Supporting Information

Solid-Phase Intramolecular N-Acyliminium

Pictet-Spengler Reactions as Crossroads to

Scaffold Diversity

Thomas E. Nielsen and Morten Meldal*
Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500
Valby, Denmark

E-mail address of the corresponding author: mpm@crc.dk

Contents:

ExperimentalGeneral methodsS2
1H NMR Spectra
Compounds 2e-g S4
Compounds 14a-c S5
Compounds 4a, 18a-b S6
Compounds 18c-e S7
Analytical RP-HPLC Chromatograms
Compounds 4a-g S8
Compounds 16a-g S9
Compounds 16h-i S10

General Methods. All solvents were of HPLC quality and stored over molecular sieves. Solid-phase peptide chemistry and solid-phase organic chemistry were routinely carried out using plastic-syringe technique. Flat bottom PE syringes were equipped with sintered teflon filters ($50 \mu \mathrm{~m}$ pores), teflon tubing, and valves, which allow suction to be applied to the syringes below. For all reactions on solid support, PEGA_{800} resin ($0.4 \mathrm{mmol} / \mathrm{g}$) was used. Prior to use, the resin was washed with methanol ($\times 6$), DMF ($\times 6$), and DCM ($\times 6$). All commercially available reagents were used as received without further purification.

Analysis of all solid-phase reactions was performed after cleaving the products as their free acids from a resin sample. A small resin sample ($<1 \mathrm{mg}$) was treated with 0.1 M aqueous $\mathrm{NaOH}(50 \mu \mathrm{~L})$ for 2 h . After neutralization with $0.1 \mathrm{M} \mathrm{HCl}(50 \mu \mathrm{~L})$, and addition of $\mathrm{CH}_{3} \mathrm{CN}(100 \mu \mathrm{~L})$, a sample ($10 \mu \mathrm{~L}$) was analyzed by analytical RPHPLC on an HPLC system using a C-18 column ($4.5 \times 50 \mathrm{~mm}, 1 \mathrm{~mL} / \mathrm{min})$ with detection at 215 nm using a multiwavelength detector. Eluents A (0.1% TFA in water) and B (0.1% TFA in acetonitrile/water, 9:1) were used in a linear gradient (100\% A $\rightarrow 100 \% \mathrm{~B})$ in a run-time of 25 min . Collected fractions were analyzed by ESI MS on a QTOF mass spectrometer (mobile phase $50 \% \mathrm{CH}_{3} \mathrm{CN}(\mathrm{aq}), 0.1 \mu \mathrm{~L} / \mathrm{min}$, sample conc. $\sim 10 \mathrm{pmol} / \mu \mathrm{L}$). All compounds on which HRMS (ESI) analysis was performed exhibited clean ${ }^{1} \mathrm{H}$ NMR spectra and one spot on TLC analysis, or a single peak on analytical RP-HPLC.

Material sufficient for ${ }^{1} \mathrm{H}$ NMR analysis was obtained by cleaving a resin sample $(50-100 \mathrm{mg})$ as described above. Solution phase NMR spectra were recorded on a 250 MHz spectrometer (proton frequency 250.13 MHz) at $30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}(250 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded using $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$, or DMSO- d_{6}, as solvents, and chemical shifts were measured relative to the signals for $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm}), \mathrm{CH}_{3} \mathrm{CN}(1.94$
ppm), or DMSO (2.50 ppm), respectively, whereas ${ }^{13} \mathrm{C}(62.5 \mathrm{MHz})$ NMR spectra were recorded for all novel compounds synthesized in solution, and chemical shifts were measured relative to the signals for $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$, or $\mathrm{CD}_{3} \mathrm{CN}(1.2 \mathrm{ppm})$. The spectral width for the phase-sensitive (States-TPPI) 1H/1H-NOESY (consult: Jeener, J.; Meier, B.H.; Bachmann, P.; Ernst, R.R. J. Chem. Phys. 1979, 71, 4546-4553) was 2 kHz with 2048 data points and 256 increments, each acquiered with 8 scans and with a relaxation delay of 1.5 sec . The mixing time was 800 ms . The zero filled data was multiplied with a squared shifted sine bell function prior to Fourier transform to a final matrix size of 2048×1024.

${ }^{1}$ H NMR Spectra.

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Aldehyde 14a:

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Aldehyde 14b:

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Aldehyde $\mathbf{1 4 c}$:

${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of masked aldehyde building block $\mathbf{2 e}$:

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of masked aldehyde building block $\mathbf{2 f}$:

${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of masked aldehyde building block $\mathbf{2 g}$:

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of Pictet-Spengler reaction product of rac-MABB1-Trp-Ile-OH (4a):

${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) of Pictet-Spengler reaction product of rac-MABB1-(3-(2-furyl)Ala)-Ile-OH (18a):

${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) of Pictet-Spengler reaction product of rac-MABB1-(3-(2-thienyl)Ala)-Ile-OH (18b):

${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) of Pictet-Spengler reaction product of rac-MABB1-(3-(3-thienyl)Ala)-Ile-OH (18c):

${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) of Pictet-Spengler reaction product of rac-MABB1-(3-(3-benzothienyl)Ala)-Ile-OH (18d):

${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) of Pictet-Spengler reaction product of rac-MABB1-(3-(3,4-dimethoxyphenyl)Ala)-Ile-OH (18e):

Analytical RP-HPLC Chromatograms.

Pictet-Spengler reaction products of rac-MABB1-Trp-Ile-OH (4a):

Pictet-Spengler reaction products of rac-MABB2-Trp-Ile-OH (4b):

Pictet-Spengler reaction products of rac-MABB3-Trp-Ile-OH (4c):

Pictet-Spengler reaction products of rac-MABB4-Trp-Ile-OH (4d):

Pictet-Spengler reaction products of rac-MABB5-Trp-Ile-OH (4e):

Pictet-Spengler reaction products of rac-MABB6-Trp-Ile-OH (4f):

Pictet-Spengler reaction products of rac-MABB7-Trp-Ile-OH (4g):

Pictet-Spengler reaction products of $\mathrm{rac}-\mathrm{MABB} 1-(5-\mathrm{Br}-(\mathrm{D} / \mathrm{L})) \mathrm{Trp}-\mathrm{Ile}-\mathrm{OH}(\mathbf{1 6 a})$:

Pictet-Spengler reaction products of rac-MABB1-(5-MeO-(D/L))Trp-Ile-OH (16b):

Pictet-Spengler reaction products of rac-MABB1-(5-BnO-(D/L))Trp-Ile-OH (16c):

Pictet-Spengler reaction products of rac-MABB1-(5-F-(D/L))Trp-Ile-OH (16d):

Pictet-Spengler reaction products of rac-MABB1-(6-F-(D/L))Trp-Ile-OH (16e):

Pictet-Spengler reaction products of rac-MABB1-(4-Me-(D/L))Trp)-Ile-OH (16f):

Pictet-Spengler reaction products of rac-MABB1-(5-Me-(D/L))Trp-Ile-OH (16g):

Pictet-Spengler reaction products of rac-MABB1-(6-Me-(D/L))Trp-Ile-OH (16h):

Pictet-Spengler reaction products of rac-MABB1-(5-OH)Trp-Ile-OH (16i):

