Reversal of Enantioselectivity in the Hydroformylation of Styrene with [2S,4S-

BDPP]Pt(SnCl₃)Cl at High Temperature Arises from a Change in the

Enantioselective Determining Step

Charles P. Casey*, Susie C. Martins, and Maureen A. Fagan

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Supporting Information

General Methods. All air sensitive materials were handled under nitrogen in an inert atmosphere glovebox or using high vacuum techniques. ¹H NMR spectra were obtained using a Bruker AC300, AC250, or a Varian Unity500 spectrometer. ¹³C (126 MHz) and ³¹P (202 MHz) NMR spectra were obtained on a Varian Unity500 spectrometer. ³¹P NMR spectra were referenced to external 85% H₃PO₄. Mass spectra were determined on a Kratos MS-25 spectrometer attached to a Carlo Erba gas chromatograph equipped with a 60 m Restek Rtx-5 (5% diphenyl / 95% dimethyl polysiloxane) column. Gas chromatography was performed using a Supelco β-Dex (β-cyclodextrin) 250 chiral capillary column on a Hewlett-Packard 5890A gas chromatograph connected to an HP3390A integrator. CH₂Cl₂ was distilled from CaH₂. Benzene, hexane, and ether were distilled from purple solutions of sodium and benzophenone. Toluene was distilled from sodium. Styrene was either distilled prior to use or purified through a disposable inhibitor remover column, purchased from Aldrich. Phenylacetylene and 4methylstyrene were purchased from Aldrich and distilled prior to use. (2S, 4S)-Bis(diphenylphosphino)pentane was purchased from Strem Chemicals. Anhydrous SnCl₂, ethylbenzene, octane, 2-phenylpropanal, 3-phenylpropanal, tributylamine, methyl (S)-(+) mandelate $[(S)-PhCH(OH)CO_2Me]$, 1,3-dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP), and (COD)₂PtCl₂ were purchased from Aldrich and used as received. ((2S,4S)-BDPP)PtCl₂, and ((2S,4S)-BDPP)Pt(SnCl₃)Cl (1) were prepared according to literature procedures.¹ CO and ¹³CO were purchased from AGA and Cambridge Isotopes respectively. An analyzed 1:1 mixture of H₂:CO was obtained from Gas Tech.

((2S,4S)-BDPP)PtCl₂ was prepared as described by Kollár.¹ A solution of (2S,4S)-BDPP (1.72 g, 3.90 mmol) and $(\text{COD})_2$ PtCl₂ (1.42 g, 3.80 mmol) in CH₂Cl₂ (20 mL) was stirred for 24 h under N₂. Solvent was evaporated under vacuum and the residue was washed with ether to

give ((2*S*,4*S*)-BDPP)PtCl₂ (2.03 g, 76%) as a white solid. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.86 (ddd, 4 H, $J_{PH} = 9.2$ Hz, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{4}J_{HH} = 1.5$ Hz, *ortho* Ph), 7.83 (ddd, 4 H, $J_{PH} = 9.2$ Hz, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{4}J_{HH} = 1.5$ Hz, *ortho* Ph), 7.41-7.60 (m, 12 H, *meta* and *para* Ph), 2.79 (d of sextets, 2 H, $J_{PH} = 9.2$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, *CH*Me), 2.05 (tt, 2 H, $J_{PH} = 19.5$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, CH₂), 1.05 (dd, 6 H, $J_{PH} = 14.5$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, CH₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 135.3 (d, $J_{PC} = 5.1$ Hz), 135.2 (d, $J_{PC} = 5.1$ Hz), 133.9 (d, $J_{PC} = 3.8$ Hz), 133.8 (d, $J_{PC} = 3.8$ Hz), 131.9 (s), 131.4 (s), 128.8 (d, $J_{PC} = 7.5$ Hz), 128.5 (d, $J_{PC} = 7.5$ Hz), 36.1 (s, CH₂), 17.8 (s, CH₃). ³¹P NMR (202 MHz, CD₂Cl₂) δ 7.21 (s, $J_{PRP} = 3415$ Hz, satellites). HRMS (ESI) m/z calculated for C₂₉H₃₀³⁵ClP₂¹⁹⁵Pt (M-Cl⁺) = 670.1159, found 670.1143.

((2S,4S)-BDPP)Pt(SnCl₃)Cl (1) was prepared as described by Kollár.¹ A solution of ((2S,4S)-BDPP)PtCl₂ (1.30 g, 1.84 mmol) and SnCl₂ (0.36 g, 1.90 mmol) in CH₂Cl₂ (25 mL) was stirred for 23 h under N₂. The solution was concentrated under vacuum and cooled to $-30 \,^{\circ}$ C to give ((2S,4S)-BDPP)Pt(SnCl₃)Cl (1) (1.41 g, 86%) as white needles. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.43-7.87 (m, 20 H, Ph), 2.92 (m, 1 H, CHMe), 2.80 (m, 1 H, CHMe), 2.11 (m, 2 H, CH₂), 1.14 (dd, 3 H, J_{PH} = 16.0 Hz, ³ J_{HH} = 7.0 Hz, CHCH₃). 109 (dd, 3 H, J_{PH} = 16.0 Hz, ³ J_{HH} = 7.0 Hz, CHCH₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 135.3 (d, J_{PC} = 10.2 Hz), 134.3 (d, J_{PC} = 10.7 Hz), 134.0 (d, J_{PC} = 9.8 Hz), 133.6 (d, J_{PC} = 9.1 Hz), 133.2 (s), 132.9 (s), 132.7 (s), 132.0 (s), 130.0 (d, J_{PC} = 11.5 Hz), 129.7 (d, J_{PC} = 11.5 Hz), 129.4 (d, J_{PC} = 11.0 Hz), 129.1 (d, J_{PC} = 11.3 Hz), 36.4 (s, CH₂), 29.0 (s, CH), 26.5 (s, CH), 18.1 (s, CH₃), 17.5 (s, CH₃). ³¹P NMR (202 MHz, CD₂Cl₂) δ 13.8 (d, J_{PP} = 24.3 Hz, J_{PP} = 2759 Hz, satellites, P *trans* to Sn), 7.5 (d, J_{PP} = 24.3 Hz, J_{PIP} = 3342 Hz, satellites, P *cis* to Sn). LRMS (ESI) m/z calculated for C₂₉H₃₀³⁵ClP₂¹⁹⁵Pt (M-SnCl₃⁺) = 670.1, found 670.9. LRMS (ESI) negative ion mode calculated for ¹¹⁹SnCl₃⁻ 224.8, found 224.7.

Hydroformylation of Styrene at 40 °C. Toluene (9.0 mL), styrene (2.0 mL, 17 mmol), ((2S,4S)-BDPP)Pt(SnCl₃)Cl (1) (13 mg, 0.015 mmol), and benzene (0.5 mL, 5.9 mmol, internal standard) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N2 and pressurized to 1000 psi with a 1:1 mixture of CO:H₂ and heated to 40 °C. After stirring for 138 h, the reactor was cooled and vented, and the products were immediately analyzed by GC. The oven temperature was started at 100 °C and after 35 min ramped 10 °C/min to a final temperature of 200 °C. The N2 flow was kept at 70 mL/min. Typical retention times (min) were: 6.5 (benzene), 7.7 (toluene), 9.9 (ethylbenzene), 11.5 (styrene), 38.9 ((R)-2phenylpropanal), 39.3 ((S)-2-phenylpropanal), and 45.1 (3-phenylpropanal). Conversion of styrene to aldehydes was 5%, n:i = 2.2; and 60% ee (S)-2-phenylpropanal. Peak assignments were confirmed with samples of the commercial compounds. The assignments for (R)- and (S)-2-phenylpropanal were confirmed by ¹H NMR spectroscopy of (R,S) and (S,S) methyl mandelate ester derivatives, (R,S)-4 and (S,S)-4. The GC response factor for 3-phenylpropanal and 2phenylpropanal (calibrated relative to benzene using standards made from commercial samples) were also compared to the *n*:*i* ratio obtained by ¹H and ²H NMR spectroscopy for the aldehyde products of hydroformylation and deuterioformylation at high and low temperatures. The estimated error for *n*:*i* ratios and % ee's calculated from GC integrations is \pm 5%.

Deuterioformylation of Styrene at 39 °C. Toluene (35.0 mL), styrene (11.0 mL, 95.7 mmol), and ((2*S*,4*S*)-BDPP)Pt(SnCl₃)Cl (1) (48 mg, 0.054 mmol) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N₂. The reactor was pressurized to 600 psi with D₂ followed by 600 psi of CO. The reactor was heated to 39 ± 2 °C (p = 1220 psi) and stirring was begun. After 118.5 h the reactor was cooled to room temperature, vented, and benzene (0.50 mL, 5.9 mmol, internal standard) was added. The products were analyzed by chiral GC (same

parameters as stated above) and by ¹H NMR (CDCl₃) and ²H NMR (toluene- d_8) spectroscopy using a 1:1 CD₂Cl₂:CH₂Cl₂ internal standard. Percent composition of the product mixture at 27% conversion of styrene to aldehydes was: ethylbenzene, (1.0%); 2-phenylpropanal, (9.5%); 3phenylpropanal, (17.7%); *n*:*i* = 1.8; 71% ee (*S*)-2-phenylpropanal.

Scheme 1. Deuterioformylation of styrene at 39 °C

(*E*)-β-Deuteriostyrene.² DIBAL-H (200 mL, 1M in hexanes) was added to a solution of phenylacetylene (24.2 g, 0.24 mol) in hexane (200 mL) under N₂. The solution was stirred at 60 °C for 5 h. Solvent was evaporated under high vacuum and the residual red oil was dissolved in Et_2O and cooled to -78 °C. MeOD (18 mL) was added dropwise and the solution was slowly warmed to room temperature. An additional 200 mL Et_2O and 500 mL 2M sodium potassium

tartrate were added to dissolve the aluminum salts. The layers were separated and the aqueous layer was extracted with 200 mL Et₂O. The combined organic layers were dried (Na₂SO₄), Et₂O was removed by distillation through a Vigreux column, and the remaining yellow liquid was bulb-to-bulb transferred under high vacuum to give 15.0 g of clear liquid. ¹H NMR spectroscopy revealed a 67:33 mixture of (*E*)- β -deuteriostyrene (10.1 g, 48%, 93 ± 5% D_{trans}) : recovered phenylacetylene (4.9 g, 20%). Partial removal of phenylacetylene was achieved by adding this mixture to a suspension of AgNO₃ (10.2 g, 0.06 mol) and tributylamine (17.2 mL, 0.07 mol) in tetraglyme (20 mL). A white precipitate formed. The mixture was stirred for 30 min and the volatile components were vacuum transferred to give 10.9 g of an 85:15 mixture of (*E*)- β -deuteriostyrene : phenylacetylene.

Attempted deuterioformylation of the 85:15 (*E*)- β -deuteriostyrene : phenylacetylene mixture catalyzed by ((2*S*,4*S*)-BDPP)Pt(SnCl₃)Cl (48 mg, 0.054 mmol) in toluene (30 mL) under 1200 psi 1:1 D₂ : CO at 39 °C for one week failed. GC and ¹H NMR spectroscopy showed styrene and phenylacetylene but no aldehydes. Removal of solvent by distillation led to the recovery of 1.4 g of 85:15 (*E*)- β -deuteriostyrene:phenylacetylene. This mixture was added to a suspension of AgNO₃ (6.4 g, 0.04 mol) and tributylamine (7 mL, 0.03 mol) in tetraglyme (40 mL). A white precipitate formed immediately. The mixture was stirred for 15 min and the volatile components were vacuum transferred from the solution, diluted with 4 mL toluene, washed with 4 mL 2 M HCl, 4 mL H₂O, and dried (MgSO₄). The volatile components were vacuum transferred to give 4.4 g of a toluene solution of (*E*)- β -deuteriostyrene (300 MHz, CDCl₃) δ 7.37-7.42 (m, 2 H, Ph), 7.19-7.34 (m, 3 H, Ar), 6.70 (dt, 1 H, J_{trans} = 17.5 Hz, J_{HD} = 1.5 Hz,

=CHPh), 5.72 (d, 1 H, J_{trans} = 17.5 Hz, =CH_{trans}D), 5.23 (dd, 0.07 H, J_{cis} = 11.0 Hz, J_{gem} = 1.0 Hz, =CH_{cis}D). No phenylacetylene was visible by ¹H NMR (5% detection limit).

Hydroformylation of (E)- β -Deuteriostyrene and Derivitization of the Aldehyde Products.

(A) Hydroformylation. (*E*)- β -deuteriostyrene (0.96 g, 9.1 mmol) in toluene (4.0 mL) and ((2*S*,4*S*)-BDPP)Pt(SnCl₃)Cl (1) (24 mg, 0.027 mmol) were added to a 250 mL stainless steel Parr reactor. The reactor was sealed under 1 atm of N₂ and pressurized to 1200 psi with a 1:1 mixture of CO:H₂. After stirring for 196 h at 39 ± 2 °C, the reactor was cooled and vented. Immediate analysis by GC showed 6.0% ethylbenzene, 60.6% 3-phenypropanal, and 33.3% 2-phenylpropanal (15.9% of which was (*R*)-2-phenylpropanal, and 84.1% (*S*)-2-phenylpropanal). Conversion to aldehydes = 93%; *n*:*i* = 1.8; 68% ee (*S*)-2-phenylpropanal.³

(B) Oxidation of 2- and 3-Phenylpropanal to 2- and 3-Phenylpropanoic Acids.⁴ The 1.8:1 mixture of deuterium labeled 2- and 3-phenylpropanal (1.15 g, 8.55 mmol) from the above hydroformylation of (*E*)-β-deuteriostyrene was added to a solution of 1M KMnO₄ (28 mL), 1.3M KH₂PO₄ (15 mL), *t*-BuOH (10 mL), and stirred for 1 h. The residual MnO₂ was dissolved with saturated Na₂SO₃ and the reaction mixture was extracted with Et₂O (5 x 100 mL). The combined organic layers were dried (MgSO₄) and the solvent was evaporated under reduced pressure to give a 1.8:1 mixture of 3-[²H]-2-phenylpropanoic acid and 2-[²H]-3-phenylpropanoic acid [1.08 g, 84%, ratio determined by average ¹H NMR integrations (0.5615H / 0.316H = 1.78)]. ¹H NMR (300 MHz, CDCl₃) δ 7.14-7.33 (m, 5.00 H, Ph), 4.15 (br s, $\omega_{1/2}$ = 50 Hz, CO₂H); 2-[²H]-3-phenylpropanoic acid: 2.94 (br d, 1.28 H, *J* = 7.8 Hz, CH₂Ph), 2.65 (m, 0.483 H, CHDCO₂H); 3-

[²H]-2-phenylpropanoic acid: 3.72 (br t, 0.277 H, J = 7.5 Hz, CHCH₂D), 1.49 (dt, 0.710 H, $J_{HH} = 7.5$ Hz, $J_{HD} = 1.8$ Hz, CH₂D).

(C) Methyl (S)-(+) Mandelate Esters (R,S)-4, (S,S)-4, (R,S)-5, and (S,S)-5. The above 1.8:1 mixture of $3-[^{2}H]-2-$ and $2-[^{2}H]-3-$ phenylpropanoic acids (1.08 g, 7.2 mmol), methyl (S)-(+) mandelate (1.22 g, 7.3 mmol), 1,3-dicyclohexylcarbodiimide (DCC, 1.43 g, 7.0 mmol), and 4-(dimethylamino)pyridine (DMAP, 58 mg, 0.47 mmol) were dissolved in CH₂Cl₂ (50 mL) and stirred under N₂ at -10 °C for 3 h. The reaction mixture was filtered to remove 1,3dicyclohexylurea (DCU), a reaction by-product, concentrated to 2 mL, and stored at -20 °C. After a second filtration to remove DCU, solvent was evaporated under reduced pressure to give a mixture of 4-d and 5-d (1.31 g, 61%). ¹H NMR (300 MHz, C_6D_6) δ 6.97-7.45 (m, 10 H, Ph, all compounds), 6.04 (s, 0.80 H, CHCO₂Me, (S,S)-4, (S,S)-5, and (R,S)-5), 6.01 (s, 0.20 H, $CHCO_2Me$, (R,S)-4), 3.78 (t, 0.06 H, J = 6.9 Hz, CH, (R,S)-4), 3.69 (t, 0.31 H, J = 6.9 Hz, CH, (S,S)-4), 3.18 (s, 5 H, CO₂CH₃, (R,S)- and (S,S)-5), 3.10 (s, 0.13 H, CO₂CH₃, (R,S)-4), 3.07 (s, $0.26 \text{ H}, \text{CO}_2\text{CH}_3, (S,S)-4$, 2.84 (br d, 1.4 H, $J = 7.4 \text{ Hz}, \text{CH}_2\text{Ph}, (R,S)-$ and (S,S)-5), 2.57 (tt, 0.67) H, ${}^{3}J_{HH} = 7.4$ Hz, ${}^{1}J_{HD} = 1.8$ Hz, CHDCO₂R, (*S*,*S*)-**5**), 2.47 (m, 0.32 H, CHDCO₂R, (*R*,*S*)-**5**), 1.48 (m, CH₂D, (R,S)-4, partially obscured by cyclohexyl CH₂ of DCU), 1.43 (m, CH₂D, (S,S)-4, partially obscured by cyclohexyl CH₂ of DCU). ${}^{2}H{}^{1}H{}$ NMR (77 MHz, C₆H₆) δ 2.52 (0.54 D, CHDCO₂R of (*R*,*S*)-**5**), 2.42 (1.45 D, CHDCO₂R (*S*,*S*)-**5**), 1.40 and 1.36 (0.96 D, CH₂D of (*R*,*S*)-4 and (S,S)-4), 1.01 (0.11 D, CH₂D of 2-[²H]-ethylbenzene). The combined integral for (R,S)-5 and (S,S)-5 CHDCO₂R is 1.99 D; the two peaks were not separated at the baseline and were simulated with the winDNMR⁵ program to give $27.3 \pm 2\%$ (*R*,*S*)-**5** and $72.7 \pm 2\%$ (*S*,*S*)-**5** (45.4%) ee).

Figure 1. Methylene resonances in the ¹H NMR spectrum of (R,S)-**5** and (S,S)-**5** from the hydroformylation of (E)- β -Deuteriostyrene

Figure 2. (a) ²H NMR spectrum of (R,S)-4, (S,S)-4, (R,S)-5, and (S,S)-5 in benzene from the hydroformylation of (E)- β -deuteriostyrene. (b) Expansion of the α -CHD resonances; simulated (R,S)-5 and (S,S)-5 peaks are overlayed.

Hydroformylation of (Z)- β -Deuteriostyrene⁶ and Derivitization of the Aldehyde Products.

(A) Hydroformylation. A mixture of (Z)- β -deuteriostyrene (2.2 g, 21 mmol, 93 ± 5% D), phenylacetylene- d_1 (0.7 g, 7 mmol, 45 ± 5% D), styrene (2.7 g, 26 mmol); ((2S,4S)-BDPP)Pt(SnCl₃)Cl (30 mg, 0.033 mmol); and toluene (15 mL) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N₂ and pressurized to 1200 psi with a 1:1 mixture of CO:H₂. After heating to 39 ± 2 °C, the reaction was stirred for 192 h. The reactor was then cooled, vented, and the products were immediately analyzed by GC.³ Ethylbenzene, (4.0%); 3-phenypropanal, (57.4%); (*R*)-2-phenylpropanal, (5.7%); (*S*)-2-phenylpropanal, (25.5%); unidentified compound, (7.3%). Conversion to aldehydes: 89%; n:i = 1.8; 63% ee (*S*)-2-phenylpropanal.

(B) Oxidation of 2- and 3-phenylpropanal to 2 and 3-phenylpropanoic acids. The previously described oxidation procedure was applied to the above 1.8:1 mixture of deuterium labeled 2- and 3-phenylpropanal (6.4 g, 48 mmol) from the hydroformylation of (*Z*)-β-deuteriostyrene using 1M KMnO₄ (28 mL), 1.3M KH₂PO₄ (15 mL), and *t*-BuOH (10 mL). Yield: 1.78 g (25%) of a 2:1 mixture of $3-[^{2}H]-2$ -phenylpropanoic acid and $2-[^{2}H]-3$ -phenylpropanoic acid [ratio determined by average ¹H NMR integrations (0.315 H / 0.16 H = $1.97 \approx 2$)]. δ ¹H NMR (300 MHz, CDCl₃): δ 7.14 - 7.33 (m, 5.0 H, Ph), 4.15 (br s, $\omega_{1/2} = 50$ Hz, CO₂H); $2-[^{2}H]-3$ -phenylpropanoic acid: δ 2.90 (t, 0.63 H, *J* = 7.8 Hz, CH₂Ph), 2.59 (t, 0.63 H, CHDCO₂H); $3-[^{2}H]-2$ -phenylpropanoic acid: δ 3.72 (br q, 0.16 H, *J* = 7.5 Hz, CHCH₂D), 1.49 (dt, *J*_{HH} = 7.5 Hz, CH₂D).

Preparation of Methyl (S)-(+) Mandelate Esters (R,S)-4, (S,S)-4, (R,S)-5, and (S,S)-5. Compounds (R,S)- (S,S)-4 and (R,S)- (S,S)-5 (0.48 g, 24%) were prepared with the above 2:1 mixture of $3-[^{2}H]-2-$ and $2-[^{2}H]-3-$ phenylpropanoic acids (1.78 g, 6.7 mmol), methyl (S)-(+) mandelate (1.09 g, 6.6 mmol), DCC (1.64 g, 7.9 mmol), and DMAP (54 mg, 0.44 mmol) in CH₂Cl₂ (50 mL) at -10 °C in the manner previously described. ¹H NMR (300 MHz, C_6D_6): δ 6.97 - 7.45 (m, 10 H, Ph, all compounds), 6.04 (s, 0.80 H, CHCO₂Me, (S,S)-4, (S,S)-5, and (R,S)-**5**), 6.01 (s, 0.11 H, CHCO₂Me, (R,S)-4), 3.76 (q, 0.03 H, J = 6.9 Hz, CH, (R,S)-4), 3.67 (q, 0.06 H, J = 6.9 Hz, CH, (S,S)-4), 3.18 (s, 1.7 H, CO₂CH₃, (R,S)- and (S,S)-5), 3.09 (s, 0.50 H, CO_2CH_3 , (R,S)-4), 3.07 (s, 0.24 H, CO_2CH_3 , (S,S)-4), 2.84 (t, 1.0 H, J = 7.8 Hz, CH_2Ph , (R,S)-5 and (S,S)-5), 2.57 (m, 0.23 H, CHDCO₂R, (R,S)-5), 2.44 (m, 0.32 H, CHDCO₂R, (S,S)-5), 1.49 (d, 0.11 H, J = 6.9 Hz, CH₂D, (*R*,*S*)-4), 1.44 (d, 0.35 H, J = 6.9 Hz, CH₂D, (*S*,*S*)-4). ²H{¹H} NMR (77 MHz, C₆H₆): δ 2.52 (1.86 D, CHDCO₂R, (*R*,*S*)-**5**), 2.42 (1.00 D, CHDCO₂R (*S*,*S*)-**5**), 1.42 and 1.38 (1.30 D, CH₂D, (*R*,*S*)-4 and (*S*,*S*)-4), 1.01 (0.1 D, CH₂D of ethylbenzene). The peaks for CHDCO₂R of 5-d were simulated with the winDNMR⁵ program to give 65.7 $\pm 2\%$ (R,S)-5 and 34.3 ± 2% (S,S)-5 (31.4% ee).

Figure 3. (a) ²H NMR spectrum of (R,S)-4, (S,S)-4, (R,S)-5, and (S,S)-5 in benzene from the hydroformylation of (Z)- β -deuteriostyrene. (b) Expansion of the α -CHD resonances; simulated (R,S)-5 and (S,S)-5 peaks are overlayed.

Preparation of the Methyl (*S*)-(+) Mandelate Ester of Nonracemic 2-Phenylpropanoic Acid.⁷ (*S*)-2-Phenylpropanoic acid (25 mg, 0.17 mmol), racemic 2phenylpropanoic acid (75 mg, 0.50 mmol), methyl (*S*)-(+) mandelate (111 mg, 0.67 mmol), DCC (137 mg, 0.666 mmol), and DMAP (6 mg, 0.05 mmol) were dissolved in CH₂Cl₂ (5 mL) and stirred under N₂ at -10 °C for 4 h. The reaction mixture was filtered to remove dicyclohexylurea (DCU), a reaction by-product, concentrated to 2 mL, and stored at -20 °C. After a second filtration to remove DCU, the solvent was evaporated under reduced pressure and the resulting oil was distilled at 120 °C, 10⁻⁵ Torr to give (*R*,*S*)- and (*S*,*S*)-4 (90 mg, 45%). ¹H NMR (500 MHz, C₆D₆): δ 6.97 - 7.37 (m, 10 H, Ph), 6. 03 (s, 0.63 H, CHCO₂Me, (*S*,*S*)-4), 6.00 (s, 0.34 H, CHCO₂Me, (*R*,*S*)-4), 3.74 (q, 0.41 H, *J* = 6.9 Hz, CH, (*R*,*S*)-4), 3.67 (q, 0.75 H, *J* = 6.9 Hz, CH, (*S*,*S*)-4), 3.09 (s, 1.0 H, CO₂CH₃, (*R*,*S*)-4), 3.07 (s, 2.1 H, CO₂CH₃, (*S*,*S*)-4), 1.49 (d, 0.94 H, *J* = 6.9 Hz, CH₃, (*R*,*S*)-4), 1.44 (d, 1.8 H, *J* = 6.9 Hz, CH₃, (*S*,*S*)-4).

Preparation of the Methyl (*S*)-(+) Mandelate Ester of 3-Phenylpropanoic Acid. 3-Phenylpropanoic acid (180 mg, 1.20 mmol), methyl (*S*)-(+) mandelate (199 mg, 1.20 mmol), DCC (248 mg, 1.20 mmol), and DMAP (9 mg, 0.07 mmol) were dissolved in CH₂Cl₂ (10 mL) and stirred under N₂ at -10 °C for 3.5 h. The reaction mixture was filtered to remove DCU, a reaction by-product, concentrated to 3 mL, and stored at -20 °C. After a second filtration to remove DCU, the solvent was evaporated under reduced pressure to give a yellow oil that was distilled at 120 °C, 10⁻⁵ Torr to give the product (337 mg, 94 %). ¹H NMR (500 MHz, C₆D₆) δ 7.43 - 7.39 (m, 8 H, Ph), 7.11 - 6.93 (m, 2 H, Ph), 6.06 (s, 1 H, CHCO₂Me), 3.18 (s, 3 H, CO₂CH₃), 2.84 (t, 2 H, *J* = 7.8 Hz, CH₂Ph), 2.57 (m, 1 H, *pro-R* CHHCO₂R), 2.44 (m, 1 H, *pro-S* CHHCO₃R). **Hydroformylation of Styrene at 100** °C. Toluene (9.0 mL), styrene (2.0 mL, 17 mmol), ((2S,4S)-BDPP)Pt(SnCl₃)Cl (13 mg, 0.015 mmol), and benzene (0.5 mL, 5.9 mmol, internal standard) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N₂ and pressurized to 1000 psi with a 1:1 mixture of CO:H₂. Once the reactor temperature stabilized at 100 °C, stirring was begun and continued for 4.5 h. After cooling and venting the reactor, the products were immediately analyzed by GC.³ Conversion to aldehydes: 89%; 3-

phenylpropanal (63.4%), 2-phenylpropanal (25.9%), ethylbenzene (10.6%), n:i = 2.4; 10% ee (*R*)-2-phenylpropanal.

Deuterioformylation of Styrene at 96 °C. Toluene (35.0 mL), styrene (11.0 mL, 95.7 mmol), ((2S,4S)-BDPP)Pt(SnCl₂)Cl (48 mg, 0.054 mmol), and benzene (0.5 mL, 5.9 mmol, internal standard) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N_2 . The reactor was pressurized to 600 psi with D_2 followed by 600 psi of CO. The reactor was then heated for 10 min before the temperature stabilized at 96 \pm 2 °C and stirring was begun. An aliquot (~0.4 mL) was collected every 30 min for 4.5 h and immediately analyzed by GC. Each aliquot was analyzed by ¹H and ²H NMR spectroscopy in 1:1 CH₂Cl₂:CD₂Cl₂. Percent composition of the product mixture after 4.5 h was: ethylbenzene (6.8%), styrene (6.2%), 2phenylpropanal (24.3%), 3-phenylpropanal (62.7%).³ ¹H NMR chemical shifts of product mixtures (300 MHz, 1:1 CH₂Cl₂:CD₂Cl₂): δ 7.2 - 7.8 (m, Ph, all compounds); 3-phenylpropanal: δ 9.88 (t, J = 3.3 Hz, CHO), 3.06 (m, CH₂Ph), 2.80 (m, CH₂CHO); 2-phenylpropanal: δ 9.82 (d, J = 3.3 Hz, CHO), 3.72 (br t, J = 6 Hz, CH), 1.60 (d, J = 6.9 Hz, CH₃), 1.58 (dt, $J_{HH} = 6.9$ Hz, J_{HD} = 2.2 Hz, CH₂D); ethylbenzene: δ 2.79 (m, CH₂, overlaps with CH₂CHO of 3-phenylpropanal), 1.15 (m, CH₃); styrene: δ 6.93 (dd, $J_{\text{trans}} = 17.5$ Hz, $J_{\text{cis}} = 11.0$ Hz, internal vinyl CH), 5.96 (dd, $J_{\text{trans}} = 17.5 \text{ Hz}, J_{\text{gem}} = 1.2 \text{ Hz}$, terminal vinyl CHH), 5.45 (dd, $J_{\text{cis}} = 11.0 \text{ Hz}, J_{\text{gem}} = 1.2 \text{ Hz}$,

terminal vinyl CHH). ²H{¹H} NMR (77 MHz, 1:1 CH₂Cl₂:CD₂Cl₂): 3-phenylpropanal: δ 9.93 (CDO), 3.09 (CD₂Ph), 2.83 (CD₂CDO); 2-phenylpropanal: δ 9.86 (CDO), 3.72 (CD), 1.61 (CD₃); ethylbenzene: δ 2.8 (CD₂, overlaps CD₂CHO of 3-phenylpropanal), 1.46 (CD₃); styrene: δ 6.98 (internal vinyl CD), 6.01 (terminal vinyl CDD), 5.49 (terminal vinyl CDD).

Two other deuterioformylations of styrene were performed on the same scale with 600 psi D₂ and 600 psi CO at ~96 °C. One experiment was stopped at 90% conversion and the other at 31% conversion of styrene to aldehydes. Percent composition of the product mixture at 91% conversion was:³ ethylbenzene (7.4%), styrene (2.2%), 3-phenylpropanal (64.3%), 2phenylpropanal (26.2%), n:i = 2.5. Percent composition of the product mixture at 30% conversion was:³ ethylbenzene (2.3%), 3-phenylpropanal (21.2%), 2-phenylpropanal (9.0%), n:i = 2.3. Accurate determination of enantiomeric excess was difficult because the separation of deuterium labeled (R)- and (S)-2-phenylpropanal in the GC traces was poor. The products of these two deuterioformylations were also analyzed by ¹H and ²H NMR spectroscopy. Samples of 2.0 mL of reaction solution and 60 µL of 1:1 CH₂Cl₂:CD₂Cl₂ were made for NMR analysis in CDCl₃ or toluene-d₈. ¹H NMR chemical shifts of the product mixtures (300 MHz, CDCl₃, 1:1 CH₂Cl₂:CD₂Cl₂ internal standard): δ 6.8 - 7.5 (m, Ph); 3-phenylpropanal: δ 9.49 (t, J = 3.3 Hz, CHO), 2.72 (m, CH₂Ph), 2.41 (m, CH₂CHO); 2-phenylpropanal: δ 9.46 (d, J = 3.3 Hz, CHO), 3.32 (m, CH), 1.27 (dt, $J_{\rm HH}$ = 6.9 Hz, $J_{\rm HD}$ = 2.2 Hz, CH₂D); ethylbenzene: δ 2.53 (br q, J = 6.5 Hz, CH₂), 1.14 (m, CH₃); styrene: δ 6.63 (dd, $J_{\text{trans}} = 17.5$ Hz, $J_{\text{cis}} = 11.0$ Hz, internal vinyl CH), 5.66 (dd, $J_{\text{trans}} = 17.5 \text{ Hz}$, $J_{\text{gem}} = 1.0 \text{ Hz}$, terminal vinyl CHH), 5.15 (dd, $J_{\text{cis}} = 11.0 \text{ Hz}$, $J_{\text{gem}} = 1.0 \text{ Hz}$, $J_{\text{gem}} = 1.0 \text{ Hz}$, $J_{\text{gem}} = 1.0 \text{ Hz}$, $J_{\text{res}} = 1.0 \text{ Hz}$, JHz, terminal vinyl CHH). ${}^{2}H{}^{1}H{}$ NMR (77 MHz, toluene- d_{8} , 1:1 CH₂Cl₂:CD₂Cl₂ internal standard): 3-phenylpropanal: δ 9.30 (CDO), 2.53 (CD₂Ph), 2.10 (CD₂CDO); 2-phenylpropanal:

δ 9.32 (CDO), 3.04 (CD), 1.11 (CD₃); ethylbenzene: δ 2.37 (CD₂), 1.01 (CD₃); styrene: δ 6.53 (internal vinyl CD), 5.56 (terminal vinyl CDD), 5.04 (terminal vinyl CDD).

CO (psi)	H ₂ (psi)	n:i	ee	Ethylbenzene	<i>R</i> -aldehyde	S-aldehyde	<i>n</i> -aldehyde	R:S	R:n	S:n	TOF (h ⁻¹)
200	400	3.18	22% R	41%	14.5%	9.4%	76.1%	1.55	0.19	0.12	25
200	400	3.08	21% R	39%	14.9%	9.6%	75.5%	1.55	0.20	0.13	60
200	400	3.07	19% R	48%	14.7%	9.9%	75.4%	1.48	0.19	0.13	29
200	400	3.20	22% R	33%	14.5%	9.3%	76.2%	1.57	0.19	0.12	61
400	400	3.20	19% R	21%	14.1%	9.7%	76.2%	1.46	0.19	0.13	142
400	400	3.13	18% R	21%	14.3%	9.9%	75.8%	1.44	0.19	0.13	113
400	400	3.25	19% R	26%	14.0%	9.5%	76.5%	1.47	0.18	0.12	117
600	400	3.26	21% R	12%	14.2%	9.3%	76.5%	1.53	0.19	0.12	94
600	400	3.42	21% R	15%	12.3%	10.3%	77.4%	1.19	0.16	0.13	113
600	400	3.56	21% R	10%	13.3%	8.6%	78.1%	1.55	0.17	0.11	78
800	400	3.13	18% R	10%	14.2%	10.0%	75.8%	1.43	0.19	0.13	107
800	400	3.07	20% R	12%	14.8%	9.8%	75.4%	1.51	0.20	0.13	106
800	400	3.20	17% R	9%	13.9%	9.9%	76.2%	1.41	0.18	0.13	163
1000	400	3.35	20% R	7%	13.8%	9.2%	77.0%	1.50	0.18	0.12	68
1000	400	3.18	15% R	8%	13.8%	10.1%	76.1%	1.37	0.18	0.13	86
1000	400	3.10	16% R	8%	14.1%	10.3%	75.6%	1.37	0.19	0.14	57

Table 1. CO pressure dependence on the hydroformylation of styrene at 100 °C. (See text for experimental procedure).

Figure 4. Graphs related to CO pressure dependence on the hydroformylation of styrene at 100 °C. (See text for experimental procedure).

H ₂ (psi)	CO (psi)	n:i	ee	Ethylbenzene	<i>R</i> -aldehyde	S-aldehyde	<i>n</i> -aldehyde	R:S	R:n	S:n	TOF (h ⁻¹)
200	400	3.69	22% R	20%	12.8%	8.5%	78.7%	1.51	0.16	0.11	44
200	400	3.61	21% R	21%	13.1%	8.6%	78.3%	1.52	0.17	0.11	37
200	400	3.81	21% R	17%	12.2%	8.6%	79.2%	1.42	0.15	0.11	38
400	400	3.20	19% R	21%	14.2%	9.6%	76.2%	1.48	0.19	0.13	142
400	400	3.17	18% R	21%	14.2%	9.8%	76.0%	1.44	0.19	0.13	113
400	400	3.25	19% R	26%	14.0%	9.5%	76.5%	1.47	0.18	0.12	117
600	400	2.54	15% R	21%	16.2%	12.0%	71.8%	1.35	0.23	0.17	163
600	400	2.30	18% R	24%	17.8%	12.5%	69.8%	1.42	0.25	0.18	71
600	400	2.70	15% R	23%	15.5%	11.5%	73.0%	1.35	0.21	0.16	163
800	400	2.25	10% R	21%	16.9%	13.9%	69.2%	1.22	0.24	0.20	201
800	400	2.24	10% R	22%	17.0%	13.9%	69.1%	1.22	0.25	0.20	237
800	400	2.26	14% R	25%	17.5%	13.2%	69.3%	1.33	0.25	0.19	189
800	400	2.34	10% R	23%	16.4%	13.5%	70.1%	1.21	0.23	0.19	422
1000	400	1.92	6% R	24%	18.1%	16.2%	65.7%	1.12	0.28	0.25	443
1000	400	1.69	9% R	28%	20.3%	16.9%	62.8%	1.20	0.32	0.27	389
1000	400	1.82	9% R	24%	19.3%	16.2%	64.5%	1.19	0.30	0.25	755

Table 2. H_2 pressure dependence on the hydroformylation of styrene at 100 °C. (See text for experimental procedure).

Figure 5. Graphs related to H_2 pressure dependence on the hydroformylation of styrene at 100 °C. (See text for experimental procedure).

H₂ (psi)

CO (psi)	H ₂ (psi)	n:i	ee	Ethylbenzene	<i>R</i> -aldehyde	S-aldehyde	<i>n</i> -aldehyde	R:S	R:n	S:n	TOF (h ⁻¹)
200	400	2.07	14% S	8%	14.0%	18.6%	67.4%	0.75	0.21	0.28	-
200	400	2.00	20% S	9%	13.3%	20.0%	66.7%	0.67	0.20	0.30	11
200	400	1.92	22% S	10%	13.4%	20.8%	65.8%	0.64	0.20	0.32	3
400	400	2.29	46% S	4%	8.2%	22.2%	69.6%	0.37	0.12	0.32	4
400	400	2.12	40% S	7%	9.6%	22.5%	67.9%	0.43	0.14	0.33	5
400	400	2.07	37% S	5%	10.3%	22.3%	67.4%	0.46	0.15	0.33	4
400	400	2.42	38% S	4%	9.1%	20.1%	70.8%	0.45	0.13	0.28	-
600	400	2.15	52% S	4%	7.6%	24.2%	68.2%	0.31	0.11	0.36	6
600	400	2.46	48% S	3%	7.5%	21.4%	71.1%	0.35	0.11	0.30	8
600	400	2.53	51% S	3%	6.8%	21.5%	71.8%	0.32	0.09	0.30	13
800	400	2.38	57% S	3%	6.3%	23.3%	70.4%	0.27	0.09	0.33	13
800	400	2.51	56% S	2%	6.3%	22.2%	71.5%	0.28	0.09	0.31	5
800	400	2.51	57% S	2%	6.2%	22.3%	71.5%	0.28	0.09	0.31	7
1000	400	2.32	66% S	4%	5.3%	24.8%	69.9%	0.21	0.08	0.35	-
1000	400	2.55	57% S	2%	6.1%	22.1%	71.8%	0.28	0.08	0.31	7
1000	400	2.41	60% S	2%	5.9%	23.4%	70.7%	0.25	0.08	0.33	7

Table 3. CO pressure dependence on the hydroformylation of styrene at 50 °C. (See text for experimental procedure).

Figure 6. Graphs related to CO pressure dependence on the hydroformylation of styrene at 50 °C. (See text for experimental procedure).

Table 4.	Graphs related to H	pressure dependenc	e on the hydr	oformylation	of styrene	at 50	°C.
(See text	for experimental pro	cedure).					

H2 (psi)	CO (psi)	n:i	ee	Ethylbenzene	<i>R</i> -aldehyde	S-aldehyde	<i>n</i> -aldehyde	R:S	R:n	S:n	TOF (h ⁻¹)
200	400	3.08	19% S	3%	9.9%	14.6%	75.5%	0.68	0.13	0.19	2
200	400	3.11	18% S	3%	10.0%	14.3%	75.7%	0.70	0.13	0.19	3
200	400	3.31	22% S	3%	9.1%	14.1%	76.8%	0.64	0.12	0.18	5
400	400	2.07	37% S	5%	10.3%	22.3%	67.4%	0.46	0.15	0.33	4
400	400	2.12	40% S	7%	9.6%	22.4%	68.0%	0.43	0.14	0.33	5
400	400	2.29	46% S	4%	8.2%	22.2%	69.6%	0.37	0.12	0.32	4
400	400	2.42	38% S	4%	9.1%	20.1%	70.8%	0.45	0.13	0.28	-
600	400	1.80	50% S	6%	8.9%	26.8%	64.3%	0.33	0.14	0.42	23
600	400	1.84	49% S	7%	8.9%	26.3%	64.8%	0.34	0.14	0.41	10
600	400	1.91	51% S	6%	8.5%	25.9%	65.6%	0.33	0.13	0.39	4
800	400	1.53	56% S	9%	8.7%	30.8%	60.5%	0.28	0.14	0.51	11
800	400	1.54	55% S	9%	9.0%	30.4%	60.6%	0.30	0.15	0.50	10
800	400	1.75	55% S	8%	8.1%	28.3%	63.6%	0.29	0.13	0.44	23
800	400	1.79	56% S	9%	8.0%	27.9%	64.1%	0.29	0.12	0.44	1
1000	400	1.42	58% S	13%	8.6%	32.8%	58.6%	0.26	0.15	0.56	8
1000	400	1.42	59% S	12%	8.5%	32.8%	58.7%	0.26	0.15	0.56	-
1000	400	1.46	60% S	12%	8.1%	32.5%	59.4%	0.25	0.14	0.55	10

Figure 7. Graphs related to H_2 pressure dependence on the hydroformylation of styrene at 50 °C. (See text for experimental procedure). Variable H_2 pressures at 50 °C.

Deuterioformylation of 4-Methylstyrene in a Toluene Solution of 2-phenylpropanal

and 3-phenylpropanal. Toluene (35.0 mL), 4-methylstyrene (7.0 mL, 53 mmol), 3phenylpropanal (14 mmol), 2-phenylpropanal (16 mmol), and ((2S,4S)-BDPP)Pt(SnCl₃)Cl (48 mg, 0.054 mmol) were added to a 250 mL stainless steel Parr reactor sealed under 1 atm of N₂. The reactor was pressurized to 600 psi with D₂ followed by 600 psi of CO. After the temperature stabilized at 96 \pm 2 °C, (p = 1350 psi), stirring was begun. Two runs were conducted and stopped after 4 h (100% conv.) and 1 h (78% conv.).⁸ The products of each experiment were analyzed by GC, low resolution GC/MS, and ¹H and ²H NMR spectroscopy in 1:1 CH₂Cl₂:CD₂Cl₂. Average retention times (min) for 4 runs at 150 °C on the chiral β -cyclodextrin (100 % conv.) 0.90 (p-ethyltoluene), 3.2 (2-phenylpropanal), 5.9 (3column were: phenylpropanal), 6.9 (2-(p-tolyl)propanal), and 7.9 (3-(p-tolyl)propanal). GC(/MS) retention times (min) for the Restek Rtx-5 (5% diphenyl / 95% dimethyl polysiloxane) column were: 6.72 (2-phenylpropanal), 7.82 (3-phenylpropanal), 8.64 (2-(p-tolyl)propanal), and 9.79 (3-(ptolyl)propanal). At 100% conversion, low resolution GC/MS (EI) found for 2-phenylpropanal $(C_{0}H_{10}O)$ [m/e (intensity)] [M + 2]⁺ 136 (0.13), [M + 1]⁺ 135 (1.64), [M]⁺ 134 (11.70), [M - 29]⁺ 105 (100). Found for 3-phenylpropanal $(C_9H_{10}O) [M + 2]^+$ 136 (0.63), $[M + 1]^+$ 135 (6.10), $[M]^+$ 134 (44.78), $[M - 1]^+$ 133 (7.31), $[M - 43]^+$ 105 (100). Calculated for (C₉H₁₀O): 136 (0.6), 135 (9.9) 134 (100). Found for 2-(*p*-tolyl)propanal ($C_{10}H_{12}O$) $[M + 4]^+$ 153 (6.59), $[M + 3]^+$ 152 $(10.20), [M + 2]^{+} 151 (10.27), [M + 1]^{+} 150 (9.07), [M]^{+} 149 (4.09), [M - 1]^{+} 148 (0.90).$ Found for 3-(*p*-tolyl)propanal ($C_{10}H_{12}O$) [M + 5]⁺ 154 (1.94), [M + 4]⁺ 153 (17.69), [M + 3]⁺ 152 $(29.96), [M + 3]^{+} 151 (31.06), [M + 2]^{+} 150 (27.86), [M + 1]^{+} 149 (12.82), [M]^{+} 148 (2.28), [M - 10.001]{}^{+} 148 (2.28), [M - 10.001]{}^{+}$ $42|^{+}$ 107 (100). Calculated for (C₁₀H₁₂O): 150 (0.7), 149 (11.0), 148 (100).

X-ray Crystallography of ((2S,4S)-BDPP)Pt(SnCl₃)Cl (1). A colorless needle-shaped crystal of 1 with dimensions of 0.25 x 0.88 x 0.08 mm was selected for structural analysis. Intensity data for this compound were collected using a Bruker SMART ccd area detector⁹ mounted on a Bruker Platform goniometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The sample was cooled to 133K. The intensity data, which nominally covered one and a half hemispheres of reciprocal space, were measured as a series of ω oscillation frames each of 0.3 ° for 45 sec / frame. The detector was operated in 512 x 512 mode and was positioned 5.00 cm from the sample. Coverage of unique data was 98.8% complete to 25.00 degrees in θ . Cell parameters were determined from a non-linear least squares fit of 8192 peaks in the range $3.0 < \theta < 25.0^{\circ}$. The first 50 frames were repeated at the end of data collection and yielded a total of 377 peaks showing a variation of -0.10% during the data collection. A total of 42876 reflections were measured in the range 4.70 < θ < 26.58 °. The data were corrected for absorption by the empirical method¹⁰ giving minimum and maximum transmission factors of 0.537 and 0.894. The data were merged to form a set of 18166 independent reflections with R(int) = 0.1228.

The orthorhombic space group P2(1)2(1)2(1) was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full matrix least-squares methods on $F^{2,11}$ Hydrogen atom positions were initially determined by geometry and refined by a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. A total of 1025 parameters were refined against 3753 restraints and 18166 reflections to give wR(F^2) = 0.2040 and S = 0.981 for weights of w = $1/[\sigma^2(F^2) + (0.0740 \text{ P})^2]$, where P = $[F_0^2 + 2F_c^2]/3$. The final R(F) was 0.0856 for the 8021 observed [$F > 4\sigma(F)$] reflections. The largest shift / s.u. was 0.039 in the final refinement

cycle. The final difference map had maxima and minima of 2.868 and -2.666 e / $Å^3$, respectively. The absolute structure was determined by refinement of the Flack parameter.¹²

Comment: The displacement ellipsoids were drawn at the 50% probability level. There are three formula units per asymmetric unit of the cell. The $SnCl_3$ group of one molecule was disordered and modeled in two orientations with occupancies of 0.627(5) for the (C) group and 0.373(5) for the (D) group. Because the intensities were so weak, restraints were applied to the positional parameters and displacement parameters of the carbons and the disordered atoms.

Figure 8. ORTEP of [2*S*,4*S*-BDDP]Pt(SnCl₃)Cl (1)

Identification code	n98048	
Empirical formula	C29 H30 Cl4 P2 Pt Sn	
Formula weight	896.05	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 9.4421(12) Å	$\alpha = 90^{\circ}$
	b = 18.289(2) Å	β= 90°
	c = 55.173(7) Å	γ= 90°
Volume	9528(2) Å ³	
Z	12	
Density (calculated)	1.874 Mg/m ³	
Wavelength	0.71073 Å	
Temperature	133(2) K	
<i>F</i> (000)	5160	
Absorption coefficient	5.642 mm ⁻¹	
Absorption correction	Empirical	
Max. and min. transmission	0.894 and 0.537	
Theta range for data collection	4.70 to 26.58°.	
Reflections collected	42876	
Independent reflections	18166 [R(int) = 0.1228]	
Data / restraints / parameters	18166 / 3753 / 1025	
wR(F^2 all data)	wR2 = 0.2040	
R(F obsd data)	R1 = 0.0856	
Goodness-of-fit on F^2	0.981	
Observed data $[I > 2s(I)]$	8021	
Absolute structure parameter	-0.012(9)	
Largest and mean shift / s.u.	0.039and 0.001	
Largest diff. peak and hole	2.868 and -2.666 e/Å ³	

Table 5. Crystal data and structure refinement for (1).

	X	У	Z	U(eq)
Pt(1A)	0.14069(10)	0.87881(7)	0.897318(16)	0.0724(4)
Sn(1A)	0.10031(15)	0.95862(10)	0.85934(2)	0.0471(5)
P(1A)	0.1354(7)	0.7905(5)	0.92720(11)	0.081(3)
P(2A)	0.3769(7)	0.8801(5)	0.89518(14)	0.088(3)
Cl(1A)	-0.1073(6)	0.8857(4)	0.89893(9)	0.076(2)
Cl(2A)	-0.0909(5)	0.9217(3)	0.83437(8)	0.0423(14)
Cl(3A)	0.0382(6)	1.0822(4)	0.86100(10)	0.065(2)
Cl(4A)	0.2752(5)	0.9631(4)	0.82855(10)	0.0584(18)
C(1A)	0.300(4)	0.7053(17)	0.9591(6)	0.126(8)
C(2A)	0.305(3)	0.7792(18)	0.9451(6)	0.120(6)
C(3A)	0.440(3)	0.7840(17)	0.9305(6)	0.119(6)
C(4A)	0.478(4)	0.8599(16)	0.9218(6)	0.119(6)
C(5A)	0.446(4)	0.9225(17)	0.9401(6)	0.121(8)
C(6A)	0.0936(12)	0.7093(17)	0.9126(5)	0.117(6)
C(7A)	0.090(2)	0.7006(17)	0.8876(5)	0.119(6)
C(8A)	0.055(2)	0.6321(16)	0.8785(6)	0.117(6)
C(9A)	0.019(2)	0.5654(18)	0.8889(5)	0.121(6)
C(10A)	0.022(3)	0.5745(18)	0.9140(6)	0.122(6)
C(11A)	0.059(2)	0.6426(16)	0.9233(7)	0.120(6)
C(12A)	-0.011(3)	0.8023(14)	0.9467(5)	0.120(6)
C(13A)	-0.131(3)	0.7584(17)	0.9482(5)	0.119(6)
C(14A)	-0.234(3)	0.7780(16)	0.9650(5)	0.121(6)
C(15A)	-0.208(3)	0.8407(15)	0.9785(5)	0.121(6)
C(16A)	-0.089(3)	0.8853(17)	0.9778(5)	0.124(6)
C(17A)	0.013(3)	0.8636(16)	0.9610(4)	0.124(6)
C(18A)	0.4479(15)	0.9658(10)	0.88576(17)	0.047(3)
C(19A)	0.3759(19)	1.0302(9)	0.8906(3)	0.048(3)
C(20A)	0.4232(17)	1.0990(10)	0.8840(3)	0.049(3)
C(21A)	0.5504(16)	1.1042(10)	0.8714(2)	0.047(3)
C(22A)	0.6247(19)	1.0402(9)	0.8668(3)	0.044(3)
C(23A)	0.5759(17)	0.9714(10)	0.8735(2)	0.046(3)
C(24A)	0.450(4)	0.8115(14)	0.8728(5)	0.130(6)
C(25A)	0.591(4)	0.7916(15)	0.8755(6)	0.131(6)
C(26A)	0.643(4)	0.7411(16)	0.8590(5)	0.134(6)
C(27A)	0.554(3)	0.7142(17)	0.8411(6)	0.135(6)
C(28A)	0.412(4)	0.7307(16)	0.8370(6)	0.133(6)
C(29A)	0.369(4)	0.7811(15)	0.8543(5)	0.131(6)
Pt(1B)	0.15666(10)	0.93779(6)	0.228235(15)	0.0538(3)
Sn(1B)	0.12913(17)	1.00706(10)	0.18740(3)	0.0578(5)

Table 6. Atomic coordinates and equivalent isotropic displacement parameters for (1). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

P(1B)	0.1416(6)	0.8640(4)	0.26161(9)	0.0433(15)
P(2B)	0.3947(6)	0.9395(3)	0.22955(10)	0.0440(16)
Cl(1B)	-0.0913(7)	0.9426(5)	0.22619(12)	0.089(3)
Cl(2B)	-0.0538(6)	0.9667(4)	0.16166(11)	0.0637(19)
Cl(3B)	0.0687(8)	1.1296(4)	0.18936(10)	0.081(2)
Cl(4B)	0.3026(7)	1.0119(5)	0.15625(10)	0.082(2)
C(1B)	0.256(2)	0.8349(12)	0.3076(4)	0.062(5)
C(2B)	0.275(2)	0.8856(13)	0.2852(4)	0.060(4)
C(3B)	0.427(2)	0.8818(12)	0.2766(4)	0.059(4)
C(4B)	0.474(2)	0.9465(10)	0.2614(4)	0.058(4)
C(5B)	0.431(3)	1.0219(11)	0.2722(4)	0.063(5)
C(6B)	0.144(2)	0.7789(17)	0.2515(5)	0.118(6)
C(7B)	0.075(3)	0.7497(18)	0.2314(5)	0.125(6)
C(8B)	0.067(3)	0.6804(17)	0.2211(6)	0.127(6)
C(9B)	0.148(3)	0.6289(19)	0.2335(5)	0.125(6)
C(10B)	0.222(3)	0.6495(17)	0.2541(5)	0.121(6)
C(11B)	0.217(3)	0.7215(16)	0.2619(6)	0.119(6)
C(12B)	-0.0128(18)	0.8722(10)	0.2799(2)	0.060(4)
C(13B)	-0.1030(18)	0.8148(12)	0.2858(3)	0.061(4)
C(14B)	-0.221(2)	0.8267(12)	0.3003(3)	0.064(4)
C(15B)	-0.253(2)	0.8954(10)	0.3095(3)	0.063(4)
C(16B)	-0.1634(18)	0.9526(12)	0.3035(3)	0.064(4)
C(17B)	-0.046(2)	0.9412(12)	0.2888(3)	0.063(4)
C(18B)	0.4701(14)	1.0157(10)	0.2134(2)	0.041(3)
C(19B)	0.4105(18)	1.0848(8)	0.2153(3)	0.042(3)
C(20B)	0.4696(16)	1.1431(11)	0.2027(3)	0.046(3)
C(21B)	0.5882(16)	1.1341(10)	0.1880(3)	0.050(3)
C(22B)	0.644(2)	1.0640(9)	0.1867(3)	0.051(3)
C(23B)	0.5887(16)	1.0043(11)	0.1990(2)	0.046(3)
C(24B)	0.470(3)	0.8575(17)	0.2185(4)	0.131(6)
C(25B)	0.598(3)	0.8285(16)	0.2260(5)	0.129(6)
C(26B)	0.655(4)	0.7637(16)	0.2170(5)	0.130(6)
C(27B)	0.584(3)	0.7235(18)	0.1994(5)	0.134(6)
C(28B)	0.457(3)	0.7549(18)	0.1925(6)	0.136(6)
C(29B)	0.395(4)	0.8192(16)	0.2009(5)	0.135(6)
Pt(1C)	0.58700(9)	0.62792(7)	0.445159(16)	0.0632(4)
Sn(1C)	0.5885(3)	0.53380(19)	0.48144(5)	0.0340(8)
Sn(1D)	0.5542(5)	0.5750(3)	0.48790(8)	0.0339(12)
P(1C)	0.5596(5)	0.7020(4)	0.41155(9)	0.0488(18)
P(2C)	0.8232(6)	0.6229(4)	0.44170(9)	0.0522(19)
Cl(1C)	0.3441(6)	0.6312(5)	0.45286(10)	0.079(2)
Cl(2C)	0.5182(14)	0.5869(8)	0.5180(2)	0.124(5)
Cl(3C)	0.4195(11)	0.4431(6)	0.4783(2)	0.078(3)
Cl(4C)	0.7711(10)	0.4579(6)	0.49662(19)	0.072(3)
Cl(2D)	0.4430(19)	0.6305(11)	0.5215(3)	0.111(5)
Cl(3D)	0.4048(16)	0.4731(8)	0.4847(3)	0.063(4)
× /	× /			× /

Cl(4D)	0.7369(14)	0.5161(9)	0.5100(3)	0.064(4)
C(1C)	0.677(2)	0.7184(12)	0.3634(3)	0.047(5)
C(2C)	0.7047(18)	0.6861(12)	0.3891(3)	0.041(3)
C(3C)	0.8531(18)	0.7023(12)	0.3981(3)	0.042(3)
C(4C)	0.8875(18)	0.7031(12)	0.4249(3)	0.042(3)
C(5C)	1.0496(17)	0.7173(12)	0.4269(4)	0.045(5)
C(6C)	0.5422(15)	0.7927(11)	0.41864(15)	0.045(3)
C(7C)	0.647(2)	0.8442(9)	0.4142(2)	0.046(3)
C(8C)	0.6212(19)	0.9163(10)	0.4207(3)	0.048(3)
C(9C)	0.4985(16)	0.9430(11)	0.4316(2)	0.052(3)
C(10C)	0.398(2)	0.8888(9)	0.4356(3)	0.049(3)
C(11C)	0.4167(19)	0.8162(10)	0.4292(2)	0.048(3)
C(12C)	0.4035(16)	0.6798(8)	0.3923(2)	0.044(3)
C(13C)	0.3365(15)	0.7341(10)	0.3791(2)	0.043(3)
C(14C)	0.2200(16)	0.7158(10)	0.3650(3)	0.041(3)
C(15C)	0.1760(18)	0.6439(8)	0.3644(3)	0.041(3)
C(16C)	0.2420(16)	0.5895(10)	0.3777(3)	0.043(3)
C(17C)	0.3584(16)	0.6077(9)	0.3919(3)	0.043(3)
C(18C)	0.890(3)	0.5386(10)	0.4254(2)	0.126(6)
C(19C)	0.795(2)	0.4872(15)	0.4163(4)	0.129(6)
C(20C)	0.846(3)	0.4255(13)	0.4044(4)	0.131(6)
C(21C)	0.991(3)	0.4152(11)	0.4015(3)	0.130(6)
C(22C)	1.085(2)	0.4666(15)	0.4106(4)	0.128(6)
C(23C)	1.035(3)	0.5283(12)	0.4225(4)	0.126(6)
C(24C)	0.9166(17)	0.6372(9)	0.4707(4)	0.070(4)
C(25C)	1.0251(19)	0.5913(12)	0.4782(4)	0.072(4)
C(26C)	1.094(2)	0.6037(12)	0.5002(3)	0.073(4)
C(27C)	1.046(2)	0.6636(10)	0.5133(4)	0.074(4)
C(28C)	0.938(2)	0.7112(12)	0.5071(4)	0.074(4)
C(29C)	0.875(2)	0.6959(11)	0.4850(3)	0.073(4)

Pt(1A)-P(2A)	2.234(7)	Pt(1B)-Cl(1B)	2.345(6)
Pt(1A)-P(1A)	2.309(7)	Pt(1B)- $Sn(1B)$	2.5976(16)
Pt(1A)-Cl(1A)	2.347(6)	Sn(1B)- $Cl(3B)$	2.315(8)
Pt(1A)-Sn(1A)	2.5821(18)	Sn(1B)- $Cl(2B)$	2.355(6)
Sn(1A)- $Cl(3A)$	2.336(8)	Sn(1B)- $Cl(4B)$	2.376(6)
Sn(1A)- $Cl(2A)$	2.369(5)	P(1B)-C(6B)	1.65(3)
Sn(1A)- $Cl(4A)$	2.370(6)	P(1B)-C(12B)	1.78(2)
P(1A)-C(6A)	1.74(3)	P(1B)-C(2B)	1.85(2)
P(1A)-C(12A)	1.77(4)	P(2B)-C(24B)	1.77(4)
P(1A)-C(2A)	1.89(3)	P(2B)-C(18B)	1.802(19)
P(2A)-C(18A)	1.78(2)	P(2B)-C(4B)	1.91(2)
P(2A)-C(4A)	1.79(3)	C(1B)-C(2B)	1.557(14)
P(2A)-C(24A)	1.89(4)	C(2B)-C(3B)	1.513(13)
C(1A)-C(2A)	1.559(14)	C(3B)-C(4B)	1.515(13)
C(2A)-C(3A)	1.513(13)	C(4B)-C(5B)	1.556(14)
C(3A)-C(4A)	1.513(14)	C(6B)-C(11B)	1.385(7)
C(4A)-C(5A)	1.557(14)	C(6B)-C(7B)	1.393(7)
C(6A)-C(7A)	1.387(7)	C(7B)-C(8B)	1.393(7)
C(6A)-C(11A)	1.394(7)	C(8B)-C(9B)	1.393(7)
C(7A)-C(8A)	1.391(7)	C(9B)-C(10B)	1.388(7)
C(8A)-C(9A)	1.388(7)	C(10B)-C(11B)	1.387(7)
C(9A)-C(10A)	1.394(7)	C(12B)-C(17B)	1.389(7)
C(10A)-C(11A)	1.392(7)	C(12B)-C(13B)	1.391(7)
C(12A)-C(13A)	1.388(7)	C(13B)-C(14B)	1.390(7)
C(12A)-C(17A)	1.388(7)	C(14B)-C(15B)	1.389(7)
C(13A)-C(14A)	1.394(7)	C(15B)-C(16B)	1.388(7)
C(14A)-C(15A)	1.390(7)	C(16B)-C(17B)	1.390(7)
C(15A)-C(16A)	1.385(7)	C(18B)-C(19B)	1.388(7)
C(16A)-C(17A)	1.393(7)	C(18B)-C(23B)	1.388(7)
C(18A)-C(19A)	1.386(7)	C(19B)-C(20B)	1.391(7)
C(18A)-C(23A)	1.389(7)	C(20B)-C(21B)	1.390(7)
C(19A)-C(20A)	1.384(7)	C(21B)-C(22B)	1.389(7)
C(20A)-C(21A)	1.390(7)	C(22B)-C(23B)	1.387(7)
C(21A)-C(22A)	1.388(7)	C(24B)-C(25B)	1.389(7)
C(22A)-C(23A)	1.390(7)	C(24B)-C(29B)	1.390(7)
C(24A)-C(25A)	1.389(7)	C(25B)-C(26B)	1.392(7)
C(24A)-C(29A)	1.390(7)	C(26B)-C(27B)	1.388(7)
C(25A)-C(26A)	1.390(7)	C(27B)-C(28B)	1.391(7)
C(26A)-C(27A)	1.390(7)	C(28B)-C(29B)	1.393(7)
C(27A)-C(28A)	1.389(7)	Pt(1C)-P(2C)	2.240(6)
C(28A)-C(29A)	1.387(7)	Pt(1C)-P(1C)	2.311(6)
Pt(1B)-P(2B)	2.249(6)	Pt(1C)-Cl(1C)	2.334(6)
Pt(1B)-P(1B)	2.287(5)	Pt(1C)-Sn(1D)	2.567(4)

Table 7.	Bond lengths	[Å] and	angles [°] for	(1).

Pt(1C)-Sn(1C)	2.640(3)	C(9C)-C(10C)	1.388(7)
Sn(1C)-Cl(3C)	2.309(10)	C(10C)-C(11C)	1.385(7)
Sn(1C)- $Cl(2C)$	2.337(11)	C(12C)-C(17C)	1.386(7)
Sn(1C)- $Cl(4C)$	2.366(9)	C(12C)-C(13C)	1.386(7)
Sn(1D)- $Cl(3D)$	2.345(13)	C(13C)-C(14C)	1.389(7)
Sn(1D)- $Cl(2D)$	2.358(14)	C(14C)-C(15C)	1.379(7)
Sn(1D)-Cl(4D)	2.372(12)	C(15C)-C(16C)	1.384(7)
P(1C)-C(6C)	1.71(2)	C(16C)-C(17C)	1.391(7)
P(1C)-C(12C)	1 861(19)	C(18C)-C(19C)	1 3900
P(1C) - C(2C)	1 869(19)	C(18C) - C(23C)	1 3900
P(2C) - C(24C)	1.84(2)	C(19C) - C(29C)	1 3900
P(2C) - C(4C)	1.84(2)	C(20C) C(21C)	1 3000
P(2C) - C(4C)	1.04(2) 1.80(2)	C(20C) - C(21C)	1.3900
$\Gamma(2C) - C(10C)$	1.69(2)	C(21C) - C(22C)	1.3900
C(1C) - C(2C)	1.539(14)	C(22C)-C(23C)	1.3900
C(2C)- $C(3C)$	1.510(13)	C(24C) - C(29C)	1.388(7)
C(3C)-C(4C)	1.511(13)	C(24C)-C(25C)	1.389(7)
C(4C)-C(5C)	1.557(14)	C(25C)-C(26C)	1.392(7)
C(6C)-C(7C)	1.388(7)	C(26C)-C(27C)	1.386(7)
C(6C)-C(11C)	1.389(7)	C(27C)-C(28C)	1.384(7)
C(7C)-C(8C)	1.388(7)	C(28C)-C(29C)	1.389(7)
C(8C)-C(9C)	1.394(7)		
P(2A)-Pt(1A)-P(1A)	93.8(3)	C(3A)-C(2A)-C(1A)	110(3)
P(2A)-Pt(1A)-Cl(1A)	176.2(3)	C(3A)-C(2A)-P(1A)	116(2)
P(1A)-Pt(1A)-Cl(1A)	89.4(2)	C(1A)-C(2A)-P(1A)	109(2)
P(2A)-Pt(1A)-Sn(1A)	95.7(2)	C(4A)-C(3A)-C(2A)	115(3)
P(1A)-Pt(1A)-Sn(1A)	166.39(19)	C(3A)-C(4A)-C(5A)	115(3)
Cl(1A)-Pt(1A)-Sn(1A)	81.55(15)	C(3A)-C(4A)-P(2A)	109(2)
Cl(3A)-Sn(1A)-Cl(2A)	96 2(2)	C(5A)-C(4A)-P(2A)	105(2)
Cl(3A)-Sn(1A)-Cl(4A)	99.8(2)	C(7A)-C(6A)-C(11A)	108(2) 108(3)
Cl(2A)-Sn(1A)-Cl(4A)	97 13(19)	C(7A)-C(6A)-P(1A)	124(3)
Cl(3A) Sn(1A) Pt(1A)	123 50(15)	C(11A) C(6A) P(1A)	127(2)
$Cl(2\Lambda)$ Sn(1\Lambda) Pt(1\Lambda)	125.50(15) 115.03(15)	$C(6\Lambda) C(7\Lambda) C(8\Lambda)$	127(2) 118(3)
Cl(AA) Sn(1A) $Pt(1A)$	110.87(16)	C(0A) - C(7A) - C(0A)	134(3)
C(6A) D(1A) C(12A)	1020(12)	C(9A) - C(0A) - C(10A)	107(2)
C(6A) P(1A) C(2A)	102.0(13)	C(0A)-C(9A)-C(10A)	107(3) 110(4)
C(0A)-P(1A)- $C(2A)$	109.9(12)	C(11A)-C(10A)-C(9A)	119(4)
C(12A)- $P(1A)$ - $C(2A)$	111.0(11)	C(10A) - C(11A) - C(6A)	133(4)
C(6A)-P(1A)-Pt(1A)	105.8(10)	C(13A)-C(12A)-C(17A)	124(4)
C(12A)-P(1A)-Pt(1A)	111.5(5)	C(13A)-C(12A)-P(1A)	127(3)
C(2A)-P(1A)-Pt(1A)	115.5(10)	C(17A)-C(12A)-P(1A)	109(2)
C(18A)-P(2A)-C(4A)	102.7(11)	C(12A)-C(13A)-C(14A)	118(4)
C(18A)-P(2A)-C(24A)	104.9(7)	C(15A)-C(14A)-C(13A)	116(4)
C(4A)-P(2A)-C(24A)	101.8(14)	C(16A)-C(15A)-C(14A)	128(4)
C(18A)-P(2A)-Pt(1A)	113.6(6)	C(15A)-C(16A)-C(17A)	114(4)
C(4A)-P(2A)-Pt(1A)	119.2(12)	C(12A)-C(17A)-C(16A)	120(4)
C(24A)-P(2A)-Pt(1A)	112.9(10)	C(19A)-C(18A)-C(23A)	117.1(19)

C(19A)-C(18A)-P(2A)	120.5(13)	C(11B)-C(6B)-C(7B)	106(3)
C(23A)-C(18A)-P(2A)	122.4(14)	C(11B)-C(6B)-P(1B)	126(3)
C(20A)-C(19A)-C(18A)	124(2)	C(7B)-C(6B)-P(1B)	129(3)
C(19A)-C(20A)-C(21A)	118.2(19)	C(6B)-C(7B)-C(8B)	134(4)
C(22A)-C(21A)-C(20A)	118.1(19)	C(9B)-C(8B)-C(7B)	113(3)
C(21A)-C(22A)-C(23A)	123(2)	C(10B)-C(9B)-C(8B)	120(3)
C(18A)-C(23A)-C(22A)	119.1(19)	C(11B)-C(10B)-C(9B)	120(4)
C(25A)-C(24A)-C(29A)	120(4)	C(6B)-C(11B)-C(10B)	127(4)
C(25A)-C(24A)-P(2A)	117(3)	C(17B)-C(12B)-C(13B)	118(2)
C(29A)-C(24A)-P(2A)	123(3)	C(17B)-C(12B)-P(1B)	117.4(15)
C(24A)-C(25A)-C(26A)	116(4)	C(13B)-C(12B)-P(1B)	124.8(16)
C(25A)-C(26A)-C(27A)	119(4)	C(12B) - C(12B) - C(14B)	120(2)
C(28A)-C(27A)-C(26A)	129(4)	C(12B) - C(14B) - C(13B)	120(2) 122(2)
C(29A) - C(28A) - C(27A)	129(1) 108(4)	C(16B) - C(15B) - C(14B)	122(2) 117(2)
C(28A)-C(29A)-C(24A)	128(4)	C(15B) - C(16B) - C(17B)	121(2)
$P(2B)_Pt(1B)_P(1B)$	926(2)	C(12B)-C(17B)-C(16B)	121(2) 121(2)
P(2B) Pt(1B) Cl(1B)	176.9(2)	C(12B) - C(17B) - C(10B) C(19B) C(18B) C(23B)	121(2) 120 6(18)
P(1B) Pt(1B) Cl(1B)	90.0(2)	C(10B) - C(18B) - C(25D)	120.0(10) 120.4(12)
D(2R) Dt(1R) Sp(1R)	90.0(2)	C(13B)-C(18B)-I(2B) C(23B) C(18B) D(2B)	120.4(12) 110.0(13)
D(1R) Dt(1R) Sp(1R)	168 43(15)	C(13B) - C(10B) - I(2D) C(18B) - C(10B) - C(20B)	119.0(13) 110.8(10)
$C_1(1B) = C_1(1B) = C_1($	80.70(15)	C(10B)-C(19B)-C(20B) C(21B) C(20B) C(10B)	119.0(19) 121.5(10)
Cl(1D) - rl(1D) - Sll(1D) Cl(2D) Sp(1D) Cl(2D)	00.79(13)	C(21B)-C(20B)-C(19B) C(22B)-C(21B)-C(20B)	121.3(19) 116 5(10)
Cl(3D)- $Sll(1D)$ - $Cl(2D)$	90.7(2)	C(22D)-C(21D)-C(20D) C(22D)-C(22D)-C(21D)	110.3(19) 124(2)
Cl(3D)- $Sll(1D)$ - $Cl(4D)$	99.0(3)	C(23D) - C(22D) - C(21D) C(22D) - C(22D) - C(19D)	124(2) 117.6(10)
Cl(2B)-Sn(1B)-Cl(4B)	94.0(2)	C(22B)-C(23B)-C(18B)	117.0(19)
Cl(3B)-Sn(1B)-Pt(1B)	11/.15(16) 11(.22(16))	C(25B)-C(24B)-C(29B)	118(4) 125(2)
Cl(2B)-Sn(1B)-Pt(1B)	110.33(10)	C(25B)-C(24B)-P(2B)	125(3)
Cl(4B)-Sn(1B)-Pt(1B)	125.2(2)	C(29B)-C(24B)-P(2B)	118(3)
C(6B)-P(1B)-C(12B)	106.3(7)	C(24B)-C(25B)-C(26B)	124(4)
C(6B)-P(1B)-C(2B)	115.4(13)	C(2/B)-C(26B)-C(25B)	121(4)
C(12B)-P(1B)-C(2B)	98.0(7)	C(26B)-C(2/B)-C(28B)	113(4)
C(6B)-P(1B)-Pt(1B)	106.5(8)	C(27B)-C(28B)-C(29B)	128(4)
C(12B)-P(1B)-Pt(1B)	117.3(5)	C(24B)-C(29B)-C(28B)	116(4)
C(2B)-P(1B)-Pt(1B)	113.4(7)	P(2C)-Pt(1C)-P(1C)	93.8(2)
C(24B)-P(2B)-C(18B)	109.0(6)	P(2C)-Pt(1C)-Cl(1C)	174.34(19)
C(24B)-P(2B)-C(4B)	102.6(12)	P(1C)-Pt(1C)-Cl(1C)	91.2(2)
C(18B)-P(2B)-C(4B)	104.5(7)	P(2C)-Pt(1C)-Sn(1D)	100.55(17)
C(24B)-P(2B)-Pt(1B)	112.2(10)	P(1C)-Pt(1C)-Sn(1D)	160.8(2)
C(18B)-P(2B)-Pt(1B)	113.0(4)	Cl(1C)-Pt(1C)-Sn(1D)	73.97(17)
C(4B)-P(2B)-Pt(1B)	114.8(7)	P(2C)-Pt(1C)-Sn(1C)	91.87(16)
C(3B)-C(2B)-C(1B)	109.2(18)	P(1C)-Pt(1C)-Sn(1C)	172.38(16)
C(3B)-C(2B)-P(1B)	114.5(15)	Cl(1C)-Pt(1C)-Sn(1C)	83.35(17)
C(1B)-C(2B)-P(1B)	110.8(15)	Sn(1D)-Pt(1C)- $Sn(1C)$	19.73(10)
C(2B)-C(3B)-C(4B)	114.4(18)	Cl(3C)- $Sn(1C)$ - $Cl(2C)$	99.6(4)
C(3B)-C(4B)-C(5B)	113.9(18)	Cl(3C)-Sn(1C)-Cl(4C)	96.2(4)
C(3B)-C(4B)-P(2B)	110.0(15)	Cl(2C)-Sn(1C)-Cl(4C)	98.3(4)
C(5B)-C(4B)-P(2B)	108.1(14)	Cl(3C)- $Sn(1C)$ - $Pt(1C)$	114.1(3)

Cl(2C)- $Sn(1C)$ - $Pt(1C)$	112.5(4)
Cl(4C)-Sn(1C)-Pt(1C)	130.9(3)
Cl(3D)-Sn(1D)-Cl(2D)	97.6(6)
Cl(3D)-Sn(1D)-Cl(4D)	96.6(5)
Cl(2D)-Sn(1D)-Cl(4D)	96.6(5)
Cl(3D)-Sn(1D)-Pt(1C)	107.7(5)
Cl(2D)-Sn(1D)-Pt(1C)	127.8(6)
Cl(4D)-Sn(1D)-Pt(1C)	123.7(4)
C(6C)-P(1C)-C(12C)	105.4(6)
C(6C)-P(1C)-C(2C)	111.9(9)
C(12C)-P(1C)-C(2C)	99.7(6)
C(6C)-P(1C)-Pt(1C)	113.3(3)
C(12C)-P(1C)-Pt(1C)	114.7(5)
C(2C)-P(1C)-Pt(1C)	111.0(6)
C(24C)-P(2C)-C(4C)	99.6(6)
C(24C) - P(2C) - C(18C)	111 6(9)
$C(4C)_{-}P(2C)_{-}C(18C)$	107.4(8)
C(24C) - P(2C) - P(1C)	107.4(0) 113 3(5)
C(AC) P(2C) Pt(1C)	109.8(6)
C(4C) - I(2C) - I(1C) C(18C) P(2C) Pt(1C)	107.0(0) 113 0(0)
$C(10C)^{-1}(2C)^{-1}(1C)$	113.7(7) 112.4(15)
C(3C) - C(2C) - C(1C) C(3C) - C(2C) - D(1C)	112.4(13) 115.5(12)
C(3C)-C(2C)-F(1C) C(1C) C(2C) P(1C)	113.3(12) 114.8(13)
C(1C) - C(2C) - F(1C)	114.0(13) 121.2(15)
C(4C) - C(5C) - C(2C)	121.3(13) 106.5(15)
C(3C) - C(4C) - C(3C)	100.3(13) 114.5(14)
C(5C)-C(4C)-P(2C)	114.3(14) 114.9(12)
C(3C)-C(4C)-P(2C)	114.0(13)
C(7C) - C(0C) - C(11C)	118(2) 122 2(14)
C(IC)- $C(bC)$ - $P(IC)$	123.3(14)
$C(\Pi C) - C(\partial C) - P(\Pi C)$	118.5(14)
C(8C)-C(7C)-C(6C)	118(2)
C(7C)-C(8C)-C(9C)	126(2)
C(10C)-C(9C)-C(8C)	113(2)
C(11C)-C(10C)-C(9C)	124(2)
C(10C)-C(11C)-C(6C)	121(2)
C(1/C)-C(12C)-C(13C)	122.2(18)
C(1/C)-C(12C)-P(1C)	117.4(13)
C(13C)-C(12C)-P(1C)	120.4(12)
C(12C)-C(13C)-C(14C)	118.9(18)
C(15C)-C(14C)-C(13C)	118.8(19)
C(14C)-C(15C)-C(16C)	122.5(19)
C(15C)-C(16C)-C(17C)	118.9(18)
C(12C)-C(17C)-C(16C)	118.7(18)
C(19C)-C(18C)-C(23C)	120.0
C(19C)-C(18C)-P(2C)	120.5(17)
C(23C)-C(18C)-P(2C)	119.5(17)

C(18C)-C(19C)-C(20C)	120.0
C(19C)-C(20C)-C(21C)	120.0
C(20C)-C(21C)-C(22C)	120.0
C(23C)-C(22C)-C(21C)	120.0
C(22C)-C(23C)-C(18C)	120.0
C(29C)-C(24C)-C(25C)	120(2)
C(29C)-C(24C)-P(2C)	117.9(16)
C(25C)-C(24C)-P(2C)	121.8(17)
C(24C)-C(25C)-C(26C)	120(2)
C(27C)-C(26C)-C(25C)	116(2)
C(28C)-C(27C)-C(26C)	127(3)
C(27C)-C(28C)-C(29C)	114(2)
C(24C)-C(29C)-C(28C)	122(2)

_

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{D}_{4}(1 \mathbf{A})$	44(1)	127(1)	26(1)	25(1)	24(1)	- 27(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pu(1A) Sn(1A)	44(1) 27(1)	13/(1)	30(1) 22(1)	23(1) 2(1)	-24(1)	-37(1) 12(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D(1A)	27(1) 40(5)	91(1)	23(1) 27(4)	2(1) 20(5)	-3(1)	-12(1) 20(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma(1A)$ D(2A)	49(3)	130(0)	37(4)	29(3)	-20(3)	-30(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2A) Cl(1A)	32(3)	110(7) 150(7)	94(0) 20(2)	31(0) 20(4)	-43(4)	-30(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(1A) CI(2A)	47(4) 37(3)	130(7) 70(4)	30(3) 25(3)	20(4)	-11(3) 10(2)	-43(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(2A)	32(3)	100(4)	23(3)	-4(3)	-10(2)	-3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(3A)	42(3)	109(0)	44(3)	-31(4)	5(3)	-20(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4A)	20(3) 124(0)	99(<i>3</i>) 120(0)	40(4)	-3(4)	0(2)	-3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A) C(2A)	124(9) 110(7)	129(9) 123(7)	120(9) 110(7)	3(3)	-3(3)	-1(3) 1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2A)	119(7) 117(7)	123(7) 122(7)	119(7) 118(7)	3(4)	-4(4)	1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3A)	117(7) 117(7)	122(7) 122(7)	110(7)	3(4)	-4(4)	0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4A)	117(7) 110(0)	122(7) 126(0)	119(7) 110(0)	2(4)	-3(4)	0(4) 1(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5A)	119(9)	120(9)	119(9)	4(3)	-0(3)	-1(3) 2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0A) C(7A)	110(0) 120(6)	120(6)	110(0) 117(6)	1(4)	2(4)	-2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7A)	120(0) 118(6)	120(0) 110(7)	117(0)	1(4)	0(4)	-2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0A)	110(0) 122(6)	119(7) 123(7)	110(0)	-1(4)	2(4)	-2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9A)	122(0) 123(6)	123(7) 124(7)	119(0)	-2(4)	-2(4)	1(4) 1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10A) C(11A)	123(0) 121(6)	124(7) 120(7)	120(0) 110(6)	0(4)	-1(4)	1(4) 1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11A) C(12A)	121(0) 122(7)	120(7) 121(7)	119(0) 118(7)	0(4)	0(4)	1(4) 2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12A) C(13A)	122(7) 118(7)	121(7) 122(7)	110(7) 117(7)	1(4)	0(4)	2(4)
C(14A)120(7)124(7)120(7)0(4) $-1(4)$ $3(4)$ C(15A)120(7)123(7)119(7)1(4)0(4) $3(4)$ C(16A)124(7)125(7)122(7)1(4)2(4) $3(4)$ C(17A)125(7)124(7)122(7)1(4)2(4)1(4)C(18A)45(4)51(5)45(4) $-5(4)$ $-7(4)$ $-3(4)$ C(19A)45(4)53(5)46(4) $-4(4)$ $-3(4)$ $-3(4)$ C(20A)46(4)52(5)48(4) $-6(4)$ $-3(4)$ $-3(4)$ C(21A)46(4)49(5)45(4) $-5(4)$ $-3(4)$ $-3(4)$ C(22A)43(4)50(5)45(4) $-5(4)$ $-1(4)$ C(23A)43(4)50(5)45(4) $-5(4)$ $-1(4)$ C(24A)129(7)130(7)131(7) $-1(4)$ $-1(4)$ C(25A)129(7)133(7)136(7) $-3(4)$ $-3(4)$ C(26A)132(7)133(7)136(7) $-3(4)$ $-3(4)$ C(27A)134(7)133(7) $-3(4)$ $-1(4)$ C(28A)132(7)131(7)132(7) $-3(4)$ $0(4)$ C(29A)130(7)131(7) $-3(4)$ $-1(4)$ $0(4)$ C(29A)130(7)131(7) $29(1)$ $26(1)$ $-15(1)$ $-25(1)$	C(13A) C(14A)	110(7) 120(7)	122(7) 124(7)	117(7) 120(7)	0(4)	0(4)	2(4) 3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14A) C(15A)	120(7) 120(7)	124(7) 123(7)	120(7) 110(7)	1(4)	-1(4)	3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15A)	120(7) 124(7)	125(7) 125(7)	119(7) 122(7)	1(4)	2(4)	3(4)
C(17A) $123(7)$ $124(7)$ $122(7)$ $1(4)$ $2(4)$ $1(4)$ C(18A) $45(4)$ $51(5)$ $45(4)$ $-5(4)$ $-7(4)$ $-3(4)$ C(19A) $45(4)$ $53(5)$ $46(4)$ $-4(4)$ $-3(4)$ $-3(4)$ C(20A) $46(4)$ $52(5)$ $48(4)$ $-6(4)$ $-3(4)$ $-3(4)$ C(21A) $46(4)$ $49(5)$ $45(4)$ $-5(4)$ $-3(4)$ $-3(4)$ C(22A) $43(4)$ $48(5)$ $42(4)$ $-6(4)$ $-5(4)$ $-1(4)$ C(23A) $43(4)$ $50(5)$ $45(4)$ $-5(4)$ $-7(4)$ $-1(4)$ C(24A) $129(7)$ $130(7)$ $131(7)$ $-1(4)$ $-1(4)$ $-1(4)$ C(25A) $129(7)$ $133(7)$ $136(7)$ $-3(4)$ $-3(4)$ $0(4)$ C(26A) $132(7)$ $133(7)$ $136(7)$ $-3(4)$ $-2(4)$ $0(4)$ C(27A) $134(7)$ $134(7)$ $136(7)$ $-3(4)$ $-1(4)$ $0(4)$ C(29A) $130(7)$ $131(7)$ $132(7)$ $-3(4)$ $0(4)$ $-2(4)$ Pt(1B) $38(1)$ $95(1)$ $29(1)$ $26(1)$ $-15(1)$ $-25(1)$	C(10A) C(17A)	124(7) 125(7)	123(7) 124(7)	122(7) 122(7)	1(4)	2(4)	$\frac{3(4)}{1(4)}$
C(16A) $43(4)$ $51(5)$ $43(4)$ $-5(4)$ $-7(4)$ $-3(4)$ C(19A) $45(4)$ $53(5)$ $46(4)$ $-4(4)$ $-3(4)$ $-3(4)$ C(20A) $46(4)$ $52(5)$ $48(4)$ $-6(4)$ $-3(4)$ $-3(4)$ C(21A) $46(4)$ $49(5)$ $45(4)$ $-5(4)$ $-3(4)$ $-3(4)$ C(22A) $43(4)$ $48(5)$ $42(4)$ $-6(4)$ $-5(4)$ $-1(4)$ C(23A) $43(4)$ $50(5)$ $45(4)$ $-5(4)$ $-7(4)$ $-1(4)$ C(24A) $129(7)$ $130(7)$ $131(7)$ $-1(4)$ $-1(4)$ $-1(4)$ C(25A) $129(7)$ $131(7)$ $133(7)$ $-2(4)$ $-2(4)$ $0(4)$ C(26A) $132(7)$ $133(7)$ $136(7)$ $-3(4)$ $-3(4)$ $0(4)$ C(27A) $134(7)$ $133(7)$ $136(7)$ $-3(4)$ $-1(4)$ $0(4)$ C(28A) $132(7)$ $131(7)$ $132(7)$ $-3(4)$ $0(4)$ $-2(4)$ Pt(1B) $38(1)$ $95(1)$ $29(1)$ $26(1)$ $-15(1)$ $-25(1)$	C(17A) C(18A)	123(7)	51(5)	122(7)	5(4)	2(4)	3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10A)	45(4)	51(5) 53(5)	45(4)	-3(4)	-7(4)	-3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)A)	45(4)	53(5) 52(5)	40(4)	-4(4)	-3(4)	-3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20A) C(21A)	40(4)	$\frac{32(3)}{49(5)}$	40(4)	-0(4)	-3(4)	-3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21A) C(22A)	40(4)	49(3)	43(4)	-3(4)	-3(4)	-3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22A) C(23A)	43(4)	50(5)	42(4)	-0(4)	-3(4)	-1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23A)	43(4) 120(7)	130(3)	43(4) 121(7)	-3(4)	-7(4)	-1(4) 1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24A) C(25A)	129(7) 120(7)	130(7) 131(7)	131(7) 133(7)	-1(4)	-1(4)	-1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25A)	129(7) 132(7)	131(7) 133(7)	135(7) 136(7)	-2(4)	-2(4)	0(4)
C(27A) $134(7)$ $134(7)$ $136(7)$ $-4(4)$ $-2(4)$ $0(4)$ $C(28A)$ $132(7)$ $133(7)$ $136(7)$ $-3(4)$ $-1(4)$ $0(4)$ $C(29A)$ $130(7)$ $131(7)$ $132(7)$ $-3(4)$ $0(4)$ $-2(4)$ $Pt(1B)$ $38(1)$ $95(1)$ $29(1)$ $26(1)$ $-15(1)$ $-25(1)$	$C(20\Lambda)$	132(7) 134(7)	133(7) 13 $1(7)$	138(7)	$-\Delta(4)$	-3(4)	0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(28\Delta)$	137(7)	13+(7) 133(7)	136(7)	(+) -3(1)	-2(4)	0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(20\Lambda)$	132(7) 130(7)	133(7) 131(7)	130(7)	-3(4)	-1(4)	-2(4)
	Pt(1B)	38(1)	95 (1)	29(1)	26(1)	-15(1)	-25(1)

Table 8. Anisotropic displacement parameters (Å²x 10³) for (1). The anisotropic displacement factor exponent takes the form: $-2 p^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$

Sn(1B)	48(1)	97(2)	29(1)	27(1)	-18(1)	-32(1)
P(1B)	44(3)	59(4)	27(3)	10(3)	-13(3)	-13(3)
P(2B)	40(4)	59(4)	33(3)	-4(3)	-18(3)	-5(3)
Cl(1B)	44(4)	159(7)	64(4)	66(5)	-16(3)	-41(4)
Cl(2B)	60(4)	75(5)	56(4)	16(4)	-32(3)	-13(3)
Cl(3B)	99(5)	102(6)	42(3)	12(4)	-28(3)	-41(5)
Cl(4B)	72(5)	146(7)	28(3)	6(4)	0(3)	-47(5)
C(1B)	62(7)	66(7)	58(7)	2(5)	-5(5)	0(5)
C(2B)	60(5)	62(5)	58(5)	-1(4)	-6(4)	0(4)
C(3B)	59(5)	61(5)	58(5)	1(4)	-6(4)	0(4)
C(4B)	57(5)	61(5)	57(5)	1(4)	-7(4)	0(4)
C(5B)	62(7)	66(7)	59(6)	-3(5)	-7(5)	-3(5)
C(6B)	120(7)	119(7)	116(7)	-1(4)	-3(4)	0(4)
C(7B)	128(7)	123(7)	125(7)	0(4)	-4(4)	2(4)
C(8B)	129(7)	125(7)	126(7)	-2(4)	-4(4)	2(4)
C(9B)	127(7)	123(7)	124(7)	-1(4)	-4(4)	2(4)
C(10B)	123(7)	121(7)	120(7)	0(4)	-5(4)	2(4)
C(11B)	121(7)	120(7)	117(7)	-2(4)	-4(4)	1(4)
C(12B)	59(5)	61(5)	60(5)	1(4)	0(4)	-1(4)
C(13B)	58(5)	64(5)	62(5)	2(4)	0(4)	0(4)
C(14B)	61(5)	65(5)	65(5)	1(4)	0(4)	-2(4)
C(15B)	60(5)	65(5)	64(5)	-1(4)	-2(4)	-1(4)
C(16B)	63(5)	65(5)	64(5)	-2(4)	0(4)	-1(4)
C(17B)	62(5)	64(5)	62(5)	-1(4)	0(4)	-1(4)
C(18B)	40(4)	45(4)	37(4)	1(4)	-2(3)	-3(4)
C(19B)	41(4)	47(4)	38(4)	2(4)	-1(4)	-2(4)
C(20B)	45(4)	50(4)	45(4)	1(4)	0(4)	-2(4)
C(21B)	49(4)	54(4)	48(4)	0(4)	-1(4)	-3(4)
C(22B)	48(4)	55(4)	49(4)	0(4)	-2(4)	-2(4)
C(23B)	45(4)	50(4)	44(4)	-2(4)	-1(4)	-3(4)
C(24B)	129(7)	131(7)	132(7)	-4(4)	-4(4)	2(4)
C(25B)	128(7)	129(7)	131(7)	-2(4)	-3(4)	2(4)
C(26B)	129(7)	130(7)	132(7)	-3(4)	-3(4)	1(4)
C(27B)	133(7)	133(7)	137(7)	-4(4)	-4(4)	3(4)
C(28B)	135(7)	135(7)	139(7)	-5(4)	-5(4)	3(4)
C(29B)	134(7)	134(7)	137(7)	-6(4)	-5(4)	4(4)
Pt(1C)	25(1)	128(1)	37(1)	31(1)	-9(1)	-29(1)
Sn(1C)	34(1)	40(2)	29(1)	-1(1)	-4(1)	11(1)
Sn(1D)	36(2)	41(3)	25(2)	5(2)	1(2)	-1(2)
P(1C)	19(3)	100(6)	27(3)	16(3)	-5(2)	-12(3)
P(2C)	31(3)	97(6)	28(3)	24(4)	-12(2)	-20(4)
Cl(1C)	21(3)	171(7)	46(3)	38(4)	-8(3)	-28(4)
Cl(2C)	132(5)	127(5)	113(5)	-2(3)	-7(3)	16(3)
Cl(3C)	77(4)	77(4)	80(4)	12(3)	0(3)	-7(3)
Cl(4C)	67(4)	71(4)	77(4)	12(3)	-4(3)	3(3)
Cl(2D)	113(6)	114(6)	106(6)	-1(3)	-2(3)	6(3)

Cl(3D)	66(5)	62(5)	61(5)	-1(3)	3(3)	-4(3)
Cl(4D)	63(5)	66(5)	62(5)	5(3)	0(3)	3(3)
C(1C)	47(6)	53(6)	42(6)	0(5)	1(5)	3(5)
C(2C)	39(5)	46(5)	39(5)	3(4)	3(4)	-1(4)
C(3C)	38(4)	45(5)	42(4)	4(4)	3(4)	-1(4)
C(4C)	36(5)	45(5)	44(5)	5(4)	1(4)	-2(4)
C(5C)	42(6)	48(6)	46(6)	0(5)	4(5)	1(5)
C(6C)	45(4)	51(5)	39(4)	4(4)	-1(4)	-1(4)
C(7C)	46(4)	51(5)	41(4)	2(4)	0(4)	1(4)
C(8C)	49(4)	52(5)	44(4)	2(4)	-1(4)	1(4)
C(9C)	53(4)	56(5)	46(4)	2(4)	-1(4)	2(4)
C(10C)	51(4)	54(5)	44(4)	3(4)	0(4)	1(4)
C(11C)	49(4)	53(5)	43(4)	4(4)	-1(4)	-1(4)
C(12C)	42(4)	49(4)	39(4)	1(4)	-1(4)	1(4)
C(13C)	41(4)	48(4)	38(4)	1(4)	-1(4)	-1(4)
C(14C)	39(4)	47(4)	38(4)	4(4)	-2(3)	-2(4)
C(15C)	37(4)	47(4)	38(4)	-1(4)	-3(3)	-2(4)
C(16C)	40(4)	47(4)	41(4)	0(4)	-5(3)	-1(4)
C(17C)	41(4)	49(4)	39(4)	0(4)	-3(3)	1(4)
C(18C)	124(7)	124(7)	129(7)	-1(4)	-3(4)	0(4)
C(19C)	129(7)	129(7)	130(7)	-2(4)	-3(4)	2(4)
C(20C)	130(7)	130(7)	132(7)	-4(4)	-2(4)	3(4)
C(21C)	130(7)	130(7)	132(7)	-2(4)	-2(4)	1(4)
C(22C)	128(7)	128(7)	129(7)	-1(4)	-1(4)	1(4)
C(23C)	125(7)	125(7)	127(7)	-2(4)	-1(4)	1(4)
C(24C)	69(5)	74(5)	68(5)	2(4)	-5(4)	-2(4)
C(25C)	71(5)	77(5)	68(5)	3(4)	-4(4)	-2(4)
C(26C)	72(5)	78(5)	70(5)	2(4)	-3(4)	-3(4)
C(27C)	75(5)	78(5)	71(5)	1(4)	-4(4)	-3(4)
C(28C)	75(5)	78(5)	70(5)	0(4)	-4(4)	-5(4)
C(29C)	72(5)	77(5)	70(5)	2(4)	-7(4)	-3(4)

	X	у	Z	U(eq)
H(1AA)	0.3769	0.7034	0.9711	0.189
H(1AB)	0.3119	0.6653	0.9474	0.189
H(1AC)	0.2089	0.7002	0.9674	0.189
H(2A)	0.3075	0.8192	0.9574	0.144
H(3AA)	0.5191	0.7653	0.9406	0.143
H(3AB)	0.4317	0.7515	0.9162	0.143
H(4A)	0.5813	0.8611	0.9175	0.143
H(5AA)	0.4719	0.9080	0.9566	0.182
H(5AB)	0.3458	0.9356	0.9395	0.182
H(5AC)	0.5036	0.9648	0.9352	0.182
H(7A)	0.1109	0.7403	0.8771	0.143
H(8A)	0.0552	0.6306	0.8613	0.141
H(9A)	-0.0025	0.5216	0.8805	0.145
H(10Å)	-0.0010	0.5351	0.9245	0.147
H(11A)	0.0620	0.6438	0.9406	0.144
H(13A)	-0.1417	0.7166	0.9382	0.143
H(14A)	-0.3182	0.7500	0.9672	0.146
H(15A)	-0.2796	0.8547	0.9896	0.145
H(16A)	-0.0783	0.9270	0.9878	0.149
H(17A)	0.0979	0.8906	0.9593	0.149
H(19A)	0.2882	1.0269	0.8989	0.058
H(20A)	0.3701	1.1415	0.8879	0.058
H(21A)	0.5856	1.1502	0.8661	0.056
H(22A)	0.7130	1.0435	0.8586	0.053
H(23A)	0.6294	0.9289	0.8698	0.055
H(25A)	0.6482	0.8115	0.8880	0.157
H(26A)	0.7386	0.7251	0.8599	0.161
H(27A)	0.5947	0.6801	0.8302	0.162
H(28A)	0.3542	0.7108	0.8245	0.160
H(29A)	0.2736	0.7967	0.8533	0.157
H(1BA)	0.3138	0.8530	0.3211	0.093
H(1BB)	0.2864	0.7853	0.3034	0.093
H(1BC)	0.1563	0.8343	0.3124	0.093
H(2B)	0.2568	0.9369	0.2906	0.072
H(3BA)	0.4392	0.8367	0.2669	0.071
H(3BB)	0.4894	0.8781	0.2909	0.071
H(4B)	0.5791	0.9451	0.2600	0.070
H(5BA)	0.4332	1.0191	0.2900	0.094
H(5BB)	0.3344	1.0342	0.2669	0.094
H(5BC)	0.4965	1.0598	0.2667	0.094

 Table 9.
 Hydrogen coordinates and isotropic displacement parameters for (1).

H(7B)	0.0204	0.7851	0.2229	0.150
H(8B)	0.0117	0.6694	0.2071	0.152
H(9B)	0.1526	0.5799	0.2278	0.150
H(10B)	0.2765	0.6143	0.2627	0.145
H(11B)	0.2707	0.7326	0.2761	0.143
H(13B)	-0.0837	0.7670	0.2799	0.074
H(14B)	-0.2818	0.7867	0.3040	0.077
H(15B)	-0.3334	0.9029	0.3196	0.076
H(16B)	-0.1825	1.0003	0.3095	0.077
H(17B)	0.0130	0.9815	0.2847	0.075
H(19B)	0.3295	1.0923	0.2252	0.050
H(20B)	0.4279	1.1902	0.2041	0.056
H(21B)	0.6289	1.1738	0.1794	0.061
H(22B)	0 7249	1 0564	0 1768	0.061
H(23B)	0.6306	0.9572	0 1977	0.056
H(25B)	0.6504	0.8542	0.2380	0.050
H(26B)	0 7437	0.7468	0.2230	0.155
H(27B)	0.6197	0.6791	0.1928	0.150
H(28B)	0.4047	0.7292	0.1920	0.161
H(20B)	0.3061	0.8360	0.1950	0.167
H(1CA)	0.3001	0.0500	0.3527	0.102
H(1CR)	0.6625	0.7003	0.3648	0.071
H(1CC)	0.5025	0.6958	0.3567	0.071
H(2C)	0.3911	0.6320	0.3365	0.071
H(2CA)	0.7042	0.0520	0.3805	0.049
H(3CR)	0.9170	0.0001	0.3905	0.050
H(AC)	0.8380	0.7508	0.3210	0.050
$\Pi(4C)$ $\Pi(5CA)$	1.0760	0.7408	0.4519	0.050
H(5CR)	1.0700	0.7309	0.4136	0.008
H(5CC)	1.1019	0.0728	0.4220	0.008
H(7C)	0.73/1	0.7314	0.4450	0.008
H(RC)	0.7341	0.8505	0.4009	0.055
$\Pi(\partial C)$	0.0940	0.9307	0.4174	0.058
$\Pi(\mathcal{H})$	0.4649	0.9928	0.4338	0.002
$\mathbf{H}(10\mathbf{C})$	0.3113	0.3024	0.4431	0.059
H(11C) H(12C)	0.3429	0.7820	0.4322	0.058
$\Pi(13C)$	0.3090	0.7631	0.3797	0.031
$\Pi(14C)$	0.1710	0.7320	0.3338	0.049
$\Pi(1SC)$	0.0974	0.0312	0.3343	0.049
$\Pi(10C)$	0.2084	0.5400	0.3771	0.051
H(1/C)	0.4039	0.3713	0.4012	0.052
H(19C)	0.0904	0.4943	0.4182	0.155
$\Pi(20C)$	U./811 1.0251	0.3904	0.3981	0.157
H(21C)	1.0251	0.3/31	0.3934	0.15/
H(22C)	1.1843	0.4396	0.4087	0.154
H(25C)	1.0996	0.5634	0.4288	0.151
H(25C)	1.0528	0.5513	0.4684	0.086

H(26C)	1.1678	0.5730	0.5059	0.088
H(27C)	1.0936	0.6731	0.5282	0.089
H(28C)	0.9101	0.7509	0.5171	0.089
H(29C)	0.8007	0.7266	0.4794	0.088

References

- (1) Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.
- (2) The initial paragraph of this preparation is a variation of a procedure by Stefan Bräse, Ph.D. Thesis, Universität Göttingen, 1997.
- (3) For this experiment, GC samples of the aliquots were run at 150 °C and 80 mL/min N₂.
 Retention times (min): 0.88, benzene; 1.26, toluene; 1.90, ethylbenzene; 2.17, styrene; 5.78, (*R*)- and (*S*)-2-phenylpropanal; 6.89, 3-phenylpropanal.
- (4) Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537.
- (5) Reich, H. J. J. Chem. Ed. 1995, 72, 1086.
- (6) The 3:1 (Z)-β-deuteriostyrene : phenylacetylene-d₁ mixture was prepared with phenylacetylene-d₁ and DIBAL-H. Phenylacetylene-d₁ was prepared by deprotonation of phenylacetylene with EtMgBr in ether and quenching with D₂O, as reported by Wood, J. T.; Arney, J. S.; Cortés, D.; Berson, J. A. *J. Am. Chem. Soc.* **1978**, *100*, 3855. ¹H NMR of (*Z*)-β-deuteriostyrene (300 MHz, CDCl₃): δ 7.37 7.42 (m, 2 H, Ar), 7.19 7.34 (m, 3 H, Ar), 6.70 (dt, 1 H, J_{trans} = 17.5 Hz, J_{HD} = 1.5 Hz, =CH), 5.72 (d, 0.07 H, J_{trans} = 17.5 Hz, =CHD), 5.23 (d, 1 H, J_{cis} = 11.0 Hz). Phenylacetylene appears at δ 7.44 7.48 (0.63 H, m, Ph), 7.2-7.4 (m, Ph, coincident with styrene Ph), 3.04 (s, 0.18 H, CCH).
- (7) Parker, D. J. Chem. Soc. Perkin Trans. II 1983, 83. b) Giesel, H.; Machacek, G.; Bayerl, J.;
 Simon, H. Febs. Lett., 1981, 123, 107. c) Bartl, K.; Cavalar, C.; Krebs, T.; Ripp, E.; Rétey, J.; Hull, W. E.; Günther, H.; Simon, H. Eur. J. Biochem. 1977, 72, 247. d) Hashimoto, H.;
 Rambeck, B.; Günther, H.; Mannschreck, A.; Simon, H. Hoppe-Seyler's Z. Physiol. Chem.
 1975, 356, 1203. e) Simon, H.; Rambeck, B.; Hashimoto, H.; Günther, H.; Nohynek, G.;

Neumann, H. Angew. Chem. Int. Ed. 1974, 13, 608.

- (8) The 78% conversion is an approximation calculated from GC peak areas relative to a benzene internal standard using the response factors of 2- and 3-phenylpropanal for 2- and 3-(*p*-tolyl)propanal and the response factor of ethylbenzene for *p*-ethyltoluene.
- (9) (a) Data Collection: SMART software Reference Manual, 1994. Bruker-AXS, 6300 Enterprise Dr., Madison, WI 53719-1173, USA. (b) Data Reduction: SAINT Software Reference Manual, 1995. Bruker-AXS, 6300 Enterprise Dr., Madison, WI 53719-1173, USA.
- (10) Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of Area Detector Data. 1996, University of Göttingen, Germany.
- (11) (a) Sheldrich, G. M. SHELXTL Version 5 Reference Manual, 1994. Bruker-AXS, 6300 Enterprise Dr., Madison, WI 53719-1173, USA. (b) International Tables for Crystallography, Vol. C, Tables 6.1.1.4, 4.2.6.8, and 4.2.4.2, Kluwer: Boston, 1995.
- (12) Flack, H. D. Acta Cryst. A39 1983, 876.