Supporting Information for Bilirubin as Antioxidant: Kinetic Studies of the Reaction of Bilirubin with Peroxyl Radicals in Solution, Micelles and Lipid Bilayers

Gillian L. Hatfield and L. Ross C. Barclay

Table S1. Inhibition Rate Constants, k_{inh} , and Stoichiometric Factors, n, of Bilirubin, BR, Trolox, and PMHC for the Inhibited Oxidation of Methyl Linoleate, ML^a, in 0.50 M SDS Micelles Initiated with ABAP^b in Phosphate Buffer, pH 7.4 at 37 °C.

method ^c	inhibitor	R _i	τ	ν ^d	k _{inh}	n ^e
	M x 10 ⁶	M s ⁻¹ x 10 ⁸	s x 10 ⁻³	range	M ⁻¹ s ⁻¹ x	10-4
OE	BR					
	4.93	1.04	0.76	26-35	5.2	1.6
	14.8	1.73	1.16	12-14	5.0	1.4
PT	BR					
	39.0	1.93	9.89	2-6	4.7	1.3
OE	Trolox					
	14.8	1.40	2.09	9-13	4.2	2
	14.8	1.73	1.70	7-11	4.6	2
PT	Trolox					
	81.2	1.93	8.42	1-5	5.6	2
PT	PMHC					
	8.15	1.59	1.03	13-21	4.9	2

 $^{^{}a}$ ML, 0.193 M on OE, 0.440 \pm 0.049 M on PT.

 $[^]b$ ABAP, 30.6 \pm 1.3 mM on OE, 18.7 \pm 2.6 mM on PT. Concentrations calculated for the micellar volume in 3.0 ml of 0.50 M SDS used with the OE and 2.0 ml with the PT method. 10b

^cOE refers to the oxygen electrode, PT the pressure transducer.

© 2004 American Chemical Society, Org. Lett., Hatfield ol
040016k Supporting Info Page 3 Revised

-S3-

- ^d Kinetic chain length range during inhibition period.
- ^e The stoichiometric value for Trolox and PMHC, is 2. The value for BR was calculated from n=R_i x τ / [BR] where R_i = 2 x [ArOH] / τ and τ is the induction period of Trolox or PMHC.

Table S2. Inhibition Rate Constants, k_{inh} , and Stoichiometric Factors, n, of BR, and Trolox for the Inhibited Oxidation of PLPC Bilayers Initiated with DMVN at 37 °C, pH 7.4 a .

method ^b	inhibitor	R _i	τ	ν ^c	k _{inh}	n ^d
	$M \times 10^{3}$	M s ⁻¹ x 10 ⁸	s x 10 ⁻³	range	$M^{-1} s^{-1} \times 10^{-3}$	
Coevap.	BR, 0.466	2.60	33.4	9-19	3.0	1.9
Coevap.	BR, 0.466	2.10	38.9	9-18	3.2	1.8
Injected	Trolox, 0.161	2.10	15.0	4-11	10.4	2
Injected	Trolox, 0.162	2.60	12.1	5-8 ·	10.7	2

^a Concentrations were PLPC, 1.06 M; DMVN, 0.226 M. calculated for the bilayer lipid volume.^{10a}

^bCoevap. refers to coevaporation of BR with PLPC. The Trolox was injected in the phosphate buffer solution.

^c The kinetic chain length range during the inhibition period.

^d The stoichiometric factors relative to n = 2 for Trolox, see Table S1, footnote e.