Total synthesis of (-)-borrelidin

Tohru Nagamitsu, Daisuke Takano, Takeo Fukuda, Kazuhiko Otoguro, Yoshihiro Harigaya, Isao Kuwajima and Satoshi $\overline{\text { Om}}$ mura*
\section*{Supporting Information}

General Information. All non-aqueous reactions were carried out under an inert atmosphere of argon. Organic solvents were dried over molecular sieves 3 A or 4A. Other reagents were commercially available and used without further purification. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter with a sodium lamp. Infrared spectra were recorded on a Horiba FT-210 and JASCO FT/IR-460. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-EX270. Ambiguous assignments were resolved on the basis of two-dimensional COSY experiments. High-resolution mass spectra were obtained on JEOL JMS-700 (FAB) and JEOL JMS-AX505HA (EI).
(2R,4S)-5-Acetoxy-2,4-dimethylpentane-1-ol (3)

This compound was prepared according to Mori's procedure. (Fujita, K.; Mori, K. Eur. J. Org. Chem. 2001, 66, 493-502.)
(2S,4R)-1-Acetoxy-5-(tert-butyldimethylsilyloxy)-2,4-dimethylpentane (3a)

To a solution of $\mathbf{3}(1.01 \mathrm{~g}, 5.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ were added imidazole ($790 \mathrm{mg}, 11.6$
$\mathrm{mmol})$ and $\mathrm{TBSCl}(1.30 \mathrm{~g}, 8.74 \mathrm{mmol})$ at r.t. The resulting solution was stirred for 30 min and quenched with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($30: 1$ hexanes/EtOAc) afforded 3a ($1.64 \mathrm{~g}, 98 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+5.6^{\circ}\left(c=0.24, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2956,2931,2892,2888,1743,1251,1238 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR (270 MHz, CDCl $)_{3}$) $0.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{C}_{4}-\mathrm{CH}_{3}\right), 0.90\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathrm{H}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 1.44\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathrm{H}\right), 1.67$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.34\left(\mathrm{dd}, 1 \mathrm{H}, J=9.6,6.3 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}{ }^{-}\right.$ H), $3.41\left(\mathrm{dd}, 1 \mathrm{H}, J=9.6,5.6 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}-\mathbf{H}\right), 3.80\left(\mathrm{dd}, 1 \mathrm{H}, J=10.9,6.9 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{1}-\mathrm{H}\right), 3.94(\mathrm{dd}$, $1 \mathrm{H}, J=10.9,5.3 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{1}-\mathbf{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathbf{~ M H z}\right.$, CDCl $_{3}$) δ-5.4, 17.4, 17.8, 18.2, 20.9, 25.9, 30.0, 33.0, 37.4, 68.0, 69.3, 171.2; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 289.2199; found: 289.2193.
(2S,4R)-5-(tert-Butyldimethylsilyloxy)-2,4-dimethylpentan-1-ol (3b)

To a stirred solution of $\mathbf{3 a}(1.64 \mathrm{~g}, 5.72 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{ml})$ was added potassium carbonate ($870 \mathrm{mg}, 6.29 \mathrm{mmol}$). The reaction was stirred at r.t. for 2 h , and then diluted with water. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($10: 1$ hexanes/EtOAc) afforded $\mathbf{3 b}(1.47 \mathrm{~g}, 98 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+0.8^{\circ}\left(c=0.32, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3411,2956,2929,2858,1471,1255,1093,837 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), $0.88\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right.$), $0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CSi}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathrm{H}\right)$, $1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.32-3.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta-5.4,17.7,17.8,18.3,25.9,33.2,33.3,37.3,68.1,68.3$; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 247.2093$; found: 247.2079.
(2R,4S)-5-(tert-Butyldiphenylsilyloxy)-2,4-dimethylpentan-1-ol (3c)

To a solution of $\mathbf{3 b}(3.10 \mathrm{~g}, 12.6 \mathrm{mmol})$ in DMF (63 ml) were added imidazole ($1.70 \mathrm{~g}, 25.2$ $\mathrm{mmol})$ and $\operatorname{TBDPSCl}(4.9 \mathrm{ml}, 18.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to r.t. and stirred for 30 min . After addition of water, the reaction mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($50: 1$ hexanes/EtOAc) afforded the corresponding disilyl ether (5.52 g) including unseparable impurities.
To a solution of the disilyl ether in EtOH (40 ml) was added PPTS ($1.43 \mathrm{~g}, 5.70 \mathrm{mmol}$), and the mixture was allowed to warm up to $50^{\circ} \mathrm{C}$. After 7 h , water was added and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($15: 1$ hexanes/EtOAc) afforded 3c ($4.19 \mathrm{~g}, 2$ steps 97\%) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{23}=+1.8^{\circ}\left(c=0.23, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3455,2931,2856,1112,1091,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(270 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathrm{H}\right), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.6$ $\mathrm{Hz}, \mathrm{CH}_{3}$), $1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.49\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathrm{H}\right), 1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $3.36\left(\mathrm{dd}, 1 \mathrm{H}, J=10.2,6.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2}\right), 3.45\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 3.51(\mathrm{dd}, 1 \mathrm{H}, J=9.6,5.3 \mathrm{~Hz}$, $1 / 2 \mathrm{CH}_{2}$), $3.55\left(\mathrm{dd}, 1 \mathrm{H}, J=9.6,5.3 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2}\right.$), 7.35-7.72 (m, 10H, ArH); ${ }^{13} \mathbf{C}$-NMR (67.5 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 17.4,17.9,19.3,26.9,33.1,37.1,68.2,68.7,127.6,129.5,134.0,135.6$; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 371.2406; found: 371.2415.
(2R,4S)-5-(tert-Butyldiphenylsilyloxy)-2,4-dimethylpentanal (4)

To a solution of $\mathbf{3 c}(89.3 \mathrm{mg}, 0.241 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml})$ were added dried MS4A (500 mg),

NMO ($31.1 \mathrm{mg}, 0.265 \mathrm{mmol}$) and TPAP $(4.2 \mathrm{mg}, 12.0 \mu \mathrm{~mol})$ at r.t.. The resulting solution was stirred for 30 min and the reaction mixture was filtered through a silica pad. After evaporation of the filtrate, the residue was purified by flash chromatography (50:1 hexanes/EtOAc) to afford 4 ($78.0 \mathrm{mg}, 88 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{23}=-6.3^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2960,2931,2858,1727,1427,1112,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{CH}_{3}\right), 1.04\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right)$, $1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.14\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 1.90\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right), 2.39$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), 3.49\left(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.34-7.70(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 9.54(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}$, CHO); ${ }^{13} \mathbf{C}$-NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 14.1,17.2,19.3,26.9,33.3,34.5,44.1,68.4,127.6$, 129.6, 133.7, 135.6, 205.2; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right]$: 368.2171; found: 368.2142 .
(3S)-1,1-Dibromo-4-(4'-methoxybenzyloxy)-3-methylbut-1-ene (5)

This compound was prepared by using a known method. (Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.; Crawford, J. J. Org. Chem. 2003, 68, 6096-6107.)
(2S,6R,8S)-9-(tert-Butyldiphenylsilyloxy)-1-(4'-methoxybenzyloxy)-2,6,8-trimethylnona-3yne (4a)

To a solution of $5(83.0 \mathrm{mg}, 0.229 \mathrm{mmol})$ in THF $(700 \mu \mathrm{l})$ was added $n-\mathrm{BuLi}(1.58 \mathrm{M}$ solution in hexane, $290 \mu \mathrm{l}, 0.459 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to $-40^{\circ} \mathrm{C}$. The reaction was stirred for 1 h , and then treated with a solution of $4(56.3 \mathrm{mg}, 0.153 \mathrm{mmol})$ in THF
($700 \mu \mathrm{l}$). The reaction was continued for 1 h at $-30^{\circ} \mathrm{C}$, and methyl chloroformate ($90 \mu \mathrm{l}, 1.15$ mmol) was added at $-20^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($30: 1$ hexanes/EtOAc) afforded the corresponding carbonate (100.8 mg) including unseparable impurities.

To a solution of palladium acetylacetonate ($2.3 \mathrm{mg}, 7.65 \mu \mathrm{~mol}$) and tributylphosphine ($8 \mu \mathrm{l}, 30.6$ $\mu \mathrm{mol})$ in toluene $(700 \mu \mathrm{l})$ were added a solution of the crude carbonate in toluene ($700 \mu \mathrm{l}$) and ammonium formate ($24.1 \mathrm{mg}, 0.382 \mathrm{mmol}$). The resulting solution was warmed up to $70^{\circ} \mathrm{C}$ and stirred for 1 hr . Concentration in vacuo gave a yellow oil, which upon flash chromatography (50:1 hexanes/EtOAc) afforded $\mathbf{4 a}(76,3 \mathrm{mg}, 2$ steps 90%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{24}=-3.1^{\circ}\left(c=0.29, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2910,2898,2856,1513,1459,1112,1106,1091 \mathrm{~cm}^{-1} ;$ ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95\left(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}_{8}-\mathrm{CH}_{3}\right), 0.98(\mathrm{~m}, 1 \mathrm{H}, 1 / 2$ $\left.\mathrm{C}_{7}-\mathbf{H}\right), 1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.17\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 1.46\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{7}-\mathrm{H}\right), 1.68(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{6}-\mathbf{H}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathbf{H}\right), 1.97\left(\mathrm{ddd}, 1 \mathrm{H}, J=16.2,7.3,1.7 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}-\mathbf{H}\right), 2.15(\mathrm{ddd}, 1 \mathrm{H}, J$ $\left.=16.5,4.9,1.7 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}-\mathbf{H}\right), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 3.30\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{1}-\mathbf{H}\right), 3.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{9}-\mathbf{H}\right.$ and $\left.1 / 2 \mathrm{C}_{1}-\mathrm{H}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.28(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.37-7.71(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta ; 17.5,18.3$, 19.3, 20.1, 25.9, 26.7, 26.9, 30.1, 33.2, 40.1, 55.2, 69.0, 72.6, 74.3, 79.7, 83.0, 113.7, 127.5, 129.2, 129.5, 130.5, 134.0, 135.6, 159.1 HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 556.3372; found: 556.3364.
(2S,6R,8S)-9-(tert-Butyldiphenylsilyloxy)-2,6,8-trimethylnona-3-yn-1-ol (6)

To a solution of $\mathbf{4 a}(648.6 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{ml})$ was added DDQ $(344.0 \mathrm{mg}, 1.51 \mathrm{mmol})$ at r.t.. The reaction mixture was stirred for 30 min , and then diluted with water. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($30: 1$ hexanes/EtOAc) afforded 6 ($494.1 \mathrm{mg}, 97 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{24}=-11.6^{\circ}\left(c=0.26, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 3644, 2964, 2960, 2931, 2325, 1112, $761 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 0.96\left(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}_{8}-\mathrm{CH}_{3}\right), 0.98\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{7^{-}}\right.$ $\mathbf{H}), 1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{7}-\mathrm{H}\right), 1.70(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathbf{H}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathbf{H}\right), 1.98\left(\mathrm{ddd}, 1 \mathrm{H}, J=16.5,6.9,1.7 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}-\mathbf{H}\right), 2.17(\mathrm{ddd}, 1 \mathrm{H}, J=$ $\left.16.1,5.0,1.7 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{5}-\mathbf{H}\right), 2.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 3.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{1}-\mathbf{H}\right.$ and $\left.\mathrm{C}_{9}-\mathbf{H}\right)$, 7.37-7.71 (m, $10 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 17.3,17.5,19.3,20.2,25.8,26.9,29.5,30.0,33.2$, 40.1, 67.1, 68.9, 81.1, 82.4, 127.6, 129.5, 134.0, 135.6; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 459.2695$; found: 459.2677.
(2S,6R,8S)-9-(tert-Butyldiphenylsilyloxy)-2,4,6,8-tetramethylnona-3Z-en-1-ol (7)

To a solution of trimethylaluminium (1.0 M solution in hexanes, $6.2 \mathrm{ml}, 6.20 \mathrm{mmol}$) was added a solution of $6(672.5 \mathrm{mg}, 1.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to r.t., stirred for 20 min , and then cooled to $-15^{\circ} \mathrm{C}$. The resulting solution was treated with titanium tetrachloride (1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.1 \mathrm{ml}, 3.10 \mathrm{mmol}$) and continued for 15 min . The reaction was cooled to $-40^{\circ} \mathrm{C}$ and then cautiously quenched with ice-cooled $\mathrm{MeOH}(3 \mathrm{ml})$ followed by Celite ${ }^{\circledast}(10 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$. The mixuture was allowed to warm to r.t. and stirred for 2 hr . The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography ($40: 1$ hexanes/EtOAc) to afford 7 $(557.1 \mathrm{mg}, 80 \%)$ as a colorless oil.
$[\alpha]_{D}{ }^{24}=-9.1^{\circ}\left(c=0.17, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3444,2960,2931,2896,2869,1473,1459,1450$, $1427,1105 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}\right.$, CDCl $\left._{3}\right) \delta 0.77\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 0.90(\mathrm{~d}, 3 \mathrm{H}, J$ $\left.=6.6 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{CH}_{3}\right), 0.98\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{7}-\mathrm{H}\right), 1.06(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CSi}\right), 1.34\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{7}-\mathbf{H}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}_{3}\right), 1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathbf{H}\right)$, $1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5}-\mathbf{H}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 3.28\left(\mathrm{dd}, 1 \mathrm{H}, J=10.2,8.2 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{1}-\mathrm{H}\right), 3.43(\mathrm{~m}, 2 \mathrm{H}$, $1 / 2 \mathrm{C}_{1}-\mathbf{H}$ and $\left.1 / 2 \mathrm{C}_{9}-\mathbf{H}\right), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, J=9.8,5.1 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{9}-\mathbf{H}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathbf{H}\right)$, 7.30-7.70 (m, 10H, ArH); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 17.1,17.7,19.3,19.7,23.7,27.0,28.3$, 33.2, 35.2, 39.5, 41.5, 67.9, 68.9, 127.5, 128.8, 129.5, 134.0, 135.5, 137.0; HRMS [FAB, m-

NBA] calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 475.3008; found: 475.3022.
The stereochemistry of C8-9 olefin was determined by NOE experiment.

NOE experiment of 7
(2S,4R,6S,8S)-9-(tert-Butyldiphenylsilyloxy)-2,4,6,8-tetramethylnonan-1-ol (8)

A solution of $7(941.3 \mathrm{mg}, 2.08 \mathrm{mmol})$ and $\mathrm{Rh}[(\mathrm{nbd}) \mathrm{dppb}] \mathrm{BF}_{4}(147.5 \mathrm{mg}, 0.208 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{ml})$ was stirred under 1 Mpa of H_{2} gas for 2 hr . The resulting solution was filtered through a short plug of silica gel and concentrated in vacuo. The residue was purified by flash chromatography ($40: 1$ hexanes/EtOAc) to afford $\mathbf{8}(928.5 \mathrm{mg}, 91 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-16.6^{\circ}\left(c=0.15, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3425, 2958, 2929, 2858, 1461, 1427, 1112, $1081 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathbf{C H}_{3}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.85\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 0.89\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, CH_{3}), $1.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.12\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right)$, $1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.70(\mathrm{~m} 2 \mathrm{H}, \mathbf{C H} \times 2), 3.36-3.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 7.30-$ 7.74 (m, 10H, ArH); ${ }^{13} \mathbf{C}$-NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 16.0,18.0,19.2,20.2,20.5,26.8,27.0$, 27.4, 33.1, 33.2, 39.9, 41.5, 46.1, 68.8, 69.2, 127.5, 129.4, 134.0, 135.5; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 477.3164 ; found: 477.3266.
(2S,4S,6R,8S)-1-(tert-Butyldiphenylsilyloxy)-2,4,6,8-tetramethyl-9-(tetrahydropyran-2’yloxy)nonane (8a)

To a solution of $\mathbf{8}(928.5 \mathrm{mg}, 2.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) were added dihydropyrane (1.85 ml , 20.5 mmol) and PPTS ($51 \mathrm{mg}, 0.205 \mathrm{mmol}$). The resulting solution was stirred at r.t. for 2 hr . The reaction was quenched with sat. aq. NaHCO_{3} solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($50: 1$ hexanes/EtOAc) afforded $\mathbf{8 a}(1.10 \mathrm{~g}, 100 \%$) as a colorless oil.
$[\alpha]_{D}{ }^{25}=-10.5^{\circ}\left(c=0.19, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3450, 2956, 2929, 2366, 1473, 1461, $1079 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$, CH_{3}), $1.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.09\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right)$, 1.47-1.80 (m, 10H, $\operatorname{THP}(6 \mathrm{H})$ and $\mathrm{CH} \times 4), 3.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})\right.$), $3.39-3.61\left(\mathrm{~m}, 4 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right.$, CH_{2} and $\operatorname{THP}(1 \mathrm{H})$), $3.87\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})), 7.35-7.71(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$; ${ }^{13}$ C-NMR (67.5 MHz, $\mathbf{C D C l}_{3}$) $\delta 16.7,16.8,17.9,18.0,19.3,19.5,19.6,20.3,20.6,20.7,25.6$, $26.8,27.0,27.1,27.4,30.7,30.8,30.9,33.1,40.6,41.4,46.1,62.0,62.2,68.8,73.8,74.0,98.6$, 99.0, 127.5, 129.5, 134.1, 135.6; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 561.3739; found: 561.3741.
(2S,4S,6R,8S)-2,4,6,8-Tetramethyl-9-(tetrahydropyran-2'-yloxy)nonan-1-ol (8b)

To a stirred solution of $\mathbf{8 a}(1.10 \mathrm{~g}, 2.05 \mathrm{mmol})$ in THF (20 ml) was added TBAF (1.0 M solution
in THF, $5 \mathrm{ml}, 5.00 \mathrm{mmol}$). The resulting solution was stirred for 3 hr , quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (10:1 hexanes/EtOAc) afforded $\mathbf{8 b}$ ($590.3 \mathrm{mg}, 96 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-13.7^{\circ}\left(c=0.29, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3422, 2957, 2922, 2871, 2359, 1457, 1377, 1261, $1201,1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(270 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right.$ x 2), 1.01-1.32 (m, 4H, $1 / 2 \mathrm{CH}_{2} \times 2$ and CH_{2}), 1.48-1.86 (m, 10H, CH x 4 and THP(6 H)), $3.15(\mathrm{~m}$, $1 \mathrm{H}, \operatorname{THP}(1 \mathrm{H})$), $3.34\left(\mathrm{dd}, 1 \mathrm{H}, J=10.2,6.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2}\right.$), $3.41-3.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})$ and $1 / 2$ $\mathrm{CH}_{2} \times 2$), $3.84\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 4.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})\right.$); ${ }^{13} \mathrm{C}$-NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) 16.7, $16.8,17.4,17.5,19.4,19.6,20.3,20.6,20.8,25.5,27.1,27.2,27.4,30.6,30.7,30.8,33.0,40.5$, 41.3, 45.8, 62.0, 68.1, 68.2, 73.6, 73.9, 98.6, 99.0; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 301.2742$; found: 301.2746 .
(2S,4S,6R,8S)-2,4,6,8-Tetramethyl-9-(tetrahydropyran-2'-yloxy)nonanal (9)

To a solution of $\mathbf{8 b}(388.6 \mathrm{mg}, 1.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$ were added MS4A $(1 \mathrm{~g})$, NMO ($321 \mathrm{mg}, 2.70 \mathrm{mmol}$) and TPAP $(24.0 \mathrm{mg}, 68.5 \mu \mathrm{~mol})$. The reaction was stirred at r.t. for 30 min , and then filtered through a silica pad. After evaporation of the filtrate, the residue was purified by flash chromatography ($40: 1$ hexanes/EtOAc) to afford 9 ($343.6 \mathrm{mg}, 89 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+1.0^{\circ}\left(c=0.14, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 2955, 2873, 1734, 1488, 1457, 1261, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right)$, 1.00-1.07 (m, 5H, $\mathrm{CH}_{2} \times 2$ and $1 / 2 \mathrm{CH}_{2}$), $1.16\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47-1.87(\mathrm{~m}, 10 \mathrm{H}$, THP (6H), CH x 3 and $1 / 2 \mathrm{CH}_{2}$), $2.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})), 3.40-3.58(\mathrm{~m}, 2 \mathrm{H}$, $1 / 2 \mathrm{CH}_{2}$ and $\left.\operatorname{THP}(1 \mathrm{H})\right), 3.85\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})), 9.57(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}$, CHO); ${ }^{13} \mathbf{C}$-NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 16.8,16.9,18.0,19.4,19.6,19.8,20.1,25.5,27.0,27.1$, $28.0,30.6,30.7,30.8,37.2,40.9,41.1,45.9,62.0,62.2,73.6,73.9,98.6,99.0,182.7$; HRMS
[FAB, m-NBA] calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 321.2405; found: 321.2391 .
($3^{\prime} S, 4 R, 4^{\prime} S, 6^{\prime} S, 8^{\prime} R, 10 ' S$)-4-Benzyl-3-[3'-hydroxy-4', $6^{\prime}, 8^{\prime}, 10^{\prime}$-tetramethyl-11'-(tetrahydropyran-2'’-yloxy)undecanoyl]-2-oxazolidinone (9a)

To a solution of samarium iodide (0.1 M solution in THF, $58.0 \mathrm{ml}, 5.80 \mathrm{mmol}$) were added 9 ($343.6 \mathrm{mg}, 1.15 \mathrm{mmol}$) and (R)-4-benzyl-3-bromoacetyl-2-oxazolidinone ($376.0 \mathrm{mg}, 1.26 \mathrm{mmol}$) in THF (11 ml) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 20 min and then treated with hexane (100 $\mathrm{ml})$ followed by silica gel $(50 \mathrm{~g})$. The mixture was allowed to warm to r.t. and stirred for 30 min . The mixture was filtered through a short plug of silica gel and concentrated in vacuo. The residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to afford $\mathbf{9 a}(550.7 \mathrm{mg}, 92 \%$) along with its epimer ($40.0 \mathrm{mg}, 6.2 \%$).
$[\alpha]_{\mathrm{D}}{ }^{26}=-43.8^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3566,2955,1785,1698,1456,1386,1199,1030 \mathrm{~cm}^{-}$
 $0.89\left(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98-1.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $1 / 2$ $\left.\mathrm{CH}_{2}\right), 1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-174\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{THP}(6 \mathrm{H}), \mathrm{CHx} 3\right.$ and $\left.1 / 2 \mathrm{CH}_{2}\right), 1.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $2.79\left(\mathrm{dd}, 1 \mathrm{H}, J=13.2,9.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 3.07\left(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{C}_{2},-\mathbf{H}\right), 3.19(\mathrm{~m}, 1 \mathrm{H}$, $\operatorname{THP}(1 \mathrm{H})), 3.31\left(\mathrm{dd}, 1 \mathrm{H}, J=13.2,2.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 3.48\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{11},-\mathbf{H}\right), 3.54(\mathrm{~m}, 1 \mathrm{H}$, $\operatorname{THP}(1 \mathrm{H})), 3.86\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{11},-\mathbf{H}\right), 4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4},-\mathbf{H}\right), 4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 4.57(\mathrm{~m}, 1 \mathrm{H}$, THP $(1 \mathrm{H})$), $4.69(\mathrm{~m}, 1 \underline{\mathrm{H}}, \mathrm{NCH}), 7.18-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 14.5$, $16.7,16.8,19.4,19.6,20.3,20.7,25.5,27.1,27.2,30.6,30.8,30.9,35.2,37.9,40.4,40.5,40.9$,
$45.6,55.1,62.2,61.9,66.3,70.2,70.3,73.7,73.9,98.6,99.0,127.3,128.9,129.3,135.1,153.4$, 173.1; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{NNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$]: 540.3301; found: 540.3309. Absolute configuration of C3 was determined by modified Mosher ester analysis.*

$\Delta \delta=\left(\delta_{S}-\delta_{R}\right)$ for (R) - and (S)-MTPA derivatives

* Ohtani, I.; Kusumi, J.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
(3S,4S,6S,8R,10S)-3-(tert-Butyldimethylsilyloxy)-4,6,8,10-tetramethyl-11-(tetrahydropyran-2'-yloxy)undecanoic acid (10)

To a $0^{\circ} \mathrm{C}$ stirred solution of $\mathbf{9 a}(453.0 \mathrm{mg}, 0.876 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{ml})$ was added 2,6-lutidine ($170 \mu \mathrm{l}, 1.49 \mathrm{mmol}$) followed by TBSOTf ($260 \mu \mathrm{l}, 1.14 \mathrm{mmol}$). After 30 min , the reaction was quenched with water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. This residue was employed in the next reaction without further purification. The resulting silyl ether was dissolved in THF (6 ml) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Lithium hydroxide ($72.9 \mathrm{mg}, 1.74 \mathrm{mmol}$) and hydrogen peroxide (30% solution in $\mathrm{H}_{2} \mathrm{O}, 590 \mu \mathrm{l}, 5.21 \mathrm{mmol}$) were added to the solution. After 3 hr , the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in
vacuo. Flash chromatography ($5: 1$ hexanes/EtOAc) afforded 10 ($347.4 \mathrm{mg}, 2$ steps 84%) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{27}=-31.5^{\circ}\left(c=0.24, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 3444, 2955, 2927, 1789, 1456, 1385, 1350, 1250, $1031 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3} \mathrm{Si}\right), 0.78-0.92$ (m, $23 \mathrm{H}, \mathrm{CH}_{3} \mathrm{x} 4, \mathrm{CH}_{3} \mathrm{CSi}$ and $1 / 2 \mathrm{CH}_{2} \times 2$), 0.95-0.92 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$ and $1 / 2 \mathrm{CH}_{2}$), 1.33-1.88 (m, $11 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}, \mathrm{CH} \times 4$ and $\left.\operatorname{THP}(6 \mathrm{H})\right), 2.42\left(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 3.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H}))$, $3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})\right.$ and $\left.1 / 2 \mathrm{C}_{11}-\mathbf{H}\right), 3.85\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{11}-\mathbf{H}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 4.57(\mathrm{~m}, 1 \mathrm{H}$, $\operatorname{THP}(1 \mathrm{H})$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta-4.7,-4.6,15.2,16.6,16.7,18.0,19.4,19.5,20.6$, 20.7, 20.8, 25.5, 25.8, 27.2, 27.3, 27.5, 30.6, 30.8, 30.9, 35.9, 39.3, 40.1, 40.4, 45.7, 61.9, 62.1, $72.5,73.8,74.0,98.6,99.0,177.9$; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 495.3481; found: 495.3489 .
(1R,2R)-1,2-Dihydroxymethylcyclopentane (11)

This diol was synthesized according to known protcol. [(a) Misumi, A.; Iwanaga, K.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 3343-3345. (b) Fujimura, O.; de la Mata, F. J.; Grubbs, R. H. Organometallics 1996, 15, 1865-1871.]
(1R,2R)-2-(4'-Methoxybenzyloxymethyl)cyclopentanecarboaldehyde (12)

To a solution of 11 ($55.0 \mathrm{mg}, 0.42 \mathrm{mmol}$) in DMF (4.2 ml) was added sodium hydride (60% in oil, $20 \mathrm{mg}, 0.47 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. After being stirred for 30 min , the resulting suspension was added $\mathrm{PMBCl}(60 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ and then warmed to r.t.. The reaction was quenched with
water, and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (7:1 hexanes/EtOAc) afforded the corresponding alcohol (111.4 mg) including unseparable impurities. To a solution of alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ was added Dess-Martin periodinane ($283 \mathrm{mg}, 0.67$ $\mathrm{mmol})$. After being stirred at r.t. for 30 min , the reaction mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. aq. NaHCO_{3}, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (20:1 hexanes/EtOAc) afforded $\mathbf{1 2}$ ($94.5 \mathrm{mg}, 2$ steps 89%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{21}=-25.9^{\circ}\left(c=0.27, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2955,2854,1721,1613,1513,1247,1095,1034 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-$ NMR (270 MHz, CDCl $_{3}$) $\delta 1.31\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 1.66-1.86(\mathrm{~m}, 3 \mathrm{H}$, $1 / 2 \mathrm{C}_{3}-\mathbf{H}$ and $\left.\mathrm{C}_{5}-\mathbf{H}\right), 2.33-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{1}-\mathbf{H}\right.$ and $\left.\mathrm{C}_{2}-\mathbf{H}\right), 3.25(\mathrm{dd}, 1 \mathrm{H}, J=8.9,7.3 \mathrm{~Hz}, 1 / 2$ $\mathrm{CH}_{2} \mathrm{OPMB}$), 3.39 (dd, $1 \mathrm{H}, J=8.9,5.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.36 (s, 2H, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 9.75(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, CHO); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 24.9,26.5,29.3,41.2,55.2,55.7,72.6,72.9,113.7$, 129.1, 130.4, 159.1, 203.7; HRMS [EI] calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 248.1412; found: 248.1407 .

(1S,1'R,2'R)-1-[2'-(4'-Methoxybenzyloxymethyl)cyclopentyl]buta-3-en-1-ol (13)

To a stirred solution of $12(111.8 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ was added allyltrimethylsilane ($110 \mu \mathrm{l}, 0.67 \mathrm{mmol}$) and magnesium bromide diethyl etherate $(116.4 \mathrm{mg}$, 0.45 mmol) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 7 hr , then quenched with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (25:1 hexanes/EtOAc) afforded $\mathbf{1 3}$ ($117.3 \mathrm{mg}, 90 \%$) along with its epimer ($6.0 \mathrm{mg}, 4.5 \%$).
$[\alpha]_{\mathrm{D}}{ }^{21}=+6.1^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3432,2950,2865,1613,1513,1248,1091,1036 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-N M R(270 ~ M H z, ~ C D C l ~ 3) ~ \delta ~ 1.18-1.33 ~(m, ~ 2 H, ~ 1 / 2 ~ C H 2 ~ x ~ 2), ~ 1.47 ~(m, ~ 1 H, ~ 1 / 2 ~ C H 2), ~ 1.51-~$ $1.63\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}_{1}-\mathbf{- H}\right), 1.72-1.84\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 2\right), 2.02-2.17\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{C}_{2}-\mathbf{H}\right.$
and $\left.\mathrm{C}_{2}-\mathbf{H}\right), 2.39\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{2}-\mathbf{H}\right), 3.20\left(\mathrm{t}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1}-\mathbf{H}\right)$, $3.53\left(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 5.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 6.89(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 24.5,29.9$, 30.9, 40.4, 43.9, 51.6, 55.2, 72.8, 74.2, 74.9, 113.8, 116.4, 129.4, 129.6, 135.7, 159.2; HRMS [EI] calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ [M $\left.{ }^{+}\right]:$290.1882; found: 290.1887.
Stereochemical assignment of the newly created asymmetric center was achieved by Mosher's method.

$\Delta \delta=\left(\delta_{S}-\delta_{R}\right)$ for (R) - and (S)-MTPA ester of $\mathbf{1 3}$

($\mathbf{1}^{\prime} R, \mathbf{2}^{\prime} R, 4 S$)-4-(tert-Butyldimethylsilyloxy)-4-[2'-(4''-methoxybenzyloxymethyl)-

 cyclopentyl]butene (13a)

To a solution of $\mathbf{1 3}(1.91 \mathrm{~g}, 6.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(66 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added 2,6-lutidine $(1.1 \mathrm{ml}$, $9.92 \mathrm{mmol})$ followed by TBSOTf ($2.0 \mathrm{ml}, 8.59 \mathrm{mmol}$). After 1 hr , the reaction was quenched with water, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (50:1 hexanes/EtOAc) afforded $\mathbf{1 3 a}(2.65 \mathrm{~g}, 99 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=-8.6^{\circ}\left(c=0.27, \mathrm{CHCl}_{3}\right)$; IR (KBr) 2953, 2856, 1471, 1249, $1095 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.23-1.36\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right.$ and $1 / 2$ $\left.\mathrm{C}_{5},-\mathbf{H}\right), 1.44-1.74\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{1},-\mathbf{H}, 1 / 2 \mathrm{C}_{3},-\mathbf{H}, \mathrm{C}_{4},-\mathbf{H}\right.$ and $\left.1 / 2 \mathrm{C}_{5},-\mathbf{H}\right), 2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2},-\mathbf{H}\right), 2.26(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 3,18\left(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right.$), $3.46(\mathrm{dd}, 1 \mathrm{H}, J=8.6,4.9 \mathrm{~Hz}, 1 / 2$ $\mathrm{CH}_{2} \mathrm{OPMB}$), $3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.40\left(\mathrm{~d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46$
$\left(\mathrm{d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{1}-\mathrm{H}\right), 5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, $\mathrm{ArH}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta-4.6,-4.2,18.0,25.5,25.9$, $29.5,30.5,39.8,41.0,46.8,55.2,72.6,74.7,75.5,113.7,116.5,129.1,130.9,135.2,150.0$;

HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}-\mathrm{H}^{+}\right]$: 403.2668; found: 403.2669.
($\mathbf{1}^{\prime} R, \mathbf{2}^{\prime} R, 3 S$)-3-(tert-Butyldimethylsilyloxy)-3-[2'-(4''-methoxybenzyloxymethyl)cyclopentyl]propanal (13b)

	1. cat. $\mathrm{OsO}_{4}, \mathrm{NMO}$ Acetone- $\mathrm{H}_{2} \mathrm{O}$, r.t. 2. NaIO_{4} $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$	
	(2 steps 100\%)	

To a solution of $\mathbf{1 3 a}(515.8 \mathrm{mg}, 1.27 \mathrm{mmol})$ in acetone (12 ml) and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ were added osmium tetraoxide ($32.4 \mathrm{mg}, 0.127 \mathrm{mmol}$) and NMO ($600 \mathrm{mg}, 5.10 \mathrm{mmol}$), and the reaction was stirred at r.t. for 4 hr . The reaction mixture was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the corresponding diol as a yellow oil.

The crude diol was dissolved in $\mathrm{MeOH}(18 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{ml})$. To the reaction mixture was added sodium metaperiodate ($545 \mathrm{mg}, 2.55 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 hr , then quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($40: 1$ hexanes/EtOAc) afforded 13b ($532.7 \mathrm{mg}, 2$ steps 100%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{22}=-14.4^{\circ}\left(c=0.36, \mathrm{CHCl}_{3}\right)$; IR (KBr) 2954, 2857, 1725, 1614, 1513, 1249, 1093, $1037 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right)$, 1.32-1.75 (m, 6H, $\mathrm{C}_{3},-\mathbf{H}, \mathrm{C}_{4},-\mathbf{H}$ and $\left.\mathrm{C}_{5},-\mathbf{H}\right), 1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1},-\mathbf{H}\right), 2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2},-\mathbf{H}\right), 2.48$ (ddd, $\left.1 \mathrm{H}, J=15.8,5.9,2.6 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{2}-\mathbf{H}\right), 2.58\left(\mathrm{ddd}, 1 \mathrm{H}, J=15.8,4.9,1.7 \mathrm{~Hz}, 1 / 2 \mathrm{C}_{2}-\mathbf{H}\right), 3.31(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OPMB}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}, \mathrm{ArH}$), 7.24 (d, 2H, ArH), 9.73 (m, 1H, CHO); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-4.6,17.9$, $25.2,25.8,28.0,30.3,41.0,48.6,48.7,55.2,70.9,72.8,74.5,113.7,129.2,130.6,159.1,202.5 ;$

HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}-\mathrm{H}^{+}\right]$: 405.2461; found: 405.2451.
($\mathbf{1}^{\prime}$ R, $\mathbf{2}^{\prime}$ R,5S)-5-(tert-Butyldimethylsilyloxy)-5-[2'-(4''-methoxybenzyloxymethyl)-cyclopentyl]penta-2E-enal (14)

To a solution of $\mathbf{1 3 b}(20.0 \mathrm{mg}, 49.2 \mu \mathrm{~mol})$ in benzene (1.0 ml) was added triphenylphosphoranylidene acetoaldehyde ($45.0 \mathrm{mg}, 98.5 \mu \mathrm{~mol}$), and the resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 2 days. The solvent was then removed in vacuo and the residue was purified by flash chromatography ($30: 1$ hexanes/EtOAc) to afford $\mathbf{1 4}(15.5 \mathrm{mg}, 73 \%$) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}=+8.3^{\circ}\left(c=0.35, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2953,2857,1694,1513,1249,1091,1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR (270 MHz, CDCl ${ }_{3}$) $\delta 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right)$, 1.28-1.71(m, $7 \mathrm{H}, \mathrm{C}_{3},-\mathbf{H}, \mathrm{C}_{4}-\mathbf{H}, \mathrm{C}_{5},-\mathbf{H}$ and $\left.\mathrm{C}_{1},-\mathbf{H}\right), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2},-\mathbf{H}\right), 2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 3.22$ (t, 1H, $J=8.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}$), 3.39 (dd, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}$), $3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5}{ }^{-}\right.$ H), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.10\left(\mathrm{dd}, 1 \mathrm{H}, J=15.5,7.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathbf{H}\right), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right)$, $7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 9.47(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{CHO}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta$ -$4.6,-4.3,18.0,25.2,25.8,29.2,30.3,38.4,41.4,47.7,55.2,72.7,74.5,74.6,113.7,129.2,130.7$, 134.7, 155.2, 159.1, 193.9; HRMS [EI] calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}^{+}\right]: 432.2696$; found: 432.2702 .
(1'R,2'R,7S)-2-Bromo-7-(tert-butyldimethylsilyloxy)-7-[2'-(4''-methoxybenzyloxy-methyl)cyclopentyl]hepta-2E,4Z-dienenitrile (14a)

To a solution of $14(39.8 \mathrm{mg}, 92.1 \mu \mathrm{~mol})$ and diethyl bromo(cyano)methylphosphate (47.0 mg , $184 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(1 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ were added DBU $(20 \mu \mathrm{l}, 138 \mu \mathrm{~mol})$ and lithium chloride (6.0
$\mathrm{mg}, 138 \mu \mathrm{~mol}$). The solution was stirred for 2 hr , then quenched with sat. aq. NaHCO_{3} solution. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($60: 1$ hexanes/EtOAc) afforded 14a ($47.3 \mathrm{mg}, 96 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+31.0^{\circ}\left(c=0.47, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) 2952, 2856, 2217, 1614, 1513, 1248, $1078 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR (270 MHz, $\mathbf{C D C l}_{3}$) $\delta 0.03$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.88 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}$), $1.25-1.71\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}_{3},-\mathbf{H}, \mathrm{C}_{4},-\mathbf{H}, \mathrm{C}_{5},-\mathbf{H}\right.$ and $\left.\mathrm{C}_{1},-\mathbf{H}\right), 2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2},-\mathbf{H}\right), 2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}-\mathbf{H}\right), 3.20$ $\left(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.39\left(\mathrm{dd}, 1 \mathrm{H}, J=8.6,5.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{7}-\mathbf{H}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 6.36\left(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.6 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, $\mathrm{ArH}), 7.10\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7,24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(67.5 \mathrm{MHz}$, $\mathbf{C D C l}_{3}$) $\delta-4.6,-4.3,17.9,25.2,25.8,29.3,30.3,38.8,41.3,47.4,55.1,72.6,74.5,74.7,84.1$, 113.6, 114.6, 127.6, 129.1, 130.7, 143.5, 149.7, 159.0; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{NBrSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 556.1858$; found: 556.1855.
diethyl bromo(cyano)methylphosphate $\left[(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Br}) \mathrm{CN}\right]$ was prepared according to known protocol. (Iorga, B.; Ricard, L.; Savignac, P. J. Chem. Soc., Perkin Trans. 1, 2000, 3311.)
(1'R,2'R,7S)-2-Bromo-7-[2'-(4''-methoxybenzyloxymethyl)-cyclopentyl]-7-hydroxyhept-2Z,4E-dienenitrile (15)

14a ($184.0 \mathrm{mg}, 345 \mu \mathrm{~mol}$) was placed in a solution of HF•pyridine ($500 \mu \mathrm{l}$) in THF ($500 \mu \mathrm{l}$) and pyridine $(500 \mu \mathrm{l})$ and stirred at r.t. for 2 days. The resulting solution was filtered through a short plug of silica gel and concentrated in vacuo. The residue was purified by flash chromatography (7:1 hexanes/EtOAc) to afford 15 ($135.2 \mathrm{mg}, 94 \%$).
$[\alpha]_{\mathrm{D}}{ }^{24}=+11.3^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3406, 2949, 2222, 2216, 1613, 1513, 1248, 1075, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 1.25\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 1.41-1.67\left(\mathrm{~m}, 5 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 2\right.$, $\mathrm{C}_{1},-\mathbf{H}$ and $\left.\mathrm{C}_{4}-\mathbf{H}\right), 1.77\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2},-\mathbf{H}\right), 2.24\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{6}-\mathbf{H}\right), 2.47(\mathrm{~m}$,
$\left.1 \mathrm{H}, 1 / 2 \mathrm{C}_{6}-\mathrm{H}\right), 3.14\left(\mathrm{dd}, 1 \mathrm{H}, J=10.6,8.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 3.56(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=8.6,4.0 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.33-6.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{4}-\mathbf{H}$ and $\left.\mathrm{C}_{5}-\mathbf{H}\right), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, ArH) ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{C N M R}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 24.3,29.6,30.9,39.6,44.0,52.2,55.1,72.8,74.0,74.5$, 83.8, 113.7, 114.6, 127.1, 129.1, 129.4, 144.3, 150.0, 159.2; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{NBrNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 442.0994$; found: 442.1002 .
($1 \times S, 1 " ' R, 2 "$ ' $R, 3 S, 4 S, 6 S, 8 R, 10 S)$-3-(tert-Butyldimethyl-silyloxy)-4,6,8,10-tetramethyl-11-(tetrahydropyran-2'-yloxy)undecanoic acid 6"-bromo-6"-cyano-1-[2"'(4""-methoxybenzyloxymethyl)cyclopentyl]hexa-3" $E, 5$, E-dienyl ester (15a)

To a stirred solution of $\mathbf{1 0}(113.0 \mathrm{mg}, 0.239 \mathrm{mmol})$ in benzene $(2.4 \mathrm{ml})$ was added triethylamine ($67 \mu \mathrm{l}, 0.479 \mathrm{mmol}$) followed by $2,4,6$-trichlorobenzoyl chloride ($41 \mu \mathrm{l}, 0.263 \mathrm{mmol}$) at r.t.. The resulting solution was stirred for 1 hr , then treated with a solution of $\mathbf{1 5}(130.4 \mathrm{mg}, 0.311 \mathrm{mmol})$ in benzene (1.4 ml) and DMAP ($38.0 \mathrm{mg}, 0.311 \mathrm{mmol}$) in benzene (1.0 ml), and stirred for additional 30 min . The reaction was quenched with sat. aq. NaHCO_{3} solution and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($25: 1$ hexanes/EtOAc) afforded 15a ($203.5 \mathrm{mg}, 97 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{24}=-7.4^{\circ}\left(c=0.76, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2957,2927,2856,1732,1259,1092,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.80-0.92 (m, 23H, $\mathrm{CH}_{3} \mathrm{x}$ $4,1 / 2 \mathbf{C H}_{2} \times 2$ and $\left.\mathrm{CH}_{3} \mathrm{CSi}\right), 0.99-1.42\left(\mathrm{~m}, 5 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 3\right.$ and CH_{2}), 1.46-1.94 (m, 16 H , THP $(6 \mathrm{H}), \mathrm{CH}_{2} \times 2, \mathrm{CH} \times 5$ and $1 / 2 \mathrm{CH}_{2}$), $2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}, \ldots-\mathbf{H}\right), 2.31-2.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right.$ and $\mathrm{C}_{2},-$ H), 3.10-3.39 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OPMB}\right)$, $3.45-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})\right.$ and $\left.1 / 2 \mathrm{C}_{11}-\mathbf{H}\right)$, $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{11}-\mathbf{H}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 4.41(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{THP}(1 \mathrm{H})), 4.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1},-\mathbf{H}\right), 6.11$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{3}{ }^{\prime \prime}-\mathbf{H}\right), 6.37\left(\mathrm{dd}, 1 \mathrm{H}, J=15.2,11.2 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.07(\mathrm{~d}$, $1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{C}_{5^{\prime}}-\mathbf{H}$), $7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-4.7$, $4.4,14.5,16.4,16.5,18.0,19.4,19.5,20.4,20.6,25.0,25.5,25.8,26.9,27.0,27.2,29.6,30.1$, $30.6,30.8,30.9,35.4,36.4,39.6,39.9,40.8,40.9,41.4,45.1,45.7,55.1,61.9,62.0,71.5,72.6$, $73.7,73.9,74.0,75.6,85.0,98.6,98.9,113.6,114.4,128.0,128.9,130.5,141.5,149.3,159.0$, 171.5; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{NBrSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 896.4472; found: 896.4473.
(1'S,1' $R, 2 '$ ' $R, 3 S, 4 S, 6 S, 8 R, 10 S)$-3-(tert-Butyldimethylsilyloxy)-11-hydroxy-4,6,8,10tetramethylundecanoic acid 6'-bromo-6'-cyano-1'-[2"-(4"'-methoxybenzyloxymethyl)-cyclopentyl]hexa-3'E,5'E-dienyl ester (15b)

To a solution of 15a (195.0 mg, 0.223 mmol$)$ in EtOH (5.0 ml) was added PPTS ($28.0 \mathrm{mg}, 0.112$ mmol), and the resulting solution was stirred at $50^{\circ} \mathrm{C}$. After 10 hr , the reaction was diluted with water, and the aqueous phase was extracted with EtOAc. The combined organic extracts were
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (7:1 hexanes/EtOAc) afforded $\mathbf{1 5 b}$ ($164.3 \mathrm{mg}, 93 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-10.2^{\circ}\left(c=0.31, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 3500,2956,2927,1733,1250,1172,1084,1036 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.80-0.91(\mathrm{~m}, 24 \mathrm{H}$, $\mathrm{CH}_{3} \times 4,1 / 2 \mathrm{CH}_{2} \times 3$ and $\mathrm{CH}_{3} \mathrm{CSi}$), 0.94-1.41 (m, $4 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 4$), $1.45-1.81\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$, CH x 4 and $1 / 2 \mathbf{C H}_{2}$), $1.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.31-2.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right.$ and $\left.\mathrm{C}_{2},-\mathbf{H}\right)$, 3.24-3.47 (m, 4H, $\mathrm{C}_{11}-\mathbf{H}$ and $\mathrm{CH}_{2} \mathrm{OPMB}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 4.37(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.41\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1} \cdot \mathbf{- H}\right), 6.10(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{3}-\mathbf{H}\right), 6.36\left(\mathrm{dd}, 1 \mathrm{H}, J=14.8,11.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.2 \mathrm{~Hz}, \mathrm{C}_{5}-\mathbf{H}\right), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta-4.7,-4.4,14.4$, $15.9,18.0,20.5,20.6,25.0,25.8,27.0,27.2,29.6,30.1,33.1,35.4,36.5,39.5,39.6,41.0,41.5$, $45.1,45.7,55.1,69.1,71.7,72.7,73.9,75.7,85.0,113.7,114.4,128.0,129.0,130.5,141.5,149.3$, 159.0, 171.6; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{NBrSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$]: 812.3897; found: 812.3936.
(1 ' $S, 1 " R, 2 ’ R, 3 S, 4 S, 6 S, 8 R, 10 S)$-3-(tert-Butyldimethylsilyloxy)-4,6,8,10-tetramethy-11oxoundecanoic acid 6'-bromo-6'-cyano-1'-[2"-(4"'-methoxybenzyloxymethyl)-cyclopentyl]hexa-3'E,5'Z-dienyl ester (2)

To a solution of $\mathbf{1 5 b}(153.2 \mathrm{mg}, 0.194 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{ml})$ were added dried MS4A $(1 \mathrm{~g})$, TPAP ($3.4 \mathrm{mg}, 9.70 \mu \mathrm{~mol}$) and NMO $(45.6 \mathrm{mg}, 0.388 \mathrm{mmol})$ at r.t. The resulting solution was stirred for 30 min and filtered through a silica pad. After evaporation of the filtrate, the residue was purified by flash chromatography ($15: 1$ hexanes/EtOAc) to afford $2(120.3 \mathrm{mg}, 79 \%$) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-3.7^{\circ}\left(c=0.19, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2955,2929,2856,1731,1513,1462,1249,1084$,
$\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$-NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.80-0.91 (m , $21 \mathrm{H}, \mathrm{CH}_{3} \times 3,1 / 2 \mathrm{CH}_{2} \times 3$ and $\left.\mathrm{CH}_{3} \mathrm{CSi}\right), 0.93-1.10\left(\mathrm{~m}, 2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 2\right), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{C}_{10}-\mathrm{CH}_{3}$), 1.18-1.43 (m, $2 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \times 2$), 1.47-1.76 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 2, \mathrm{CH} \times 4$ and $1 / 2 \mathrm{CH}_{2}$), 1.86 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.30-2.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OPMB}\right), 3.23-3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2}\right.$, , H), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}\right), 4.40\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1},-\mathbf{H}\right), 6.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3},-\mathbf{H}\right), 6.36(\mathrm{dd}, 1 \mathrm{H}, J=15.2,11.2 \mathrm{~Hz}$, $\left.\mathrm{C}_{4},-\mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.07\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{C}_{5},-\mathbf{H}\right), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, $\operatorname{ArH}), 9.61(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CHO})$, ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta-4.7,-4.4,13.0,14.6,18.0$, $20.4,20.5,25.0,25.8,27.3,27.4,29.7,30.2,35.4,36.3,36.5,39.5,40.7,41.5,44.1,45.1,45.2$, $55.2,71.5,72.7,74.0,75.6,85.1,113.6,114.4,128.1,129.0,130.5,141.5,149.3,159.0,171.6$, 205.1; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{NBrSiNa}$ [$\mathrm{M}+\mathrm{Na}^{+}$]: 810.3740; found: 810.3770.
$\left(1^{\prime} R, 2 S, 2 ' R, 8 R, 9 S, 11 R, 13 S, 15 S, 16 S\right)-16-(t e r t-B u t y l d i m e t h y l-s i l y l o x y)-8-h y d r o x y-2-\left[2 '-\left(4{ }^{\prime}{ }^{\prime}-\right.\right.$ methoxybenzyloxymethyl)cyclopentyl]-9,11,13,15-tetramethyl-18-oxo-oxaoctadeca-4E,6Z-diene-7-carbonitrile (19) (Intramolecular Reformatsky reaction)

To a solution of $\mathrm{SmI}_{2}(0.1 \mathrm{M}$ solution in THF, $20 \mathrm{ml}, 2.00 \mathrm{mmol}$) was added HMPA ($240 \mu \mathrm{l}, 1.37$ $\mathrm{mmol})$ at r.t. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$, and $2(54.2 \mathrm{mg}, 68.9 \mu \mathrm{~mol})$ was added
dropwise over 30 min . To the reaction was added hexane (20 ml) and silica gel (20 g), and the resulting mixture was stirred at r.t. for 20 min . The mixture was filtered through a short plug of silica gel and concentrated in vacuo. The residue was purified by flash chromatography ($10: 1$ to 5:1 hexanes/EtOAc) to afford $16(6.1 \mathrm{mg}, 13 \%), \mathbf{1 7}$ ($10.5 \mathrm{mg}, 22 \%$), $\mathbf{1 8}$ ($9.2 \mathrm{mg}, 19 \%$), and desired 19 ($10.2 \mathrm{mg}, 21 \%$).

19: $[\alpha]_{\mathrm{D}}{ }^{24}=-19.0^{\circ}\left(c=0.54, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3470, 2956, 2926, 2853, 1737, 1513, 1463, 1249, $1079,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.79$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right)$, $1.03\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.76-1.41\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 4\right.$ and $\left.1 / 2 \mathrm{CH}_{2}\right), 1.52-2.20(\mathrm{~m}, 7 \mathrm{H}, 1 / 2$ $\mathrm{CH}_{2}, \mathrm{CH}_{2}$ and $\mathrm{CH} \times 4$), 2.26-2.25 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 2$ and $\mathrm{CH} \times 2$), $3.17(\mathrm{dd}, 1 \mathrm{H}, J=8.9,7.6 \mathrm{~Hz}$, $1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}$), $3,34\left(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right.$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{16}-\mathrm{H}\right), 4.08\left(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{C}_{8}-\mathbf{H}\right), 4.38\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 6.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 6.30(\mathrm{dd}, 1 \mathrm{H}, J=14.8,10.9 \mathrm{~Hz}$, $\left.\mathrm{C}_{5}-\mathbf{H}\right), 6.82\left(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, ArH); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta-5.4,-4.4,14.9,17.9,18.6,19.8,20.7,25.0,25.9,26.1$, $26.2,30.0,30.3,35.3,35.6,36.2,36.4,37.6,42.7,43.4,43.6,48.1,55.3,72.6,72.9,73.8,74.0$, 75.2, 77.2, 113.8, 115.5, 126.9, 128.9, 130.7, 139.7, 144.2, 159.1, 171.5; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{O}_{6} \mathrm{NSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 732.4635$; found: 732.4639.

18: $[\alpha]_{\mathrm{D}}{ }^{24}=-17.6^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3454, 2955, 2926, 2854, 1737, 1513, 1463, 1248, $1175,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.77$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.78\left(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.05\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.72-1.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.1 / 2 \mathrm{CH}_{2}\right), 1.21-2.12\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}_{2}\right.$ x $3,1 / 2 \mathbf{C H}_{2}$ and $\mathbf{C H} \times 6$), 2.18-2.40 (m, $4 \mathrm{H}, \mathrm{C}_{3}-\mathbf{H}$ and $\mathrm{C}_{17}-\mathbf{H}$), $3.27(\mathrm{dd}, 1 \mathrm{H}, J=8.9,7.3 \mathrm{~Hz}, 1 / 2$ $\mathrm{CH}_{2} \mathrm{OPMB}$), $3.36\left(\mathrm{dd}, 1 \mathrm{H}, J=8.9,5.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{16}-\mathbf{H}\right), 4.40\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=3.3 \mathrm{~Hz}, \mathrm{C}_{8}-\mathbf{H}\right), 5.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 5.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right), 6.38\left(\mathrm{dd}, 1 \mathrm{H}, J=14.2,11.5 \mathrm{~Hz}, \mathrm{C}_{5}-\right.$ H), $6.74\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH})$; ${ }^{13} \mathbf{C}-$ NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta-5.2,-4.3,12.4,17.9,18.5,19.9,20.7,25.0,25.7,25.9,26.0$, $29.4,30.2,35.7,35.9,37.0,37.4,37.5,41.6,43.8,46.4,48.4,55.2,72.0,72.8,73.2,74.3,74.7$,
77.2, 112.4, 113.8, 126.7, 129.0, 130.7, 142.2, 145.8, 159.1, 171.3; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{O}_{6} \mathrm{NSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 732.4635; found: 732.4642.
NOE experiments were employed to verify the stereochemical assignment for the olefin isomers.

17

18

19

NOE experiments of $\mathbf{1 7 , 1 8}$ and 19
$\left(1^{\prime} R, 2 S, 2 ' R, 8 R, 9 S, 11 R, 13 S, 15 S, 16 S\right)$-16-(tert-Butyldimethyl-silyloxy)-8-hydroxy-2-[2'-(4'’-methoxybenzyloxymethyl)cyclopentyl]-9,11,13,15-tetramethyl-18-oxo-oxaoctadeca-4E,6Z-diene-7-carbonitrile (19) (Oxidation/Reduction)

To a solution of $\mathbf{1 8}(13.2 \mathrm{mg}, 18.6 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added Dess-Martin periodinane $(22.6 \mathrm{mg}, 55.9 \mu \mathrm{~mol})$. After stirred for 30 min , the reaction was quenched by sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. aq. NaHCO_{3} solutions, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was subjected to the next reaction.

To a solution of the crude ketone in $\mathrm{MeOH}(1 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added cerium chloride (14.0 mg , $37.2 \mu \mathrm{~mol}$) followed by sodium borohydride ($1.4 \mathrm{mg}, 37.2 \mu \mathrm{~mol}$). The reaction was stirred for 10 min, and then poured into water. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash
chromatography ($8: 1$ hexanes/EtOAc) afforded $\mathbf{1 9}$ ($8.5 \mathrm{mg}, 2$ steps 66%) and $\mathbf{1 8}(0.7 \mathrm{mg}, 2$ steps 5.3%) as a yellow oil.
($\left.\mathbf{'}^{\prime} R, 2 S, 2 ' R, 8 R, 9 S, 11 R, 13 S, 15 S, 16 S\right)-9,16-B i s(t e r t-b u t y l d i m e t h y l s i l y l o x y)-2-[2 '-(4 ' י-$ methoxybenzyloxymethyl)cyclopentyl]-9,11,13,15-tetramethyl-18-oxo-oxaoctadeca-4E,6Z-diene-7-carbonitrile (19a)

To a $0^{\circ} \mathrm{C}$ cooled solution of $\mathbf{1 9}(13.1 \mathrm{mg}, 18.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{l})$ was added 2,6-lutidine ($4 \mu \mathrm{l}, 31.4 \mu \mathrm{~mol}$) followed by TBSOTf ($6 \mu \mathrm{l}, 24.0 \mu \mathrm{~mol}$). The resulting solution was then stirred at $0^{\circ} \mathrm{C}$ for 1 hr . The reaction was poured into water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($25: 1$ hexanes/EtOAc) afforded 19a (11.4 mg, 75\%) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-37.8^{\circ}\left(c=0.69, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}(\mathbf{K B r}) 2956,2928,2856,1738,1612,1513,1250,1084 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right)$, 0.12 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$), 0.78-1.20 (m, $17 \mathrm{H}, \mathrm{CH}_{3} \times 4, \mathrm{CH}_{2} \times 2$ and $1 / 2 \mathrm{CH}_{2}$), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right)$, $0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 1.23-2.09\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{2} \times 3,1 / 2 \mathrm{CH}_{2}\right.$ and $\left.\mathbf{C H} \times 4\right), 2.16-2.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{17}{ }^{-}\right.$ $\mathbf{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}$ and $\left.\mathbf{C H} \times 2\right), 2.52\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right), 3.17\left(\mathrm{dd}, 1 \mathrm{H}, J=8.6,8.3 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right)$, $3.35\left(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98-4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{16}-\mathrm{H}\right), 4.39\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43\left(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 5.02(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{2}-\mathbf{H}\right), 6.09-6.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}-\mathbf{H}\right.$ and $\left.\mathrm{C}_{5}-\mathbf{H}\right), 6.75\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathbf{H}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}, \mathrm{ArH}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta-5.6,-4.9,-4.6,-3.5$, $15.3,17.9,18.1,18.5,20.0,20.7,22.6,25.0,25.6,25.7,26.1,26.2,29.7,30.0,30.2,35.6,35.9$, $36.3,37.1,42.9,43.5,48.1,55.2,72.6,73.3,73.9,74.0,75.3,77.2,113.8,118.8,127.1,129.0$, 130.7, 139.0, 142.9, 159.1, 171.5; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{48} \mathrm{H}_{81} \mathrm{O}_{6} \mathrm{NSi}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$:
846.5500; found: 846.5494.
$\left(1^{\prime} R, 2 S, 2 ' R, 8 R, 9 S, 11 R, 13 S, 15 S, 16 S\right)-9,16-B i s(t e r t-b u t y l d i m e t h y l-s i l y l o x y)-2-(2 '-$ hydorxymethylcyclopentyl)-9,11,13,15-tetramethyl-18-oxo-oxaoctadeca-4E,6Z-diene-7carbonitrile (19b)

To a solution of 19a $(11.4 \mathrm{mg}, 13.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{l})$ was added DDQ $(3.7 \mathrm{mg}, 16.6 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min , and then poured into water. The aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography ($8: 1$ hexanes/EtOAc) afforded $\mathbf{1 9 b}(8.8 \mathrm{mg}, 90 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-37.2^{\circ}\left(c=0.36, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3447, 2956, 2927, 2856, 1740, 1464, 1386, 1292, $1253,1081 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}\right.$, CDCl $_{3}$) $\delta-0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.11$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.80\left(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.85\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CSi}\right), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.3$ $\mathrm{Hz}, \mathrm{CH}_{3}$), 0.67-1.18 (m, 5H, $\mathrm{CH}_{2} \times 2$ and $1 / 2 \mathrm{CH}_{2}$), 1.23-2.09 (m, $13 \mathrm{H}, \mathrm{CH}_{2} \times 3,1 / 2 \mathrm{CH}_{2}$ and CH x 6), 2.21-2.39 (m, 3H, $\mathrm{C}_{17}-\mathbf{H}$ and $1 / 2 \mathrm{C}_{3}-\mathbf{H}$), $2.54\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{C}_{3}-\mathbf{H}\right), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=10.6$, $6.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}$), $3.51\left(\mathrm{dd}, 1 \mathrm{H}, J=10.6,5.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{OH}\right), 3.99\left(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{C}_{8}-\mathbf{H}\right)$, $4.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{16}-\mathrm{H}\right), 5.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathbf{H}\right), 6.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 6.28(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.6 \mathrm{~Hz}$, $\left.\mathrm{C}_{5}-\mathbf{H}\right), 6.75\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathbf{H}\right){ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($67.5 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta-5.6,-4.9,-4.6,-3.4$, $15.3,17.9,18.1,18.4,20.0,20.7,22.7,25.1,25.7,26.1,26.2,29.5,29.7,30.5,35.6,35.9,36.2$, $37.1,43.4,43.5,45.5,48.0,66.7,73.3,73.9,75.4,77.2,118.7,127.2,138.6,142.8,171.4$; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{40} \mathrm{H}_{73} \mathrm{O}_{5} \mathrm{NSi}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 726.4925; found: 726.4924.

Borrelidin (1)

To a solution of $\mathbf{1 9 b}(8.8 \mathrm{mg}, 12.5 \mu \mathrm{~mol})$ at r.t. was added Dess-Martin periodinane (10.6 mg , $25.0 \mu \mathrm{~mol}$). The mixture was stirred for 30 min . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solutions, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting crude aldehyde was subjected to the next reaction without further purification.

The crude aldehyde was dissolved in t - $\mathrm{BuOH}(250 \mu \mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(250 \mu \mathrm{l})$ at r.t.. 2-Methyl-2butene ($7 \mu \mathrm{l}, 62.8 \mu \mathrm{~mol}$), sodium phosphate ($5.8 \mathrm{mg}, 37.5 \mu \mathrm{~mol}$) and sodium chlorite (3.3 mg , $37.5 \mu \mathrm{~mol}$) was added to the solution. After 30 min , the reaction was poured into water and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the corresponding carboxylic acid.

To a solution of the crude acid in THF (1.0 ml) and pyridine (1.0 ml) was added dropwise HF-pyridine $(500 \mu \mathrm{l})$. The solution was stirred for 2 days. The resulting solution was filtered through a short plug of silica gel and concentrated in vacuo. Flash chromatography ($30: 1$ hexanes/EtOAc) afforded borrelidin (1) ($5.2 \mathrm{mg}, 3$ steps 85%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{27}=-26.7^{\circ}(c=0.10, \mathrm{EtOH}) ;$ m.p. $140-142^{\circ} \mathrm{C}$; IR (KBr) 3446, 2924, 2853, 1717, 1465, 1275, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 0.73\left(\mathrm{~m}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2}\right), 0.80\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89-$
$1.44\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 1.50-1.71(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \times 3), 1.75-2.11\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 2,1 / 2 \mathrm{CH}_{2}\right.$ and CH$)$, $2.32\left(\mathrm{dd}, 1 \mathrm{H}, J=16.8,2.3 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2}\right), 2.44\left(\mathrm{dd}, 1 \mathrm{H}, J=16.8,9.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2}\right), 2.49-2.78(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}$ and $\left.\mathrm{CH} \times 2\right), 3.87\left(\mathrm{dt}, 1 \mathrm{H}, J=9.9,2.3 \mathrm{~Hz}, \mathrm{C}_{16}-\mathbf{H}\right), 4.11\left(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{8}-\mathbf{H}\right), 4.98$ $\left(\mathrm{dt}, 1 \mathrm{H}, J=10.6,3.3 \mathrm{~Hz}, \mathrm{C}_{2}-\mathbf{H}\right), 6.20\left(\mathrm{ddd}, 1 \mathrm{H}, J=14.5,9.2,5.3 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.39(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.14.5,11.2 \mathrm{~Hz}, \mathrm{C}_{5}-\mathbf{H}\right), 6.83\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{C}_{6}-\mathbf{H}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{6 7 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 14.9$, $16.9,18.2,20.1,25.2,26.2,27.1,29.7,31.2,35.2,35.6,35.9,37.4,39.3,43.0,45.8,47.8,48.4$, 69.8, 73.1, 77.2, 115.9, 118.2, 127.0, 138.5, 144.0, 172.2, 180.6; HRMS [FAB, m-NBA] calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 512.2988$; found: 512.2978.

