SURPORTING INFORMATION

Diastereoselectivity-switchable and Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Alkylidene Malonates
Zheng-Zheng Huang, Yan-Biao Kang, Jian Zhou, Meng-Chun Ye, Yong Tang* State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 200032 Shanghai, China

General information: All reactions were carried out under dry notrogen atmosphere. All of the solvents were purified according to the standard method before use. Isopropyl acetate was distilled over well-activated anhydrous CaSO_{4}. All of the nitrones ${ }^{1}$ and alkylidene malonates ${ }^{2}$ were synthesized according to the literature. MS $4 \AA$ was powdered and activated before use. All glassware was flame dried and cooled under a steam of dry nitrogen before use.

I. 1,3-Dipolar cycloaddations to exo adducts

General procedures for cycloaddition between nitrones and alkylidene malonates to give exo products. A mixture of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(4.6 \mathrm{mg}, 0.013 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $1(3.1 \mathrm{mg}, 0.0087 \mathrm{mmol}, 3.3 \mathrm{~mol} \%)$ in the mixture of toluene and isopropyl acetate (1.5 mL) was stirred at $50^{\circ} \mathrm{C}$ for 4 hours under N_{2} atmosphere. After cooling to room temperature, the pale amaranth solution was added into a reaction tube with powdered MS $4 \AA(250 \mathrm{mg})$. To this mixture was added the solution of alkylidene malonate (0.3 mmol) in the mixture of toluene and isopropyl acetate (1 mL). After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, nitrone (0.25 mmol) was added. The resulting suspension was stirred for 20 hours at $0^{\circ} \mathrm{C}$. Then 0.5 mL of TMEDA was added and stirred for additional 10 min . After the reaction was completed (monitored by TLC), the reacting mixture was filtrated through silica gel and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure to give crude product, which was used to determine the diastereomer ratio by ${ }^{1} \mathrm{H}$ NMR. The residue was purified by flash chromatography (silica gel, petroleum ester/ethyl acetate) to afford the pure product. The ee was determined by HPLC analysis using a chiral column (Chiralcel

AD column with hexane $/ \mathrm{PrOH}$ as eluent).

Table 1, Entry 1: Diethyl trans-3,5-diphenyl-2-(p-methylphenyl)-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 7, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 106.7 mg (93\%); Exo/endo: >99/1; ee\%: 91\% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{i} \operatorname{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ $($ minor $)=14.76 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=19.63 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+39.8^{\circ}(\mathrm{c} 1.00$, Ethyl acetate $)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.46-7.42 (m, 4H), 7.26-7.20 (m, 6H), 6.98-6.91 (m, $4 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $0.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 168.29, $167.89,146.68$ (d), 137.75, 135.69, 133.78, 129.37, 129.19, 128.76, 128.61, 128.32, 127.47, 119.22, 83.51, 75.96, 74.06, 61.82, 61.54, 20.05, 13.56, 13.48; LRMS-EI (m/e): 459($\left.\mathrm{M}^{+}, 100.0\right), 105(100.0) ; \operatorname{IR}(\mathrm{KBr}), 3063,1734,1612,1260 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 73.18%; H, 6.36%; N, 3.05\%; Found: C, $72.91 \%, \mathrm{H}, 6.41 \%$, $\mathrm{N}, 3.07 \%$; White solid, mp $104-105^{\circ} \mathrm{C}$.

Table 1, Entry 2: Diethyl 2-(p-bromophenyl)-trans-3,5-diphenyl-4,4-

 isoxazolidinedicarboxylates:

Prepared according to general procedure (isopropyl acetate was used as the solvent). Yield: 99.8 mg (76\%); Exo/endo: >99/1; ee\%: 95\% (determined by HPLC analysis: Chiralcel $\mathrm{AD}, 10 / 90{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=15.43 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=$ $21.45 \mathrm{~min}) \cdot[\alpha]_{\mathrm{D}}{ }^{20}=+31.9^{\circ}$ (c 1.00, Ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.47-7.19 (m, 12H), $6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}$, $2 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 2 \mathrm{H}), 0.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $167.74,167.15,148.06,137.22,134.85,131.39,128.77,128.60$, $128.59,128.49,128.08,127.01,119.24,116.02,83.03,75.24,74.49,61.67,61.33$, 13.25, 13.13; LRMS-EI (m/e): 525 [$\left.\left.\mathrm{M}^{+}{ }^{81} \mathrm{Br}\right), 96.7\right], 523\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 100.0\right] 169$ (98.1);
$\mathrm{IR}(\mathrm{KBr}), 3063,1730,1590,1489,1263 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrNO}_{5}: \mathrm{C}$, 61.84\%; H, 5.00%; N, 2.67\%; Br, 15.24\%; Found: C, 61.54\%, H, 5.04\%, N, 2.60\%, $\mathrm{Br}, 15.30 \%$; White solid, $\mathrm{mp} 135-136^{\circ} \mathrm{C}$.

Table 1, Entry 3: (3,5 trans) Diethyl 2,3,5-triphenyl-4,4-isoxazolidinedicarboxylate:

Prepared according to general procedure (isopropyl acetate was used as the solvent). Yield: 104.2 mg (94\%); Exo/endo: >99/1; ee\%: 91\% (determined by HPLC analysis: Chiralcel AD, 10/90 ${ }^{i} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=12.86 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=16.07 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{20}=+51.6^{\circ}$ (c 1.12, Ethyl acetate). When isopropyl acetate/toluene ($1 / 8, \mathrm{v} / \mathrm{v}$) was used as the solvent. Yield: 104.5 mg (94\%); Exo/endo: >97/3; ee\%: 95\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.56-7.49 (m, 4H), 7.34-7.17 (m, 8H), 7.09-6.94 (m, 3H), 6.23 (s , $1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.67$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.82, 167.35, 148.95, 137.58, $135.17,128.83,128.43,128.33,127.99,127.06,123.33,117.86,82.99,75.28,74.62$, 61.51, 61.21, 13.22, 13.11; LRMS-EI (m/e): 445(M+, 42.1), 91(100.0); IR(KBr), 3067, 1730, 1598, $1257 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 72.79%; H, 6.11\%; N, 3.14\%; Found: C, $72.62 \%, \mathrm{H}, 6.08 \%$, N, 3.36%. White solid, $\mathrm{mp} 109-110^{\circ} \mathrm{C}$.

Table 1, Entry 4: (3,5 trans) Diethyl 5-(p-methlyphenyl)-2,3-diphenyl-4,4isoxazolidinedicarboxylates:
 Prepared according to general procedure [isopropyl acetate/toluene ($1 / 10, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 109.3 mg (95\%); Exo/endo: >95/5; ee\%: 92\% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{i} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=14.30$ $\min , \mathrm{t}_{\mathrm{r}}($ major $\left.)=20.10 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+51.1^{\circ}\left(\mathrm{c} 1.00\right.$, Ethyl acetate) ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-6.92(\mathrm{~m}, 12 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H})$, 3.78-3.66 (m, 2H), 3.35-3.21 (m, 2H), $2.27(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.92, 167.39, 149.05, 138.19, 137.70,
132.07, 128.84, 128.64, 128.43, 128.34, 127.00, 123.23, 117.78, 82.97, 75.25, 74.55, 61.52, 61.17, 21.12, 13.22, 13.08; LRMS-EI (m/e): $459\left(\mathrm{M}^{+}, 23.4\right), 91$ (100.0); IR(KBr), 3059, 1727, 1597, 1491, $1247 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 73.18%; H, 6.36%; N, 3.05%; Found: C, 73.03%, H, 6.39%, N, 2.93%; White solid, mp: $123-124^{\circ} \mathrm{C}$.

Table 1, Entry 5: (3,5 trans) Dimethyl 5-(p-nitrophenyl)-2,3-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 10, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 107.7 mg (93\%); Exo/endo: >97/3; ee\%: 94\% (determined by HPLC analysis: Chiralcel AD, 20/80 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=20.00 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=30.28 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+43.9^{\circ}$ (c 1.00, Ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $5.44(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.64, 167.47, $148.44,147.92,142.31,136.92,128.74,128.67,128.56,127.93,123.86,123.22$, 117.86, 81.85, 75.30, 74.96, 52.54, 52.25; LRMS-EI (m/e): $462\left(\mathrm{M}^{+}, 42.1\right), 91$ (100.0); $\operatorname{IR}(\mathrm{KBr}), 3076,1730,1600,1526,1349,1222 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$; C, 64.93\%; H, 4.80\%; N, 6.06\%; Found: C, 64.96\%, H, 4.72\%, N, 5.90\%; Pale yellow solid, mp $155-157^{\circ} \mathrm{C}$.

Table 1, Entry 6: (3,5 trans) Diethyl 5-(p-bromophenyl)-2,3-diphenyl-4,4isoxazolidine dicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 7, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 129.5 mg (99\%); Exo/endo: >96/4; ee\%: 95\% (determined by HPLC analysis: Chiralcel AD, 10/90 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, 0.5 $\mathrm{mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=13.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=17.34 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}^{20}=+52.5^{\circ}(\mathrm{c}$ 1.02, Ethyl acetate) ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-6.91(\mathrm{~m}, 14 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H})$,
$5.39(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $167.59,167.22,148.75,137.37,134.20,131.11,128.80,128.74$, $128.48,128.44,128.38,123.45,122.45,117.77,82.26,75.21,74.41,61.70,61.34$, 13.21, 13.16; LRMS-EI (m/e): 525 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 31.0\right], 523\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 29.7\right], 332(96.6)$, 330(100.0); $\mathrm{IR}(\mathrm{KBr}), 3065,1724,1598,1490,1250 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrNO}_{5}$: $\mathrm{C}, 61.84 \% ; \mathrm{H}, 5.00 \%$; N, $2.67 \%, \mathrm{Br}, 15.24 \%$; Found: C, $61.75 \%, \mathrm{H}$, $5.24 \%, \mathrm{~N}, 2.52 \%, \mathrm{Br}, 15.63 \%$; White solid, mp $123-124^{\circ} \mathrm{C}$.

Table 1, Entry 7: (3,5 trans) Dimethyl 3-(p-triflorophenyl)-2,5-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 2, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 121.3 mg (100%), oil; Exo/endo: >92/8; ee\%: 98\% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=16.33 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.80 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+39.2^{\circ}(\mathrm{c} 1.02$, Ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.27 (m, 3H), 7.19-7.14 (m, 2H), 7.00-6.97 (m, 3H), $6.19(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H})$, $3.04(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 167.97, 167.43, 148.32, $141.58,134.65,130.60\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 129.11,128.75,128.67,128.17,126.92$, $125.30\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.75 \mathrm{~Hz}\right), 124.02,123.87\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.35 \mathrm{~Hz}\right), 118.28,83.17,75.08$, 74.59, 52.42, 51.98; LRMS-EI (m/e): 485 ($\mathrm{M}^{+}, 44.7$), 91(100.0); IR(KBr), 3065, 1733, 1619, 1326, $1127 \mathrm{~cm}^{-1}$; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5}$; 485.1450; Found: 485.1426.

Table 1, Entry 8: (3,5 trans) Dimethyl 3-(p-methoxylphenyl)-2,5-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 10, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 104.8 mg (94\%), thick oil; Exo/endo: >95/5; ee\%: 96\% (determined by HPLC analysis: Chiralcel AD, 20/80 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.1 \mathrm{~mL} / \mathrm{min}, 238$
$\mathrm{nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=82.46 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=88.92 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+35.5^{\circ}(\mathrm{c} 1.40$, Ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-6.78(\mathrm{~m}, 12 \mathrm{H}), 6.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.12(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): 168.24, 167.81, 159.52, 148.95, 134.96, 129.78, 129.25, 128.54, 128.46, $128.06,126.83,123.30,117.73,113.71,82.82,74.86,74.80,55.14,52.23,52.03 ;$ LRMS-EI (m/e): 447 ($\mathrm{M}^{+}, 47.4$), 91 (100.0); $\operatorname{IR}(\mathrm{KBr}), 3050,1731,1610,1512,1250$ cm^{-1}; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6}$: 447.17659 ; Found: 447.17239.

Table 1, Entry 9: (3,5 trans) Dimethyl 2-(p-bromophenyl)-3,5-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 10, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 114.5 mg (92\%), oil; Exo/endo: >99/1; ee\%: 98\% (determined by HPLC analysis: Chiralcel AD, $10 / 90^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=17.27 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=20.51 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+28.7^{\circ}(\mathrm{c} 1.03$, Ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.31(\mathrm{~m}, 12 \mathrm{H}), 6.97-6.94(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $168.10,167.53,147.99,137.08,134.60,131.45,128.74,128.67,128.58,128.55$, $128.17,126.85,119.21,116.10,83.01,75.25,74.89,52.40,52.02$; LRMS-EI (m/e): 497 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 7.2\right], 495\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 7.1\right], 84(100.0)$; $\mathrm{IR}(\mathrm{KBr}), 3067,1734,1588,1487$, $1260 \mathrm{~cm}^{-1}$; HRMS-ESI (m/z): Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrNO}_{5}$: 495.06813; Found: 495.06800.

Table 1, Entry 10: (3,5 trans) Diisobutyl 2-(p-bromophenyl)-3,5-diphenyl-4,4isoxazolidinedicarboxylates :

Prepared according to general procedure [isopropyl acetate/toluene ($1 / 10, \mathrm{v} / \mathrm{v}$) was used as the solvent]. Yield: 138.0 mg (95\%); Exo/endo: >99/1; ee\%: 96\% (determined by HPLC analysis: Chiralcel AD, $5 / 95{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm}$; t_{r} (minor) $=14.58 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=18.58 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+31.3^{\circ}(\mathrm{c} 1.03$, Ethyl acetate $) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.28(\mathrm{~m}, 12 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.87(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.22(\mathrm{~m}, 2 \mathrm{H})$, $0.69-0.64(\mathrm{~m}, 6 \mathrm{H}), 0.60-0.51(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.90, 167.28, 148.10, 137.21, 134.81, 131.41, 128.81, 128.70, 128.60, 128.22, 127.10, 119.28, $116.09,83.20,75.50,74.66,72.02,71.67,27.01,26.86,19.06,18.89,18.86,18.63$; LRMS-EI (m/e): $582\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 40.0\right], 580\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 38.7\right], 175(100.0) ; \operatorname{IR}(\mathrm{KBr})$, $3066,1729,1587,1487,1246 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{BrNO}_{5}$: $\mathrm{C}, 64.14 \% ; \mathrm{H}$, 5.90%; N, 2.41%; Found: C, 64.09%, H, 5.81%, N, 2.29%; White solid, mp 129-130 ${ }^{\circ} \mathrm{C}$

Table 1, Entry 11: (3,5 trans) Diethyl 2-(p-bromophenyl)-5-cyclohexyl-3-phenyl-4,4- isoxazolidinedicarboxylates:

Prepared according to general procedure (isopropyl acetate was used as the solvent). Yield: 120.6 mg (91\%); Exo/endo: >90/10; ee\%: 89% (determined by HPLC analysis: Chiralcel $\mathrm{AD}, 4 / 100{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ minor $)=$ $13.46 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=19.03 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+38.0^{\circ}(\mathrm{c} 1.08$, Ethyl acetate $) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}$, $1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 1 \mathrm{H})$, 1.90-1.45 (m, 6H), 1.17-1.04 (m, 8H), $0.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): 168.57, 166.92, 148.68, 137.74, 131.29, 128.84, 128.54, 128.33, 117.67, $114.90,85.00,76.05,71.36,62.03,61.17,38.66,30.28,29.83,26.17,25.91,25.85$, 13.93, 13.36; LRMS-EI (m/e): 531 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 50.3\right], 529\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 49.5\right], 171(97.4)$, 169(100.0); $\operatorname{IR}(\mathrm{KBr}), 1730,1487,1256 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrNO}_{5}: \mathrm{C}$, 61.13\%; H, 6.08\%; N, 2.64\%; Found: C, 61.36\%, H, 6.05\%, N, 2.50\%; White solid, mp $129-130^{\circ} \mathrm{C}$

II. 1,3-Dipolar cycloaddations to endo adducts

General procedures for cycloaddition between nitrones and alkylidene malonates gave endo products catalyzed by $\mathbf{C o}(\mathbf{I I}) / \mathbf{T O X}$. A mixture of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(4.6$
$\mathrm{mg}, 0.013 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\operatorname{TOX}(3.1 \mathrm{mg}, 0.0087 \mathrm{mmol}, 3.3 \mathrm{~mol} \%)$ in the appropriate solvent $(1.5 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 4 hours under N_{2} atmosphere. To the pale amaranth solution was added flame-activated MS $4 \AA$ powder 250 mg and alkylidene malonate in the mixture of toluene and isopropyl acetate (1 mL). After stirring for 0.5 h at $-40^{\circ} \mathrm{C}$, nitrone was added. The resulting suspension was stirred for the appropriate time at $-40^{\circ} \mathrm{C}$. After the reaction was completed (monitored by TLC), 1.0 mL of TMEDA was added. After stirring for additional 30 min at $-40^{\circ} \mathrm{C}$, the resulting mixture was filtrated through silica gel (eluted with ethyl acetate). The filtrate was concentrated under reduced pressure to give crude product. The ratio of diastereoisomers was determined by ${ }^{1} \mathrm{H}$ NMR. The residue was purified by flash chromatography (silica gel, petroleum ester/ethyl acetate) to afford the desired product. The ee was determined by chiral HPLC.

Table 2, Entry 1: (3,5 cis) Diethyl 2,3-diphenyl-5-(4-bromo-phenyl)-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure. [Toluene/isopropyl acetate ($\mathrm{v} / \mathrm{v}, 3 / 1$) was used as the solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=1.2 / 1$; carried out at $-40{ }^{\circ} \mathrm{C}$ for 24hr.] Pale oil. Yield: 115.4 mg (88\%); Endo/exo: 95/5; ee\%: 80\% (determined by HPLC analysis: Chiralcel AD, $10 / 90^{i} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm}$; tr (major) $=11.74 \mathrm{~min}, \operatorname{tr}($ minor $)=16.57 \mathrm{~min}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 168.89, 165.36, 150.89, 138.10, 133.10, 130.78, 129.58, 129.22, 128.11, 127.79, 127.49, 122.51, 121.93, 113.60, 83.59, 76.22, 75.38, 62.66, 61.37, 13.91, 13.10; LRMS-EI (m/e): 525 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 17.67\right], 523$ [$\left.\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 18.24\right], 197$ (37.86), 196 (49.14), 91 (100.00); $\operatorname{IR}(\mathrm{KBr}), 3422,2983,2922,1733,1597,1488$, 1373, 1228, 1012, 756, $697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+14.6^{\circ}$ (c 1.23, $\mathrm{CHCl} 3,80 \%$ ee); HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{Na}, 546.0886566$; Found: 546.0905550 .

Table 2, Entry 2: (3,5 cis) Diethyl 2,3-diphenyl-5-(4-nitro-phenyl)-4,4isoxazolidinedicarboxylates:
Prepared according to general procedure.
solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=1.0 / 1.5 ;$
carried out at $-50{ }^{\circ} \mathrm{C}$ for 44 hr .] Pale oil. Yield: 121.4 mg (99\%); Endo/exo: >90/10; ee\%: 83\% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{i} \mathrm{PrOH} /$ hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=12.61 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=19.85$ min). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}$, $1 \mathrm{H}), 4.37$ (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{q}, J=7.2,2 \mathrm{H}), 1.35(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 168.70, 165.08, 150.23, 147.62, 141.98, $137.62,129.26,128.60,128.15,127.95,127.51,122.74,122.30,113.84,83.00,76.08$, 75.57, 62.92, 61.49, 13.89, 13.04; LRMS-EI (m/e): 490 [${ }^{+}$, 12.99], 196 (34.01), 91 (100.00); $\operatorname{IR}(\mathrm{KBr}), 3063,2983,2937,1737,1599,1524,1489,1348,1229,853,756$, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=-13.9^{\circ}\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}, 85.4 \%\right.$ ee); HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}, 513.1632223$; Found: 513.1624550.

Table 2, Entry 3: (3,5 cis) Diethyl 2,3-diphenyl-5-(4-methyl-phenyl)-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure. [Toluene/isopropyl acetate ($\mathrm{v} / \mathrm{v}, 8 / 1$) was used as the solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=1.2$; carried out at -40 for 88hr.] Pale oil. Yield: 114 mg (99\%); Endo/exo: 86/14; ee\%: 88% (determined by HPLC analysis: Chiralcel AD, $10 / 90^{i} \mathrm{PrOH} /$ hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, $238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=7.56 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=9.81 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.76 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.22 (m, 5H), 7.14 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.44-3.33 (m, 2H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.02, 165.60, 151.27, 138.41, 138.19, 130.64, 129.12, 128.31, 128.03, 127.84, 127.62, 127.49, 121.64, 113.50, 84.30, 76.28, 75.39, 62.43, 61.16, 21.15, 13.87, 13.06; LRMS-EI (m/e): 459 [${ }^{+}$, 12.85], 197 (22.17), 196 (35.24), 91 (100.00); $\operatorname{IR}(\mathrm{KBr}), 2982,2932,1733,1598,1488,1374,1228,1064,756$, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.6^{\circ}$ (c 1.00, $\mathrm{CHCl}_{3}, 88 \%$ ee $) ;$ HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}, 482.1937941$; Found: 482.1920700.

Table 2, Entry 4: (3,5 cis) Diethyl 2,3,5-triphenyl-4,4-isoxazolidinedicarboxylates:

Prepared according to general procedure. [Toluene/isopropyl acetate ($\mathrm{v} / \mathrm{v}, 16 / 1$) was used as the solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=2.0 / 1$; carried out at -40 for 72hr.] Pale oil. Yield: 90.2 mg (81\%); Endo/exo: 89/11; ee\%: 93% (determined by HPLC analysis: Chiralcel AD, 20/80 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm}$; t_{r} (major) $=7.75 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=9.13 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H})$, $4.33(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.06, 165.59, 151.07, 138.34, 133.95, 129.16, 128.36, 128.04, 127.75, 127.65, 127.64, 127.49, 121.75, 113.56, 84.17, 76.27, 75.48, 62.51, 61.21, 13.88, 13.02; LRMS(EI): 445 [$\left.\mathrm{M}^{+}, 23.58\right], 91$ (100.00); IR(KBr), 3063, 1732, 1599, 1489, $1229 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.9^{\circ}$ (c 1.07, $\mathrm{CHCl}_{3}, 93 \%$ ee); HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}, 446.1961994$; Found:446.1952420.

Table 2, Entry 5: (3,5 cis) Diethyl 2-(p-methyl-phenyl)-3,5-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure. [Toluene/isopropyl acetate ($\mathrm{v} / \mathrm{v}, 4 / 1$) was used as the solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=1.2 / 1$; carried out at -40 for 90 hr .] Pale oil. Yield: 88.3 mg (77\%); Endo/exo: 86/14; ee\%: 87\% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=12.47 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=19.09$
$\mathrm{min}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~s}$, $1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.318(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.06, 165.52, 151.23, $137.30,135.12,134.02,129.11,128.69,128.35,127.76,127.63,127.53,121.68$, 113.61, 84.14, 76.25, 75.30, 73.62, 62.42, 61.16, 21.10, 13.87, 13.04; LRMS-EI (m/e): 459 [$\left.\mathrm{M}^{+}, 28.19\right], 211$ (44.05), 210 (71.84), 91 (100.00); $\operatorname{IR}(\mathrm{KBr}), 3063,1732,1599$, $1489,1229 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=-4.3^{\circ}$ (c 1.33, $\mathrm{CHCl}_{3}, 87 \%$ ee); HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}, 482.1937941$; Found: 482.1929350 .

Table 2, Entry 6: (3,5 cis) Diethyl 2-(p-bromo-phenyl)-3,5-diphenyl-4,4-

Isoxazolidinedicarboxylates:

Prepared according to general procedure. [Isopropyl
 acetate was used as the solvent; alkylidene malonate $/ \mathrm{nitrone}(\mathrm{mol} / \mathrm{mol})=1.0 / 1.5$; carried out at -50 for 200hr.] Pale oil. Yield: 35.5 mg (27\%); Endo/exo: 87/13; ee\%: 90% (determined by HPLC analysis: Chiralcel AD, $10 / 90{ }^{\mathrm{i}} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=12.49 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=15.64 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.92-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 1.34$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 168.91 , 165.31, 150.15, 137.82, 133.66, 131.99, 128.50, 128.12, 127.84, 127.75, 127.69, $127.49,115.39,114.20,84.31,76.22,75.37,62.63,61.26,13.89,13.03$; LRMS-EI $(\mathrm{m} / \mathrm{e}): 525\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)^{+}, 30.99\right], 523\left[\mathrm{M}^{(79} \mathrm{Br}^{+}, 31.96\right], 171$ (92.62), 169 (100.00), 90 (35.20), 77 (44.24); $\operatorname{IR}(\mathrm{KBr}), 1733,1584,1484,1231 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=-6.0^{\circ}(\mathrm{c} 1.08$, $\mathrm{CHCl}_{3}, 90 \%$ ee); HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{Na}$, 546.0886566; Found: 546.0897220.

Table 2, Entry 7: (3,5 cis) Diisobutyl 2-(p-bromo-phenyl)-2,5-diphenyl-4,4isoxazolidinedicarboxylates:

Prepared according to general procedure.
 [Toluene/isopropyl acetate (v/v, 3/1) was used as the solvent; alkylidene malonate/nitrone $(\mathrm{mol} / \mathrm{mol})=1.0 / 1.5$; carried out at -40 for 72 hr .] Pale oil. Yield: 54.33 mg (38\%); Endo/exo: 88/12; ee\%: > 94\% (determined by HPLC analysis: Chiralcel AD, $1.5 / 100{ }^{1} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=13.08 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $15.96 \mathrm{~min}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.91$ $(\mathrm{m}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.06-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.03, 165.08, $150.21,137.71,133.62,131.99,128.51,128.17,127.85,127.79,127.71,127.53$, $115.37,114.20,84.43,76.43,75.37,72.81,71.44,27.60,26.82,19.19,19.10,18.79$, 18.75; LRMS-EI (m/e): 581 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 26.44\right], 579\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 26.98\right], 171$ (95.92), 169 (100.00), 105 (47.70); $\operatorname{IR}(\mathrm{KBr}), 3064,2961,2929,2874,1732,1586,1485,1240$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=-13.0^{\circ}$ (c 1.14, $\mathrm{CHCl}_{3}, 92 \%$ ee); HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{BrNO}_{5} \mathrm{Na}, 602.1512569$; Found: 602.1497920 .

Table 2, Entry 8: (3,5 cis) Diethyl2-(p-bromo-phenyl)-3-phenyl-5-cyclohexyl-4,4isoxazolidinedicarboxylats:
 Prepared according to general procedure. [Isopropyl acetate was used as the solvent; alkylidene malonate $/$ nitrone $(\mathrm{mol} / \mathrm{mol})=1.2 / 1$; carried out at -50 for 5hr.] Pale oil. Yield: 127.5 mg (99\%); Endo/exo: 86/14; ee\%: 71\% (determined by HPLC analysis: Chiralcel AD, 4/100 ${ }^{1} \mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 238 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=15.26 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=28.23 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.64(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}$, $1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.13(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{t}, J=7.2$, 3 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.12, 166.19, 150.05, 137.97, 131.90, 128.09, $127.78,127.44,115.22,113.79,88.00,76.53,73.07,62.40,61.37,38.14,31.20,30.01$, $2853,1735,1586,1485,1451,1248,1214,1053,1003,822,734,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -36.4° (c $0.75, \mathrm{CHCl}_{3}, 71 \%$ ee); HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{BrNO}_{5} \mathrm{Na}$, 530.1536622; Found: 530.1531930.

III. Mechanistic investigation

Procedure for enantioselective isomerization from 4 a to 5 a catalyzed by $\mathbf{C o}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{6}\left(\mathrm{H}_{2} \mathbf{O}\right) / \mathbf{T O X}$ (Equation 1). A mixture of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(4.7 \mathrm{mg}$, $0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\operatorname{TOX}(3.3 \mathrm{mg}, 0.008 \mathrm{mmol}, 6.7 \mathrm{~mol} \%$) in 1.3 ml of $i-\mathrm{PrOAc}$ was stirred at $50^{\circ} \mathrm{C}$ for 4 hours under N_{2} atmosphere. After cooling to room temperature, the pale amaranth solution was added into a reaction tube with $\mathbf{4 a}$ (58 $\mathrm{mg}, 0.13 \mathrm{mmol}, 93 \% \mathrm{ee})$ and powdered MS $4 \AA(130 \mathrm{mg})$. The resulting suspension was stirred for 19 hours at $0{ }^{\circ} \mathrm{C}$ and 0.5 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was added. After being stirred for additional 10 min , the resulting mixture was filtrated through silica gel (eluted with ethyl acetate). The filtrate was concentrated under reduced pressure to give crude trans-product. ${ }^{1} \mathrm{H}$ NMR showed that the ratio of $\mathbf{5 a}$ to $\mathbf{4 a}$ was $97 / 3$. The residue was purified by flash chromatography (silica gel, petroleum ester/ethyl acetate) to afford the trans-product ($52.8 \mathrm{mg}, 91 \%$); 91% ee.

Procedure for isomerization from 4 a to racemic 5a catalyzed by
$\mathbf{C o}\left(\mathbf{C l O}_{4}\right)_{2} \cdot \mathbf{6}\left(\mathbf{H}_{2} \mathbf{O}\right)($ Equation 2). To a reaction tube was added i-PrOAc (1.3 ml), $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(4.7 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%), 4 \mathrm{a}(58 \mathrm{mg}, 0.13 \mathrm{mmol},>93 \%$ ee $)$ and powdered MS $4 \AA(130 \mathrm{mg})$. The resulting suspension was stirred for 16.5 hours at $0{ }^{\circ} \mathrm{C}$. Then 0.5 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was added. After being stirred for additional 10 min , the resulting mixture was filtrated through silica gel (eluted with ethyl acetate). The filtrate was concentrated under reduced pressure to give crude products (trans/cis = $1 / 1.4$, by ${ }^{1} \mathrm{H}$ NMR). The residue was purified by flash chromatography (silica gel, petroleum ester/ethyl acetate) to afford the trans-product ($15.8 \mathrm{mg}, 27 \%,<1 \%$ ee, by chiral HPLC) and cis-product ($20.0 \mathrm{mg}, 35 \%, 5 \%$ ee, by chiral HPLC).

91 \%ee
91 \%ee
Procedure for isomerization from 5a to racemic 4a catalyzed by $\mathbf{C o}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{6}\left(\mathrm{H}_{2} \mathrm{O}\right)($ Equation 3). To a reaction tube was added i-PrOAc (1.3 ml), $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(1.7 \mathrm{mg}, 0.0048 \mathrm{mmol}, 20 \mathrm{~mol} \%), 5 \mathrm{a}(10.8 \mathrm{mg}, 0.024 \mathrm{mmol}$, $91.4 \% \mathrm{ee})$ and powdered $\mathrm{MS} 4 \AA(30 \mathrm{mg})$. The resulting suspension was stirred for 20 hours at $0{ }^{\circ} \mathrm{C}$. Then 0.5 mL of TMEDA was added. After being stirred for additional 10 min , the reacting mixture was filtrated through silica gel (eluted with ethyl acetate). The filtrate was concentrated under reduced pressure to give crude products (ee: 90.5 \%, by chiral HPLC).

Procedures for isomerization and cross-cycloaddition from 4 a to racemic 5 a and 5b catalyzed by $\mathbf{C o}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{6}\left(\mathrm{H}_{2} \mathrm{O}\right) /$ TOX. A mixture of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6\left(\mathrm{H}_{2} \mathrm{O}\right)(4.7 \mathrm{mg}$, $0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TOX ($3.3 \mathrm{mg}, 0.0087 \mathrm{mmol}, 6.7 \mathrm{~mol} \%$) in 1.3 ml of i-PrOAc was stirred at $50^{\circ} \mathrm{C}$ for 4 hours under N_{2} atmosphere. After cooling to room temperature, the pale amaranth solution was added into a reaction tube with $\mathbf{4 a}$ (58
$\mathrm{mg}, 0.13 \mathrm{mmol}$, racemer), $\mathbf{3 a}(27.4 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1eq.) and powdered MS 4 $\AA(130$ $\mathrm{mg})$. The resulting suspension was stirred for 16 hours at $0{ }^{\circ} \mathrm{C}$. Then 0.5 mL of TMEDA was added. After being stirred for additional 10 min , the reacting mixture was filtrated through silica gel (eluted with ethyl acetate). The filtrate was concentrated under reduced pressure to give crude products $(\mathbf{5 a} / \mathbf{5} \mathbf{b} / \mathbf{4} \mathbf{a}=1.1 / 1 / 0.1$, by ${ }^{1}$ H NMR; 90.0% ee for $\mathbf{5 a}, 90.0 \%$ ee for $\mathbf{5 b}$, by chiral HPLC).
IV. Determination of absolute configuration

Figure 1. The crystal structure of (3,5 trans) Diethyl
5-(p-bromophenyl)-2,3-diphenyl-4,4-isoxazolidinedicarboxylate (100% ee)

Figure 2. The crystal structure of (3,5 cis) Diethyl

2-(p-bromophenyl)-3,5-diphenyl-4,4-isoxazolidinedicarboxylate

References

(1) (a) Patrick, T. B.; Schield, J. A.; Kirchner, D. G. J. Org. Chem. 1974, 39(12), 1758.
(b) Beissel, T.; Powers, R. E.; Parac, T. N.; Raymond, K. N. J. Am. Chem. Soc. 1999, 121, 4200. (c) Mallesha, H.; Kumar, K. R. R.; Mantelingu, K.; Rangappa, K. S. Synthesis 2001, 1459.
(2) Cheung, J.; Field, L. D.; Regaglia, F.; Sternhell, S. Aust. J. Chem. 1995, 48, 1707.

V. Chiral HPLC analysis

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$
Racemate sample: h-14-44-r2-rac, File: h-14-44-r2

report

$\mathrm{hzz-14-44-r2}$					
Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec] }} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [uV] } \end{aligned}$	Area [\%]
1		13.215	664960.94	33992.44	1.44
2		14.760	2111868.25	96936.74	4.57
3		17.942	821525.59	30276.36	1.78
4		19.625	42644858.54	$1.35 \mathrm{e}+06$	92.22
			46243213.32	$1.51 \mathrm{e}+06$	100.00

[^0]

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	report		Area [\%]
			$\begin{gathered} \text { Area } \\ {[\text { uV*sec }} \end{gathered}$	Height [uV]	
1		13.425	539867.88	24819.30	5.63
2		15.384	4261122.90	167468.62	44.44
3		17.580	535398.24	19318.22	5.58
4		21.420	4251385.86	121931.30	44.34
			9587774.87	333537.44	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$ Racemate sample: h-14-51-rac, File: h-14-51

report

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec] }} \end{gathered}$	```Height [uV]```	Area [\%]
1		15.429	309513.15	11304.46	2.31
2		21.448	13104133.44	347335.19	97.69

Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$
Racemate sample: h-14-51-rac, File: h-14-51

report

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec] }} \end{gathered}$	Height [uV]	Area [\%]
1		12.302	448346.45	25567.89	4.38
2		15.342	9789242.73	433949.25	95.62
			10237589.18	459517.14	100.00

Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

report

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{uV} * \mathrm{sec}]} \end{gathered}$	Height [uV]	Area [\%]
1		12.165	400694.22	19831.38	1.84
2		14.189	10530607.77	460559.13	48.28
3		15.904	348399.59	14701.56	1.60
4		19.936	10533433.19	333513.79	48.29
			21813134.77	828605.86	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

report
Hzz-14-94

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1		12.230	645236.96	32810.66	4.08
2		14.303	566414.29	25536.64	3.59
3		16.075	614751.84	24949.50	3.89
4		20.096	13970743.34	433659.40	88.44
			15797146.43	516956.21	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Hzz-15-85

| Peak
 $\#$ | Component
 Name | Time
 [min] | | Area
 [uV*sec] | | Height
 [uV] |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | | Area |
| ---: |
| [\% $\%$ |

[^1]
report

Hzz-14-77-rac					
Peak $\#$	Component Name	Time [min]	Area [uV*sec] 1		13.873 2

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

report
$\mathrm{Hzz-14-77}$

| Peak
 $\#$ | Component
 Name | Time
 [min] | | Area
 [uV*sec] | | Height
 [uV] |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | | Area |
| :---: |
| [\%] |

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

report

Hzz-15-26

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec] }} \end{gathered}$	Height [uV]	Area [\%]
1		16.332	16789117.65	595976.94	98.86
2		18.797	193514.76	7135.43	1.14
			16982632.41	603112.37	100.00

[^2]
report
Hzz-15-2

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{uV} * \mathrm{sec}]} \end{gathered}$	Height [uV]	Area [\%]
1		82.458	$1.27 \mathrm{e}+08$	$1.02 \mathrm{e}+06$	97.80
2		88.920	2866037.28	25184.51	2.20
			$1.30 \mathrm{e}+08$	$1.05 \mathrm{e}+06$	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, n -Hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, Flow rate $=0.1 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$ Racemate sample: h-14-75-rac, File: h-14-75

report

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ \text { [uV*sec] } \end{gathered}$	Height [uV]	Area [\%]
1		17.268	345075.25	13330.23	1.06
2		20.508	32299769.07	901486.17	98.94

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$
Racemate sample: h-14-75-rac, File: h-14-75

report

Hzz-14-74

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{uV} * \mathrm{sec}]} \end{gathered}$	Height [uV]	Area [\%]
1		14.580	176412.24	8990.52	1.65
2		16.383	357272.95	16022.97	3.34
3		17.448	210350.94	8767.97	1.97
4		18.583	9959793.63	348254.17	93.05
			10703829.76	382035.64	100.00

[^3]

$\mathrm{Hzz-15-18-rac}$					
Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{uV} \text { *sec }]} \end{gathered}$	Height [uV]	Area [\%]
1		13.571	6346372.36	275841.89	46.96
2		17.794	428004.94	15248.43	3.17
3		19.207	6308899.36	196908.75	46.69
4		32.827	429948.98	7754.40	3.18
			13513225.64	495753.48	100.00

Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=100 / 4$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Hzz-15-18					
Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[u V * \text { sec] }} \end{gathered}$	Height [uv]	Area [\%]
1		13.461	457960.99	21073.11	3.27
2		17.521	2492099.18	83019.28	17.77
3		19.034	8207664.72	251898.02	58.52
4		32.614	2867132.07	52113.01	20.44
			14024856.96	408103.43	100.00

[^4]

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

kyb-1-39-1

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec }]} \end{gathered}$	Height [uV]	Area [\%]
1		11.737	22448128.16	$1.17 \mathrm{e}+06$	90.16
2		16.575	2449929.06	87330.72	9.84
			24898057.22	$1.26 \mathrm{e}+06$	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

 rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {\left[u V^{\star} \text { sec }\right]} \end{gathered}$	Height [uV]	Area [\%]
1		12.607	11536248.48	419855.86	91.38
2		19.847	1088772.16	27955.79	8.62
			12625020.64	447811.65	100.00

[^5]

Cis-Oxazolidine Product

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec }]} \end{gathered}$	Height [uV]	Area [\%]
1		7.800	369990.30	13649.39	50.05
2		9.962	369299.53	12343.10	49.95
		00.00	739289.83	25992.49	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, iPrOH/n-Hexane $=10 / 90$, Flow rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

Peak \#	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]
1		7.558	15785869.23	542665.93	94.04
2		9.808	999706.97	34631.64	5.96
			16785576.20	577297.57	100.00

Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{iPrOH} / \mathrm{n}-\mathrm{Hexane}=10 / 90$, Flow rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ \text { [uV*sec] } \end{gathered}$	Height [uV]	Area [\%]
1		7.667	4129631.48	126719.88	49.79
2		8.933	4164220.02	128084.46	50.21
			8293851.51	254804.34	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, $i \mathrm{PrOH} / \mathrm{n}$-Hexane $=20 / 80$, Flow rate $=0.6 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Kang Yanbiao's Chiral-HPLC Report

Cis-Oxazolidine Product

Peak \#	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]
1		7.747	54534770.70	1654193.58	96.65
2		9.128	1888226.34	56770.14	3.35
-			56422997.04	1710963.72	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, iPrOH/n-Hexane $=20 / 80$, Flow rate $=0.6 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Kang Yanbiao's Chiral-HPLC Report

Cis-Oxazolidine Product					
Peak \#	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]
1		12.292	- 73059296.62	2894042.72	50.10
2		18.663	72781358.28	2132133.07	49.90
,		00.005	145840654.90	5026175.79	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, iPrOH $/ \mathrm{n}$-Hexane $=10 / 90$, Flow
eth. AD Column, Ware $=20$ rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[u \mathrm{~V} * \mathrm{sec}]} \end{gathered}$	Height [uV]	Area [\%]
1		12.475	58914064.51	1909179.27	93.72
2		19.090	3949992.34	110146.67	6.28
			62864056.85	2019325.94	100.00

Method: AD Column, Wave length $=238 \mathrm{~nm}$, $\mathrm{iPrOH} / \mathrm{n}-$ Hexane $=10 / 90$, Flow rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Method: $A D$ Column, Wave length $=254 \mathrm{~nm}$, iPrOH/n-Hexane=10/90, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Kang Yanbiao's Chiral-HPLC Report

Peak \#	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [\%]
1		13.013	10641418.31	322986.33	90.01
2		17.023	1180992.42	+33486.05	9.99
		28.0 ${ }^{\text {2 }}$	11822410.74	356472.37	100.00

[^6]

Kang Yanbiao's Chiral-HPLC Report
Cis-Oxazolidine Product

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [uV] } \end{gathered}$	Area [\%]
1		13.087	1096079.00	33914.04	50.01
2		15.960	1095463.05	27521.59	49.99
			2191542.05	61435.63	100.00

Method: AD Column, Wave length $=238 \mathrm{~nm}, \quad$ iPrOH $/ \mathrm{n}-\mathrm{Hexane}=1.5 / 100$, Flow
rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$ rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

Peak \#	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[\text { uV*sec] }} \end{gathered}$	Height [uV]	Area [\%]
1		13.081	42060649.84	1317210.62	97.22
2		15.959	+1202558.59	31985.58	2.78
			43263208.44	1349196.20	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, $\mathrm{iPrOH} / \mathrm{n}$-Hexane $=1.5 / 100$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, iPrOH/n-Hexane=4/100, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

Cis-Oxazolidine Product

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Component Name	Time [min]	$\begin{gathered} \text { Area } \\ {[u V * \sec]} \end{gathered}$	Height [uV]	Area [\%]
1		15.262	8335714.90	247374.84	85.62
2		28.232	1399941.55	28102.84	14.38
			9735656.45	275477.68	100.00

Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, $\mathrm{iPrOH} / \mathrm{n}$-Hexane $=4 / 100$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^0]: Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$
 Racemate sample: h-14-44-r2-rac, File: h-14-44-r2

[^1]: Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=80 / 20$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^2]: Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane/i-PrOH $=90 / 10$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^3]: Method: $A D$ Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, Flow rate $=0.4 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^4]: Method: AD Column, Wave length $=238 \mathrm{~nm}, \mathrm{n}$-Hexane $/ \mathrm{i}-\mathrm{PrOH}=100 / 4$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^5]: Method: $A D$ Column, Wave length $=238 \mathrm{~nm}$, iPrOH/n-Hexane $=10 / 90$, Flow rate $=0.8 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

[^6]: Method: $A D$ Column, Wave length $=254 \mathrm{~nm}$, iPrOH/n-Hexane $=10 / 90$, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}$, Temperature $=20$

