)-3phenyl-2-propenyl] phosphonate 3b. NaH (0.056 g, 1.4 mmol), THF (10mL), phosphonate 3b (0.28 g, 0.93 mmol), malonate 10a (0.16 mL, 1.4 mmol) and Pd(PPh₃)₄ (0.032 g, 0.028 mmol). The crude compound was purified by chromatography (SiO₂, EtOAc:hexanes, 2:1) to give the *E*isomer 11a(*E*) as a pale yellow oil (0.249 g, 75%). IR (neat) 1737.5 cm⁻¹; ¹HNMR (CDCl₃) δ 7.20 (5H, m), 6.83 (1H, ddd, *J*_{HH} = 7.7, 17 Hz, *J*_{HP} = 25 Hz), 5.59 (1H, ddd, *J*_{HH} = 1.2, 17 Hz, *J*_{HP} = 19 Hz), 4.17 (1H, m), 3.82 (1H, d, *J*_{HH} = 11 Hz), 3.68 (3H, s), 3.62 (3H, d, *J*_{HP} = 11 Hz), 3.58 (3H, d, *J*_{HP} = 11 Hz), 3.42 (3H, s); ¹³C NMR (CDCl₃) δ 167.9, 167.4, 152.2 (d, *J*_{CP} = 5.4 Hz), 137.9, 129.1, 128.4, 128.0, 118.1 (d, $J_{CP} = 186 \text{ Hz}$), 56.8, 53.0, 52.81, 52.6 (d, $J_{CP} = 5.7 \text{ Hz}$), 49.9 (d, $J_{CP} = 22 \text{ Hz}$); ³¹P NMR (CDCl₃) δ 20.7; HRMS (EI, M⁺) calcd. for C₁₆H₂₁O₇P: 356.1025. Found 356.1021, and a small amount of the *Z*-isomer contaminated with Ph₃PO (0.0453g, 13%) ¹H NMR 7.25 (5H, m), 6.69 (1H, ddd, $J_{HH} = 10$, 13 Hz, $J_{HP} = 49$ Hz), 5.55 (1H, dd, $J_{HH} = 13$ Hz, $J_{HP} = 17$ Hz), 5.11 (1H, app. t, $J_{HH} = 10$ Hz), 3.81 (1H, d, $J_{HH} = 10$ Hz), 3.65 (3H, s), 3.64 (3H, d, $J_{HP} = 11$ Hz), 3.54 (3H, d, $J_{HP} = 11$ Hz), 3.47 (3H, s); ³¹P NMR 18.9.

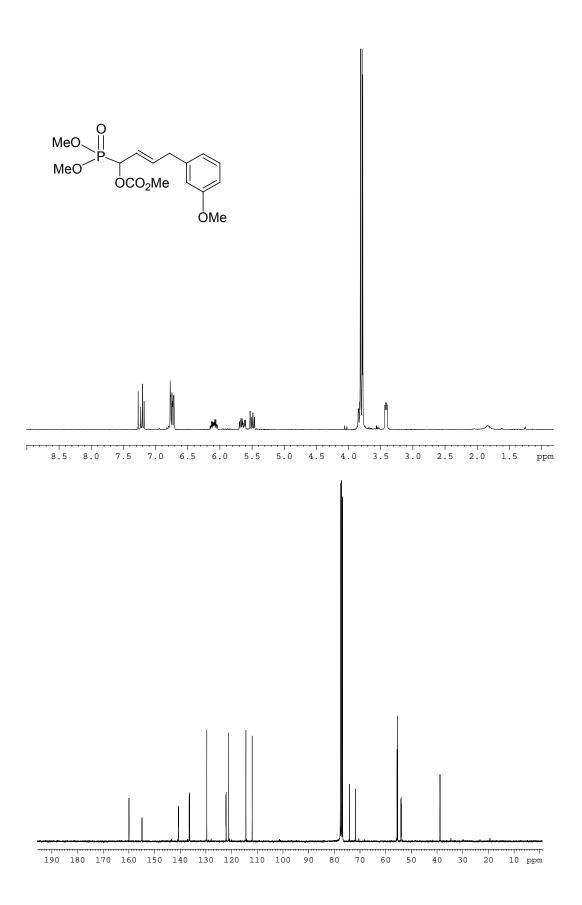

Addition of Dimethyl 2-(3-methoxyphenyl) Malonate 10b to (1*R*) (2*E*) Dimethyl [1-(methoxycarbonyloxy)-3-phenyl-2-propenyl] phosphonate 3b. NaH (0.038 g, 1.59 mmol) in THF (8 mL), malonate 10b (0.0.4 g, 1.59 mmol) in THF (1 mL), phosphonate 3b (0.24 g, 0.79 mmol), and Pd(PPh₃)₄ (0.018 g, 0.016 mmol) gave the malonate adduct 11b as a colorless oil (0.17 g, 45%). ¹H NMR δ 7.30 (3H, m), 7.22 (1H, m), 7.08 (3H, m), 6.71 (1H, m), 6.60 (2H, m), 5.37 (1H, ddd, *J* = 1.2, 17, 20 Hz), 4.21 (1H, m), 3.72 (3H, s), 3.70 (3H, s), 6.63 (3H, d, *J* = 11 Hz), 3.62 (3H, d, *J* = 11 Hz), 3.52 (3H, s), 314, (1H, d, *J* = 14 Hz), 2.89 (1H, d *J* = 14 Hz); ¹³C NMR δ 170.1, 159.3, 153.7 (d, *J*_{CP} = 6.6 Hz), 137.3, 136.6, 129.6, 128.5, 128.7, 127.9, 122.5, 117.1 (d, *J*_{CP} = 186 Hz), 115.9, 112.6, 63.5, 55.0, 54.9, 54.7, 52.1, 40.4.

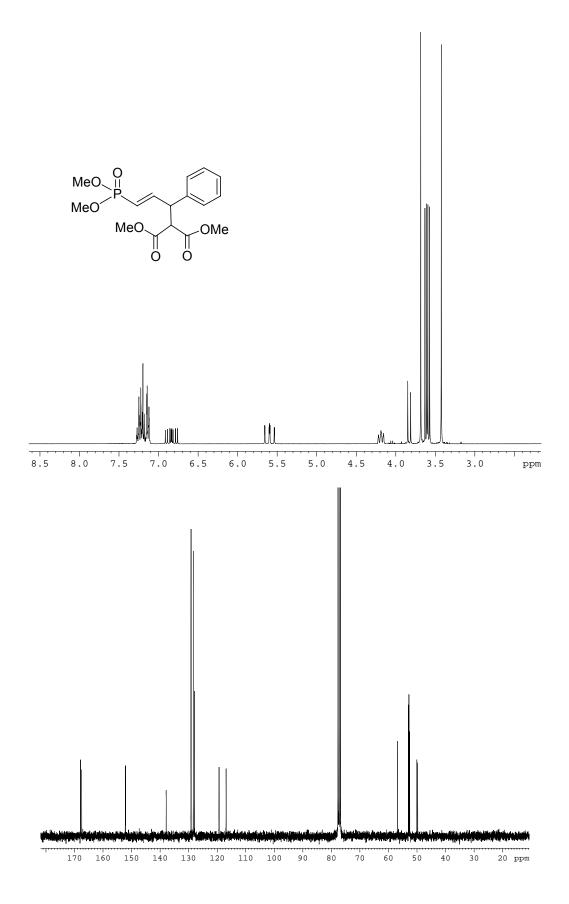

Attempted Addition of tert-Butyl Methyl 2-(3-methoxyphenyl) Malonate 10c to Dimethyl [1-(methoxycarbonyloxy)-4-(3-methoxyphenyl)-2-butenyl]phosphonate 3d. NaH (0.0275 g, 0.696 mmol) in THF (9 mL), malonate 10c (0.256 mL, 0.87 mmol), phosphonate 3d (0.2 g, 0.58 mmol), and Pd(PPh₃)₄ (0.047 g, 0.041 mmol). The crude product was purified by chromatography (SiO₂, hexane:acetone, 50:50) to give the diene 12 contaminated with Ph₃PO as a yellow oil (38%) ¹HNMR (CDCl₃) δ 7.26 (1H, t, *J*_{HH} = 8 Hz), 7.17 (1H, m), 7.06 (2H, m), 6.89 (2H, m), 6.82 (1H, m) 5.90 (1H, dd, *J*_{HH} = 16 Hz, *J*_{HP} = 19 Hz,), 3.82 (3H, s), 3.67 (6H, d, *J*_{HP} = 11 Hz); ¹³C NMR (CDCl₃) δ 161.2, 149.6 (d, *J*_{CP} = 6.0 Hz), 140.4, 138.6, 130.8, 128.7 (d, *J*_{CP} =

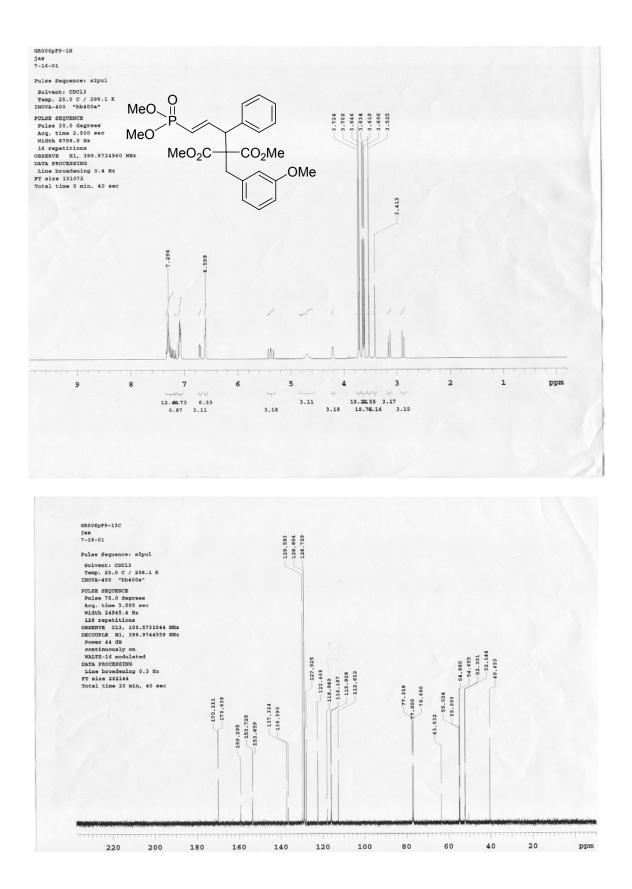

27 Hz), 120.8, 117.8 (d, $J_{CP} = 188$ Hz), 115.8, 113.0, 55.7, 52.5 (d, $J_{CP} = 5.4$ Hz); ³¹P NMR (CDCl₃) δ 21.3; HRMS (EI, M⁺) calcd. for C₁₃H₁₇O₄P: 268.0865. Found 268.0867.

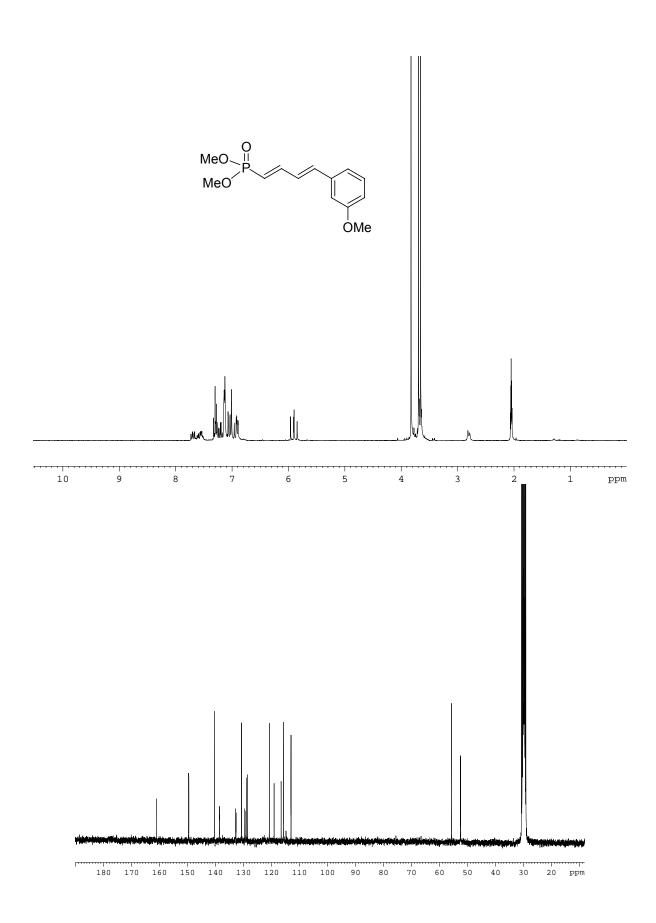

Addition of tert-Butyl Methyl 2-(3-methoxyphenyl) Malonate 10c to (2*E*) Dimethyl [1-(methoxycarbonyloxy)-2-butenyl] phosphonate 3c. NaH (0.0389 g, 0.973 mmol) in THF (10 mL), malonate 10c (0.38 g, 1.3 mmol), phosphonate 3c (0.144 g, 0.65 mmol),³ and Pd(PPh₃)₄ (0.022 g, 0.019 mmol). The crude product was purified by chromatography (SiO₂, hexane:acetone, 50:50) to give a diastereoisomeric mixture (50:50) of malonate adducts 11c contanimated with Ph₃PO (0.07 g, 24 %) IR (neat) 1719 cm⁻¹; ¹H NMR (CDCl₃) δ 7.16 (1H, t, $J_{\text{HH}} = 7.5$ Hz), 6.90 (1H, m), 6.75(3H, m), 5.64 (1H, m), 3.77 (3H, s), 3.69 (9H, m), 3.20 (2H, m), 2.99 (1H, m), 1.42 (4.5H, s), 1.41 (4.5H, s), 1.17 (3H, m); ¹³C NMR (CDCl₃) δ 170.8, 170.7, 168.7, 168.6, 159.6, 155.3 (d, $J_{\text{CP}} = 5.5$ Hz), 154.7 (d, $J_{\text{CP}} = 5.2$ Hz), 137.8, 129.3, 129.2, 122.8, 122.7, 117.1 (d, $J_{\text{CP}} = 187$ Hz), 116.5 (d, $J_{\text{CP}} = 187$ Hz), 116.2, 116.15, 112.6, 112.5, 82.8, 82.7, 62.9, 62.9, 55.3, 52.5 (m), 52.1, 52.0, 41.8 (d, $J_{\text{CP}} = 22$ Hz), 41.2 (d, $J_{\text{CP}} = 22$ Hz), 39.8, 39.5, 28.1, 16.1 (d, $J_{\text{CP}} = 1.3$ Hz), 15.4 (d, $J_{\text{CP}} = 0.9$ Hz); ³¹P NMR (CDCl₃) δ 21.8, 21.5; HRMS (EI, M⁺) calcd. for C₂₂H₃₃O₈P: 456.1913. Found 456.1907.

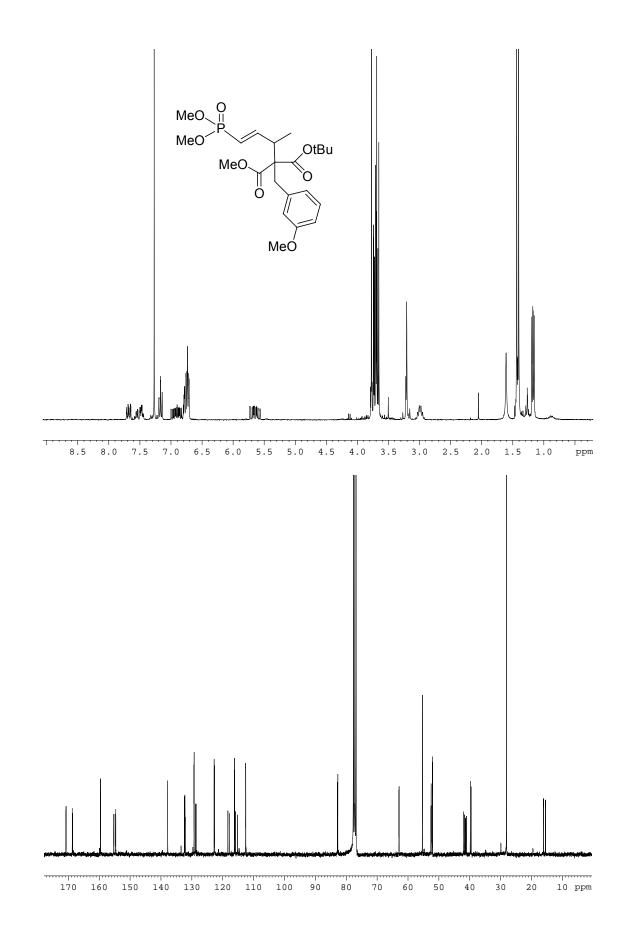
- 1. Zymanczyk-Duda, E.; Skwarczynski, M.; Lejczak, B.; Karfarski, P. Tetrahedron: Asymmetry 1996, 7, 1277.
- Rowe, B. J.; Spilling, C. D. *Tetrahedron: Asymmetry* 2001, *12*, 1701; Blazis, V. J.;
 Koeller, K. J.; Spilling, C. D. J. Org. Chem. 1995, 60, 931.
- 3. Rowe, B. J.; Spilling, C. D. J. Org. Chem. 2003, 68, 9502

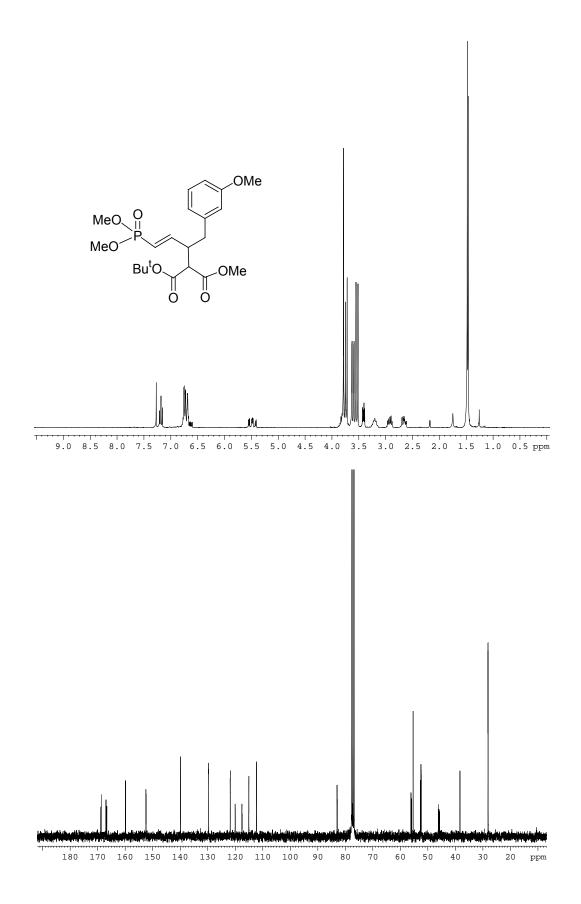


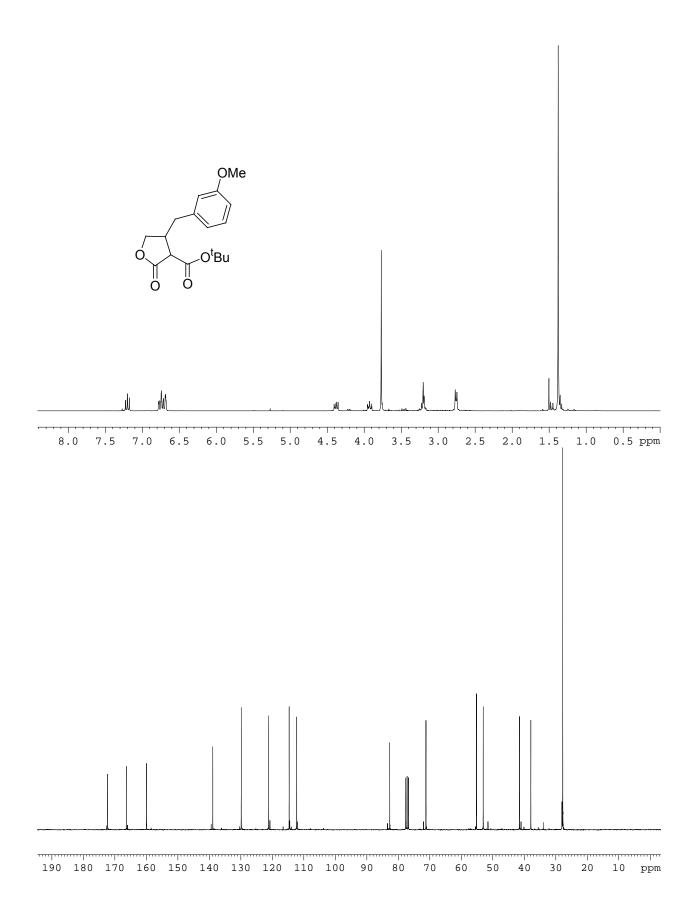


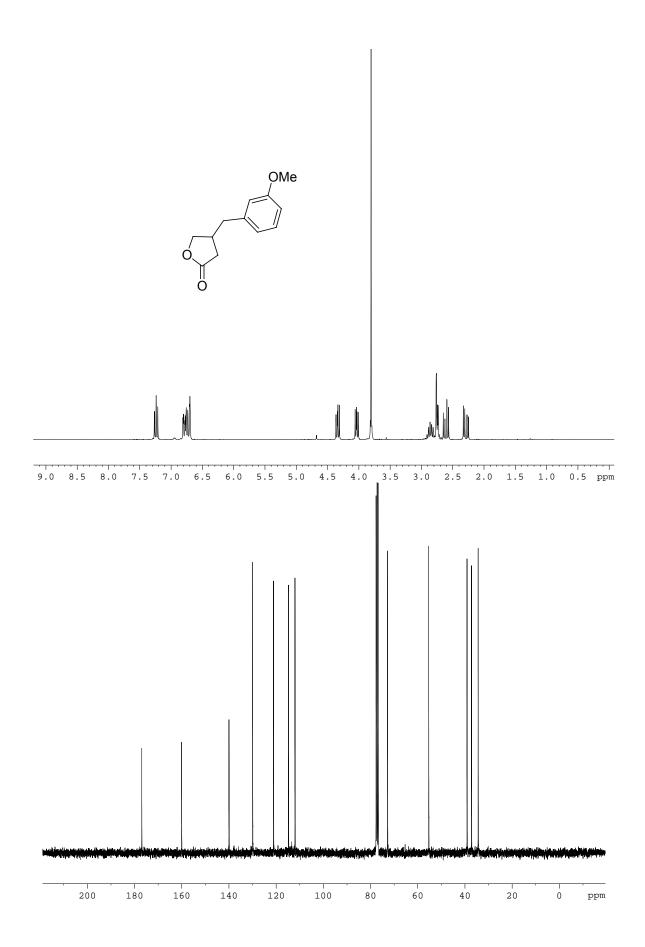


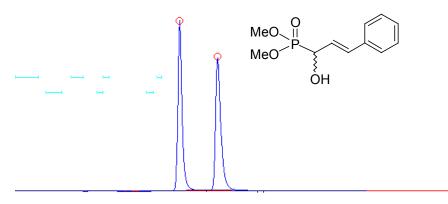






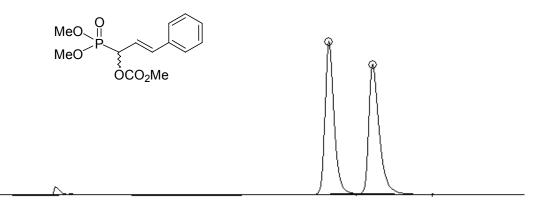




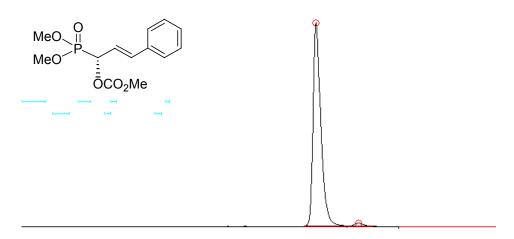



Column-S,S Whelk-O, EtOH:hexane (20:80), 1 mL/min, det 254 nm

.

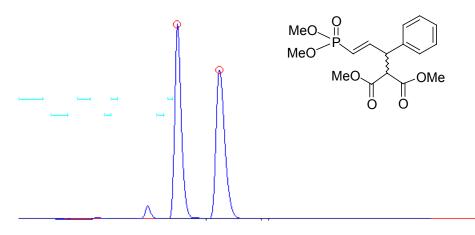

Racemic

Retention time	Area	% Area
(min)		
6.97	5211	49.7
8.58	5281	50.3


R Isomer (95% e.e.)

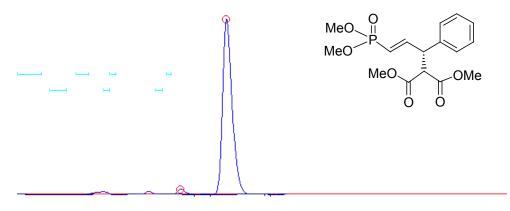
Retention time	Area	% Area	Ratio
(min)			
6.88	503	2.5	39
8.38	19854	97.5	1

Racemic


Retention time	Area	% Area
(min)		
12.65	5152	50.2
14.28	5115	49.8

R Isomer (95% e.e.)

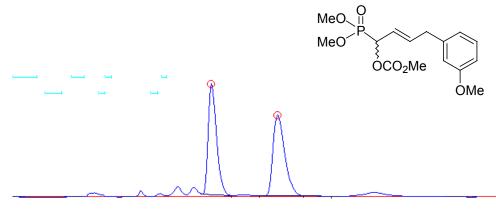
Retention time	Area	% Area	Ratio
(min)			
12.35	27003	97.5	39
14.15	681	2.5	1


Column-ChiralPak AS, EtOH:hexane (20:80), 1 mL/min, det 210 nm

.

Racemic

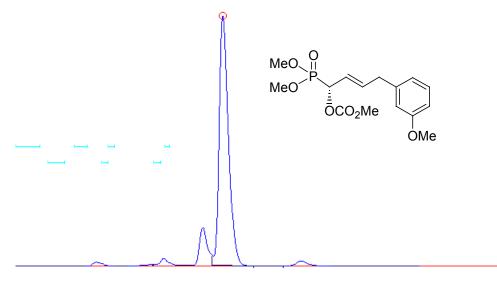
Retention time	Area	% Area
(min)		
6.38	34130	49.9
8.10	34349	50.1



and a second second

R Isomer (95% e.e.)

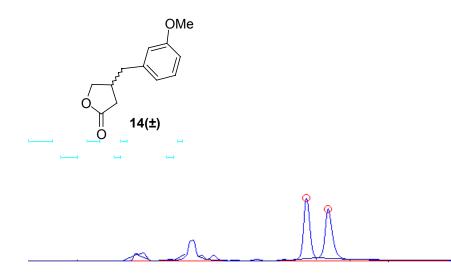
Retention time	Area	% Area	Ratio
(min)			
6.58	333	2.3	42
8.43	14210	97.7	1


Column-ChiralPak AS, EtOH:hexane (20:80), 1 mL/min, det 210 nm

the second se

Racemic

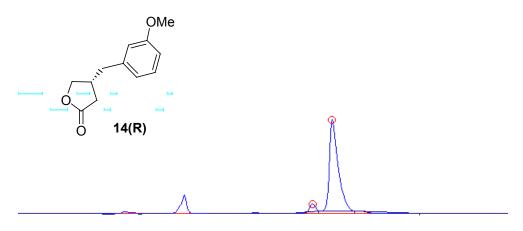
Retention time (min)	Area	% Area
8.02	12114	49.14
10.7	12536	50.86



.

R Isomer (95% e.e.)

	Retention time (min)	Area	% Area	Ratio
-	8.35	30870	97.69	41
Ī	11.5	753	2.31	1


Column-Chirobiotic-T, EtOH:hexane (50:50), 0.6 mL/min, det 210 nm

.

Racemic

Retention time	Area	% Area
(min)		
11.2	599	49.9
12.1	603	50.1

.

R Isomer (92<u>% e.e.)</u>

Retention time	Area	% Area	Ratio
(min)			
11.4	223	3.7	26
12.2	5802	96.3	1