Supporting Information Proton-Coupled Electron Transfer in Soybean Lipoxygenase

Elizabeth Hatcher, Alexander V. Soudackov, and Sharon Hammes-Schiffer*

Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania, 16802 USA; e-mail: shs@chem.psu.edu

Figure S1: Temperature dependence of the rates and KIEs for multistate continuum theory calculations with a quantum treatment of the proton donor-acceptor vibrational motion. The experimental data are denoted with circles. The theoretical results were generated with two different parameter sets: the original parameter set used to generate Figure 5 (squares) and the same parameters except that the couplings were slightly modified so that these quantum results reproduced the experimental rate and KIE at 303 K (triangles).

Figure S2: Temperature dependence of the rates and KIEs for multistate continuum theory calculations with a classical treatment of the proton donor-acceptor vibrational motion. The experimental data are denoted with circles. The theoretical calculations use the original parameter set with the inner-sphere reorganization energy modified to be $\lambda_{in} = 10 \text{ kcal/mol}$ (triangles) and $\lambda_{in} = 30 \text{ kcal/mol}$ (squares). The equilibrium C--O distance and frequency are $R_I^{\circ} = 2.88 \text{ Å}$ and $\omega_I^{\circ} = 511 \text{ cm}^{-1}$ and the dominant C--O distance is $R_{dom} = 2.69 \text{ Å}$.

Figure S3: Temperature dependence of the rates and KIEs for multistate continuum theory calculations with a classical treatment of the proton donor-acceptor vibrational motion. The experimental data are denoted with circles. The theoretical calculations use the original parameter set with the C--O Morse parameter R_{CO}° modified to be $R_{\text{CO}}^{\circ} = 3.0$ Å (triangles). In all cases, the couplings V^{ET} and V^{PT} were fit to the experimental rate and KIE at T=303 K. The equilibrium C--O distance and frequency are $R_{\text{I}}^{\circ} = 3.02$ Å and $\omega_{\text{I}}^{\circ} = 519$ cm⁻¹ and the dominant C--O distance is $R_{\text{dom}} = 2.79$ Å.

Figure S4: Temperature dependence of the rates and KIEs for multistate continuum theory calculations with a classical treatment of the proton donor-acceptor vibrational motion. The experimental data are denoted with circles, and the theoretical results are denoted with triangles. The calculations use the original parameter set with the following modifications: the solvent reorganization energies are calculated for a conformation with a C--O distance of 3.0 Å, $R_{CO}^{\circ} = 3.0$ Å, $\beta_{CO} = 1.8$ Å⁻¹ corresponding to a C--O Morse frequency of 299 cm⁻¹, Fe–O force constant of 25 kcal mol⁻¹ Å⁻², π–C force constant of 100 kcal mol⁻¹ Å⁻², and the couplings V^{ET} and V^{PT} were fit to the experimental rate and KIE at T=303 K. The equilibrium C--O distance and frequency are $R_{I}^{\circ} = 3.05$ Å and $\omega_{I}^{\circ} = 2.84$ cm⁻¹ and the dominant C--O distance is $R_{\text{dom}} = 2.69$ Å.

	$E_{ m act}^{ m H}$	$E_{ m act}^{ m D}$
Experiment	2.1	3.0
Original parameters	4.1	5.9
Fixed R , $R = 2.7 \text{ Å}$	2.6	3.9
Fixed R , $R = 2.8 \text{ Å}$	3.0	6.0
Quantum R w/	3.9	5.4
original parameters		
Quantum R w/	3.9	5.4
adjusted couplings		
Original parameters	2.0	3.7
$w/\lambda_{in} = 10 \text{ kcal/mol}$		
Original parameters	6.7	8.6
$w/\lambda_{in} = 30 \text{ kcal/mol}$		
Original parameters	4.8	8.2
$W/R_{CO}^{\circ} = 3.0 \text{ Å}$		
Alternative model	5.3	7.3

Table S1: The slope of the plots in the figures illustrating the temperature dependence of the rates, where the slope is the activation energy $E_{\rm act}$ defined from the empirical Arrhenius equation $k = A \exp^{-E_{\rm act}/RT}$. The activation energies are given in units of kcal/mol. The experimental data is from Ref. 12. The data for the original parameters are given in Figure 5, and the data for the fixed proton donor-acceptor distances R are given in Figure 8. The data with the quantum mechanical treatment of R are given in Figure S1, the data with the different inner-sphere reorganization energies are given in Figure S2, the data with the different value of $R_{\rm CO}^{\rm o}$ are given in Figure S3, and the data for the alternative model are given in Figure S4.