Palladium-Catalyzed Ring Opening Reaction of

 Methyleneaziridines with Carboxylic Acids.
Synthesis of α-Amidoketones

Byoung Ho Oh, Itaru Nakamura, and Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578,

> Japan

Graphics for Table of Contents

1

2

3

General. Spectroscopic measurements were carried out with the following instrument: JEOL JMMAL-300, JEOL JNM LA-300, JEOL JNM a-500 (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). The a-amido ketone 3 displayed major and minor isomer by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR at room temperature due to slow rotation. ${ }^{11}$ SHIMADZU FTIR-8200A (FT-IR). Hitachi M-2500S, JEOL JMS-AX500, JEOL JMS-DX303 (high-resolution mass spectra). All methyleneaziridines were prepared following the reported procedure. ${ }^{1,2}$

General procedure of ring opening reaciton of methyleneaziridine 1 with carboxylic acid 2.
To a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(25.9 \mathrm{mg}, 0.025 \mathrm{mmol})$ and triphenylphosphine ($13.9 \mathrm{mg}, 0.05$ mmol) and the carboxylic acid $2(0.5 \mathrm{mmol})$ in THF (1 mL) was added methyleneaziridine 1 $(0.75 \mathrm{mmol})$ under Ar atmosphere in a pressure vial. After heating at $100^{\circ} \mathrm{C}$ for $2-5$ hours, the reaction mixture was filtered through a silica-gel column using ethyl acetate as an eluent. Separation by passing through a silica-gel column and purification by middle-pressure liquid column chromatography (silica gel) and recrystallization afforded α-amidoketone 3 .
N-Benzyl- N-(2-oxo-propyl)-acetamide (3a). White solid: IR (KBr) 3035-2937, 1728, 1633, $1494,1469,1454,1419,1359,1247,1168,1026,979,742,702,661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta 2.03(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.08(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.11(\mathrm{~s}, 3 \mathrm{H}$, major), $2.22(\mathrm{~s}, 3 \mathrm{H}$, major), $4.00(\mathrm{~s}$, 2 H , minor), 4.12 ($\mathrm{s}, 2 \mathrm{H}$, major), 4.58 ($\mathrm{s}, 2 \mathrm{H}$, major), 4.60 ($\mathrm{s}, 2 \mathrm{H}$, minor), 7.17-7.38 ($\mathrm{m}, 5 \mathrm{H}$, major and $\mathrm{m}, 5 \mathrm{H}$, minor) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 21.10(\mathrm{M}), 21.29(\mathrm{~m}), 26.98(\mathrm{~m}), 27.22(\mathrm{M}), 49.46(\mathrm{~m}), 52.84(\mathrm{M}), 54.79(\mathrm{M})$, $57.07(\mathrm{~m}), 126.58(\mathrm{M}), 127.55(\mathrm{~m}), 127.80(\mathrm{M}), 128.30(\mathrm{~m}), 128.58(\mathrm{~m}), 128.91(\mathrm{M}), 136.01$ (M), 136.69 (m), 170.95 (m), 171.21 (M), 202.67 (m), 203.14 (M). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ (205.25): C, 70.22; H, 7.37; N, 6.82. Found: C, 70.03; H, 7.50; N, 6.56. HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z} 205.1103$. Found: m/z 205.1104.
\boldsymbol{N}-Benzyl- \boldsymbol{N}-(2-oxo-propyl)-acetamide (3b). Pale yellow solid: IR (KBr) 2916, 1728, 1631, $1496,1465,1431,1398,1363,1298,1257,1170,1149,1049,1026,975,790,725,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.89$ ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.16 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.91 (s, 2 H , minor), 4.21 (s , 2 H , major), 4.58 ($\mathrm{s}, 2 \mathrm{H}$, major), 4.78 ($\mathrm{s}, 2 \mathrm{H}$, minor), 7.17-7.54 ($\mathrm{m}, 10 \mathrm{H}$, major and $\mathrm{m}, 10 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 26.96(\mathrm{~m})$, $27.44(\mathrm{M}), 48.88(\mathrm{~m}), 53.72(\mathrm{M}), 54.01(\mathrm{M}), 57.44(\mathrm{~m}), 126.24(\mathrm{~m}), 126.82(\mathrm{M}), 126.87(\mathrm{M})$, 127.66 (m), 127.76 (M), 128.37 (m), 128.44 (M), 128.53 (m), 128.71 (m), 128.87 (M), 129.71 (m), 129.88 (M), $135.15(\mathrm{M}), 135.84(\mathrm{~m}), 136.12(\mathrm{M}), 136.37(\mathrm{~m}), 172.16$ (m), 172.32 (M), 202.53 (M), 203.01 (m). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ (267.32): C, 76.38; H, 6.41; N, 5.24. Found: $\mathrm{C}, 76.09 ; \mathrm{H}, 6.36 ; \mathrm{N}, 5.18$. HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z} 267.1259$. Found: m/z 267.1255.

Pent-2-enoic acid benzyl-(2-oxo-propyl)-amide (3c). Pale yellow oil: IR (neat) 2966, 2933, $1732,1660,1622,1434,1398,1359,1211,1168,1082,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 1.04 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, major and 3 H , minor), 2.08 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.13 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.17-2.27 ($\mathrm{m}, 2 \mathrm{H}$, major and m, 2 H , minor), $4.06(\mathrm{~s}, 2 \mathrm{H}$, minor), 4.15 ($\mathrm{s}, 2 \mathrm{H}$, major), 4.66 ($\mathrm{s}, 2 \mathrm{H}$, major), 4.67 (s, 2H, minor), $5.92(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $6.28(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.99-7.39(m, 6 H , major and $\mathrm{m}, 6 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 12.50(\mathrm{M}$ and m$), 25.63(\mathrm{M}$ and m$), 27.03(\mathrm{~m}), 27.33(\mathrm{M}), 50.10(\mathrm{~m}), 52.14(\mathrm{M})$,
55.47 (M), 56.57 (m), $118.31(\mathrm{M}), 118.38(\mathrm{~m}), 126.60(\mathrm{M}), 127.48(\mathrm{~m}), 127.65(\mathrm{M}), 128.30(\mathrm{~m})$, 128.51 (m), 128.77 (M), 136.9 (M), 136.65 (m), 149.27 (m), 149.57 (M), 167.16 (m), 167.35 (M), 203.07 (M and m). HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z} 245.1416$. Found: m/z 245.1417.
N - $\{$ Benzyl-(2-oxo-propyl)-carbamoyl]-methyl\}-benzamide (3d). Coloress oil: IR (neat) 3400, 3359, 3349, 1732, 1668, 1558, 1361, 1224, 1168, 1058, $731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 2.10(\mathrm{~s}, 3 \mathrm{H}$, minor), 2.11 ($\mathrm{s}, 3 \mathrm{H}$, major), 4.09-4.11 (m, 4H, minor), 4.15 ($\mathrm{s}, 2 \mathrm{H}$, major), $4.44(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}$, major), $4.63(\mathrm{~s}, 2 \mathrm{H}$, minor), $7.18-7.51(\mathrm{~m}, 8 \mathrm{H}$, major and $\mathrm{m}, 8 \mathrm{H}$, minor), $7.81-7.85\left(\mathrm{~m}, 2 \mathrm{H}\right.$, major and $\mathrm{m}, 2 \mathrm{H}$, minor). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 27.13(\mathrm{~m}), 27.20(\mathrm{M}), 41.55(\mathrm{~m}), 41.63(\mathrm{M}), 50.16$ $(\mathrm{m}), 51.20(\mathrm{M}), 55.07(\mathrm{M}), 55.31(\mathrm{~m}), 126.84(\mathrm{M}$ and m) $126.90(\mathrm{M}$ and m$), 128.06(\mathrm{M}), 128.17$ (m), $128.27(\mathrm{~m}), 128.33(\mathrm{M}), 128.64(\mathrm{~m}), 128.95(\mathrm{M}), 131.41(\mathrm{M}$ and m$), 133.58(\mathrm{~m}), 133.66$ (M), 134.71 (M), 135.69 (m), $166.90(\mathrm{~m}), 166.93(\mathrm{M}), 168.86(\mathrm{~m}), 168.90(\mathrm{M}), 201.63(\mathrm{~m})$, 201.89 (M). HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z} 324.1474$. Found: m/z 324.1476.
\boldsymbol{N}-Hexyl- \boldsymbol{N}-(2-oxo-propyl)-benzamide (3e). Yellow oil: IR (neat) 2929, 2858, 1732, 1638, $1431,1170,1110,702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.76-0.86(\mathrm{~m}, 3 \mathrm{H}$, major and $\mathrm{m}, 3 \mathrm{H}$, minor), 1.09-1.55 ($\mathrm{m}, 8 \mathrm{H}$, major and $\mathrm{m}, 8 \mathrm{H}$, minor), 1.93 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.20 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.20 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, major), 3.43 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 3.99 ($\mathrm{s}, 2 \mathrm{H}$, minor), 4.22 ($\mathrm{s}, 2 \mathrm{H}$, major), 7.24-7.38 (m, 5H, major and $\mathrm{m}, 5 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 13.82(\mathrm{M}), 13.93(\mathrm{~m}), 22.34(\mathrm{M}), 22.51(\mathrm{~m}), 26.02(\mathrm{M})$, $26.55(\mathrm{~m}), 26.90(\mathrm{~m}), 27.12(\mathrm{~m}), 27.34(\mathrm{M}), 28.41(\mathrm{M}), 31.12(\mathrm{M}), 31.51(\mathrm{~m}), 46.83(\mathrm{~m}), 50.31$ (M), $54.69(\mathrm{M}), 58.97(\mathrm{~m}), 126.16(\mathrm{~m}), 126.58(\mathrm{M}), 128.33(\mathrm{M}$ and m$), 129.45(\mathrm{M}$ and m$)$, 135.92 (M), 136.45 (m), 171.89 (m), 172.03 (M), 202.92 (M), 203.20 (m). HRMS (EI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z} 261.1729$. Found: $\mathrm{m} / \mathrm{z} 261.1733$.
\boldsymbol{N}-Hexyl- \boldsymbol{N}-(2-oxo-propyl)-benzamide (3f). Yellow oil: IR (neat) 2958, 2931, 2873, 1732, $1633,1431,1172,1105,702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, major), $0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.11-1.59 (m, 4H, major and $\mathrm{m}, 4 \mathrm{H}$, minor), 1.97 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.24 (s, 3 H , major), 3.25 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, major), 3.47 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 4.04 ($\mathrm{s}, 2 \mathrm{H}$, minor), 4.26 ($\mathrm{s}, 2 \mathrm{H}$, major), 7.28-7.41 ($\mathrm{m}, 5 \mathrm{H}$, major and $\mathrm{m}, 5 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}, \mathrm{M}=$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 13.57(\mathrm{M}), 13.89(\mathrm{~m}), 19.67(\mathrm{M}), 20.21$ $(\mathrm{m}), 26.98(\mathrm{~m}), 27.42(\mathrm{M}), 29.32(\mathrm{~m}), 30.66(\mathrm{M}), 46.64(\mathrm{~m}), 50.16(\mathrm{M}), 54.77(\mathrm{M}), 59.03(\mathrm{~m})$, $126.22(\mathrm{~m}), 126.67(\mathrm{M}), 128.41(\mathrm{M}$ and m$), 129.53(\mathrm{M}$ and m$), 135.99(\mathrm{M}), 136.51(\mathrm{~m}), 172.05$ (m), $172.10(\mathrm{M}), 202.99(\mathrm{M}), 203.35(\mathrm{~m})$. HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z} 233.1416$. Found: m/z 233.1418.
\boldsymbol{N}-(3-Methoxy-propyl)- \boldsymbol{N}-(2-oxo-propyl)-benzamide (3g). Coloress oil: IR (neat) 2925, 1732, 1633, 1446, 1168, 1116, $665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.70-1.77$ (m, 2H, major), 1.92$1.96(\mathrm{~m}, 5 \mathrm{H}$, minor), 2.24 ($\mathrm{s}, 3 \mathrm{H}$, major), $3.20(\mathrm{~s}, 3 \mathrm{H}$, major), $3.25(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, major), 3.34-3.40 (m, 2H, major and m, 3 H , minor), $3.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $3.56(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2 H , minor), 4.07 ($\mathrm{s}, 2 \mathrm{H}$, minor), 4.28 ($\mathrm{s}, 2 \mathrm{H}$, major), 7.28-7.41 ($\mathrm{m}, 5 \mathrm{H}$, major and $\mathrm{m}, 5 \mathrm{H}$, minor). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 26.96(\mathrm{~m}), 27.42$ (M), $27.54(\mathrm{~m}), 28.90(\mathrm{M}), 44.77(\mathrm{~m}), 47.69(\mathrm{M}), 55.10(\mathrm{M}), 58.52(\mathrm{M}), 58.61(\mathrm{~m}), 59.59(\mathrm{~m})$, $69.30(\mathrm{M}), 70.23(\mathrm{~m}), 126.22(\mathrm{~m}), 126.66(\mathrm{M}), 128.41(\mathrm{M}), 128.49(\mathrm{~m}), 128.52(\mathrm{~m}), 129.58(\mathrm{M})$, 135.85 (M), 136.36 (m), 172.14 (m), 172.23 (M), 202.84 (M), 203.27 (m). HRMS (EI) Calcd for
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{m} / \mathrm{z} 249.1365$. Found: m/z 249.1368.
\boldsymbol{N}-(2,2-Dimethoxy-ethyl)- \boldsymbol{N}-(2-oxo-propyl)-benzamide (3h). Coloress oil: IR (neat) 2935, $1716,1645,1471,1442,1361,1161,1080,1020,754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.95$ (s, 3 H , minor), 2.21 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.23 ($\mathrm{s}, 6 \mathrm{H}$, major), 3.36 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$, major), 3.42 (s , 6 H , minor), 3.60 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 4.20 ($\mathrm{s}, 2 \mathrm{H}$, minor), 4.30 (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.43(\mathrm{~s}, 2 \mathrm{H}$, major), $4.57(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 7.33-7.43 ($\mathrm{m}, 5 \mathrm{H}$, major and $\mathrm{m}, 5 \mathrm{H}$, minor). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{M}=\right.$ major conformer, $\mathrm{m}=$ minor conformer) $\delta 26.84(\mathrm{~m}), 27.23$ (M), $49.12(\mathrm{~m}), 52.20(\mathrm{M}), 54.66(\mathrm{M}), 55.02(\mathrm{~m}), 56.22(\mathrm{M}), 60.20(\mathrm{~m}), 103.55(\mathrm{~m}), 103.65(\mathrm{~m})$, $104.16(\mathrm{M}), 104.24(\mathrm{M}), 126.31(\mathrm{M}$ and m$), 126.60(\mathrm{M}$ and m$), 128.37(\mathrm{M}$ and m$), 129.49(\mathrm{M}$ and m), $135.71(\mathrm{M}), 135.86(\mathrm{~m}), 172.20(\mathrm{M}), 172.39(\mathrm{~m}), 202.34(\mathrm{M}), 202.62(\mathrm{~m})$. HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{m} / \mathrm{z} 265.1314$. Found: m/z 265.1313.

