Supporting Information

Figure S1. Comparison of the region of the diamagnetic-optimized (A) and paramagnetic-optimized (B) $^{13}C\{^{13}C\}$ CT-COSY spectra of [U- ^{13}C , ^{15}N]-HuFd_{ox} that contains the C'-C^{α} crosspeaks of Gly. Sample conditions and acquisition parameters are given in the caption to Fig. 4.

Figure S2. Comparison of the region of the diamagnetic-optimized (A and C) and paramagnetic-optimized (B and D) 13 C{ 13 C} CT-COSY spectra of [U- 13 C, 15 N]-HuFd_{ox} that contains the C'-C^{α} and C^{α}-C^{β} crosspeaks of Leu50. Sample conditions and acquisition parameters are given in the caption to Fig. 4.

Detailed Description of the PRE-HSQC and PRE-CT-(H)CCH-COSY Pulse Sequences (Fig. 9). (A) PRE-HSQC pulse sequence. Pulse phases are along the x-axis unless otherwise specified. The phase cycle is: $\phi 1 = 4$ (x), 4(-x); $\phi 2 = x$, -x; $\phi 3 = 2$ (x), 2 (-x); $\Psi = x$, -x, -x, x. The pulsed field gradients are sinebell in shape and of the following durations (in μ s) and strengths (along the x, y, and z axes, in G/cm): g 1 = 600, (17.5, 0, 0); g 2 = 300, (3.5, 3.5, 3.5); g 3 = 300, (38, 0, 21); g 4 = 370, (0, 0, 8.5); g 5 = 670, (0, 0, 20.5); g 6 = 300, (0, 10.5, 10.5); g 7 = 670, (0, 0, 24). Spectra were acquired as phase-sensitive data with State-TPPI by incrementation of $\phi 2$. (B) PRE-CT-(H)CC-COSY pulse sequence. Pulse phases are along the x-axis unless otherwise specified. The phase cycle is: $\phi 1 = 8$ (x), $\theta 1 = 8$ ($\theta 1 = 8$), $\theta 2 = 4$ ($\theta 1 = 8$), $\theta 1 = 8$ ($\theta 1 = 8$), $\theta 2 = 4$ ($\theta 1 = 8$), $\theta 1 = 8$ 0, $\theta 2 = 8$ 1, $\theta 3 = 8$ 2, $\theta 3 = 8$ 3, $\theta 3 = 8$ 3, $\theta 3 = 8$ 4, $\theta 3 = 8$ 4, $\theta 3 = 8$ 5, $\theta 3$

with State-TPPI by incrementation of ϕ 6 in the first indirect ¹³C dimension and by incrementation of ϕ 5 and ϕ 6 in the second indirect ¹³C dimension.