Supporting Information

Solid-Phase Intramolecular *N*-Acyliminium Pictet-Spengler Reactions as Crossroads to Scaffold Diversity

Thomas E. Nielsen and Morten Meldal*

Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500

Valby, Denmark

E-mail address of the corresponding author: <u>mpm@crc.dk</u>

Contents:

Experimental General methods	S2
1H NMR Spectra	
Compounds 2e-g	S4
Compounds 14a-c	S 5
Compounds 4a, 18a-b	S6
Compounds 18c-e	S7
Analytical RP-HPLC Chromatograms	
Compounds 4a-g	S8
Compounds 16a-g	S9
Compounds 16h-i	S10

General Methods. All solvents were of HPLC quality and stored over molecular sieves. Solid-phase peptide chemistry and solid-phase organic chemistry were routinely carried out using plastic-syringe technique. Flat bottom PE syringes were equipped with sintered teflon filters (50 μ m pores), teflon tubing, and valves, which allow suction to be applied to the syringes below. For all reactions on solid support, PEGA₈₀₀ resin (0.4 mmol/g) was used. Prior to use, the resin was washed with methanol (× 6), DMF (× 6), and DCM (× 6). All commercially available reagents were used as received without further purification.

Analysis of all solid-phase reactions was performed after cleaving the products as their free acids from a resin sample. A small resin sample (<1 mg) was treated with 0.1 M aqueous NaOH (50 µL) for 2 h. After neutralization with 0.1 M HCl (50 µL), and addition of CH₃CN (100 µL), a sample (10 µL) was analyzed by analytical RP-HPLC on an HPLC system using a C-18 column (4.5 × 50 mm, 1 mL/min) with detection at 215 nm using a multiwavelength detector. Eluents A (0.1% TFA in water) and B (0.1% TFA in acetonitrile/water, 9:1) were used in a linear gradient (100% A \rightarrow 100% B) in a run-time of 25 min. Collected fractions were analyzed by ESI MS on a QTOF mass spectrometer (mobile phase 50% CH₃CN (aq), 0.1 µL/min, sample conc. ~ 10 pmol/µL). All compounds on which HRMS (ESI) analysis was performed exhibited clean ¹H NMR spectra and one spot on TLC analysis, or a single peak on analytical RP-HPLC.

Material sufficient for ¹H NMR analysis was obtained by cleaving a resin sample (50-100 mg) as described above. Solution phase NMR spectra were recorded on a 250 MHz spectrometer (proton frequency 250.13 MHz) at 30 °C. ¹H (250 MHz) NMR spectra were recorded using CDCl₃, CD₃CN, or DMSO- d_6 , as solvents, and chemical shifts were measured relative to the signals for CHCl₃ (7.26 ppm), CH₃CN (1.94

S2

ppm), or DMSO (2.50 ppm), respectively, whereas ¹³C (62.5 MHz) NMR spectra were recorded for all novel compounds synthesized in solution, and chemical shifts were measured relative to the signals for $CDCl_3$ (77.0 ppm), or CD_3CN (1.2 ppm). The spectral width for the phase-sensitive (States-TPPI) 1H/1H-NOESY (consult: Jeener, J.; Meier, B.H.; Bachmann, P.; Ernst, R.R. *J. Chem. Phys.* **1979**, *71*, 4546-4553) was 2 kHz with 2048 data points and 256 increments, each acquiered with 8 scans and with a relaxation delay of 1.5 sec. The mixing time was 800 ms. The zero filled data was multiplied with a squared shifted sine bell function prior to Fourier transform to a final matrix size of 2048 x 1024.

¹H NMR Spectra.

¹H NMR (250 MHz, CDCl₃) of Aldehyde 14a:

¹H NMR (250 MHz, CDCl₃) of Aldehyde **14b**:

¹H NMR (250 MHz, CDCl₃) of Aldehyde **14c**:

¹H NMR (250 MHz, CD₃CN) of masked aldehyde building block **2e**:

 ^1H NMR (250 MHz, CD₃CN) of masked aldehyde building block **2f**:

¹H NMR (250 MHz, CD₃CN) of masked aldehyde building block **2g**:

¹H NMR (250 MHz, CD₃CN) of Pictet-Spengler reaction product of *rac*-MABB1-Trp-Ile-OH (**4a**):

¹H NMR (250 MHz, DMSO-*d*₆) of Pictet-Spengler reaction product of *rac*-MABB1-(3-(2-furyl)Ala)-Ile-OH (**18a**):

¹H NMR (250 MHz, DMSO- d_6) of Pictet-Spengler reaction product of *rac*-MABB1-(3-(2-thienyl)Ala)-Ile-OH (**18b**):

¹H NMR (250 MHz, DMSO- d_6) of Pictet-Spengler reaction product of *rac*-MABB1-(3-(3-thienyl)Ala)-Ile-OH (**18c**):

¹H NMR (250 MHz, DMSO- d_6) of Pictet-Spengler reaction product of *rac*-MABB1-(3-(3-benzothienyl)Ala)-Ile-OH (**18d**):

¹H NMR (250 MHz, DMSO-*d*₆) of Pictet-Spengler reaction product of *rac*-MABB1-(3-(3,4-dimethoxyphenyl)Ala)-Ile-OH (**18e**):

Analytical RP-HPLC Chromatograms.

Pictet-Spengler reaction products of *rac*-MABB1-Trp-Ile-OH (4a):

Pictet-Spengler reaction products of *rac*-MABB2-Trp-Ile-OH (4b):

100	031_000A.RAW	m/z 398.2	m/z 398.2
00- 70-	$>95\%; dr \sim 10:1$	11	
00- 40- 30-	1	m/z 398.2	M
10			

Pictet-Spengler reaction products of *rac*-MABB3-Trp-Ile-OH (4c):

Pictet-Spengler reaction products of *rac*-MABB4-Trp-Ile-OH (**4d**):

Pictet-Spengler reaction products of *rac*-MABB5-Trp-Ile-OH (4e):

Pictet-Spengler reaction products of *rac*-MABB6-Trp-Ile-OH (4f):

Pictet-Spengler reaction products of *rac*-MABB7-Trp-Ile-OH (**4g**):

Pictet-Spengler reaction products of *rac*-MABB1-(5-Br-(D/L))Trp-Ile-OH (16a):

Pictet-Spengler reaction products of *rac*-MABB1-(5-BnO-(D/L))Trp-Ile-OH (16c):

Pictet-Spengler reaction products of *rac*-MABB1-(5-F-(D/L))Trp-Ile-OH (16d):

Pictet-Spengler reaction products of *rac*-MABB1-(6-F-(D/L))Trp-Ile-OH (16e):

Pictet-Spengler reaction products of *rac*-MABB1-(4-Me-(D/L))Trp)-Ile-OH (16f):

Pictet-Spengler reaction products of *rac*-MABB1-(5-Me-(D/L))Trp-Ile-OH (16g):

Pictet-Spengler reaction products of *rac*-MABB1-(6-Me-(D/L))Trp-Ile-OH (16h):

Pictet-Spengler reaction products of *rac*-MABB1-(5-OH)Trp-Ile-OH (16i):

=00-		m/z 400.2
	$\sim 80\%; dr > 10:1$	
	impurity impurity	