Supporting Information

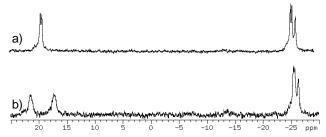
H_2 Activation in Aqueous Solution: Formation of *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ via the Heterolysis of H₂ in Water

John D. Gilbertson, Nathaniel K. Szymczak, and David R. Tyler* Department of Chemistry, University of Oregon, Eugene, Oregon 97403

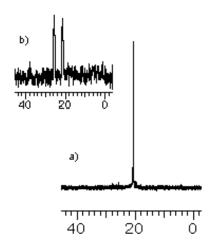
Table of contents

Experimental procedures S1 References S3 Figure S1. ³¹P{¹H} NMR spectra of DMeOPrPEH⁺ Figure S2. ³¹P{¹H} NMR spectra of DMeOPrPEH₂⁺ Figure S3. ³¹P{¹H} NMR spectrum (233K) of the title complex Figure S4. ¹H NMR spectrum of the title complex with Proton Sponge Figure S5. ¹H NMR spectrum (hydride region) of the title complex **Materials and Reagents.** Unless otherwise noted, all manipulations were carried out in an argonfilled Vacuum Atmospheres Co. glove box or on a Schlenk line using argon or nitrogen. The 1,2-(bis(methoxypropyl)phosphino)ethane and *trans*-Fe(DMeOPrPE)₂Cl₂¹⁰ were prepared as reported previously. Reagent grade ethanol, nitromethane, and sodium tetrahydroborate were obtained from Aldrich. The nitromethane was distilled from CaCl₂ and ethanol was distilled from Mg turnings. These solvents were deoxygenated with either three freeze-pump thaw cycles or an argon purge before being brought into the glove box. Water was purified to a resistivity of 17-18 MΩ-cm with a Barnstead Ultrapure system and deoxygenated with an argon purge before use. Solutions of 0.2M HClO₄ in nitromethane (made by dilution of 8.4 ml reagent grade 70% HClO₄ (Baker) with 500 ml nitromethane) were degassed with an argon purge before being brought into the glovebox.

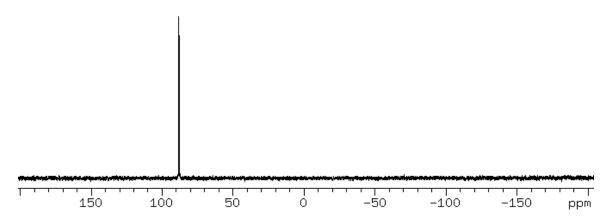
Instrumentation and Procedures. ³¹P{¹H} NMR and ¹H NMR were run on either a Varian Unity/Inova 300 spectrometer at an operating frequency of 299.94 (¹H) and 121.42 (³¹P) MHz or a Varian Unity/Inova 500 spectrometer at an operating frequency of 500.62 (¹H) and 202.45 (³¹P) MHz. The ¹H NMR and ³¹P{¹H} NMR were referenced to the solvent peak and to an external standard of 1% H₃PO₄ in D₂O, respectively. When required, the samples were sealed under argon in 7mm tubes fitted with Teflon valves. Samples that were run under pressure were sealed in high-pressure tubes and sealed with a Teflon valve. pH and mV measurements were performed with an Orion model 230 A pH meter equipped with a glass electrode and a Ag/AgCl reference electrode.

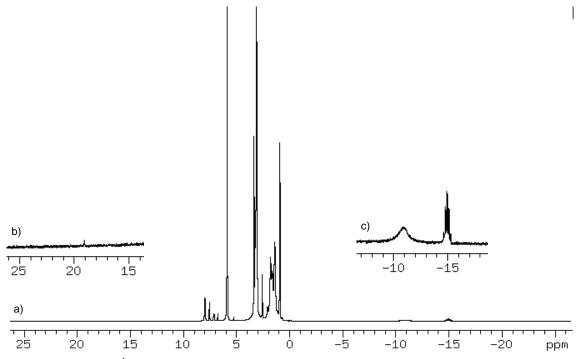

Generation of *trans*-[Fe(DMeOPrPE)₂H(H₂)]Cl. *trans*-Fe(DMeOPrPE)₂Cl₂ (0.100g, 0.112mmol) was dissolved in 5 mL deionized water in a sealed Fischer-Porter tube, producing a deep purple solution. The resultant solution was immediately charged with 1-2 atm H₂ stirred and at ambient temperature. The solution changed color from deep purple to transparent yellow over a period of twenty minutes, but was allowed to stir overnight to ensure completion of the reaction. ³¹P{¹H} NMR spectrum of the reaction mixture showed a major resonance at δ 88.9(s). ¹H NMR (ethanol-*d*₆/D₂O; 60:40 wt%) of the hydride region at – 40°C showed resonances at δ –10.9 (s, br) and δ –15.1 (quintet, ²*J*_{P-H}= 45 Hz).

Generation of *trans*-[Fe(DMeOPrPE)₂H(HD)]Cl. To an NMR tube containing *ca*. 10 mg (0.001 mmol) *trans*-Fe(DMeOPrPE)₂Cl₂ with an excess of NaBH₄ was added 0.5 mL CD₃CD₂OD. The addition was accompanied by gas evolution (HD) and a color change from green/brown to yellow. After two hours a ¹H NMR spectrum (-40°C) was obtained revealing a 1:1:1 triplet at at δ –10.9 (¹J_{HD} = 29.8 HZ).


Determination of pKa's of DMeOPrPE. In a typical experiment, the method of Allman and Goel^{38} was employed. A millimole of material was dissolved in 25 mL of nitromethane and titrated with 0.2 M perchloric acid solution. Three separate titrations were performed on both a reference material (PPh₃), and DMeOPrPE. The endpoints were determined from derivative plots and the half neutralization potentials (HNPs) were recorded. Aqueous p*K*a values were determined algebraically within \pm 0.2 p*K*_a units using the formula of Streuli³⁹ and the value of HNP for PPh₃ as a reference.

Generation of DMeOPrPEH⁺. DMeOPrPE (0.050g, 0.131 mmol) was dissolved in 10 mL of CH₂Cl₂. The resultant solution was treated with 1 equivalent (1.31mL of a 0.1M solution) of triflic acid in CH₂Cl₂. ³¹P{¹H}NMR spectra of the resultant solution showed resonances at δ 19.5 (d, ³*J*_{P-P} 35Hz) and – 23.5 (d, ³*J*_{P-P} 35Hz), as well as a minor resonance for the free ligand, DMeOPrPE, at δ –26.7 (s). ¹H coupled ³¹P NMR of the resultant solution revealed that the resonance at δ 19.5 split further into a doublet of 448 Hz (¹*J*_{P-H}) while the other two resonances were unaffected (Figure S1).


Generation of DMeOPrPEH₂²⁺. DMeOPrPE (0.050g, 0.131 mmol) was dissolved in 10 mL of CH₂Cl₂. The resultant solution was treated with an excess (4mL of a 0.1M solution) of triflic acid in CH₂Cl₂. ³¹P{¹H}NMR spectra of the resultant solution showed one resonance at δ 20.5 (s). ¹H coupled ³¹P NMR of the resultant solution revealed that the resonance at δ 20.5 split into a doublet of 513 Hz (¹J_{P-H}) (Figure S2). This complex has been generated before by Herbkowski⁴⁰ and essentially identical spectra were obtained in our work.


Figure S1. ³¹P{¹H} NMR spectra (RT): (a) reaction mixture of DMeOPrPE treated with approximately one equivalent triflic acid in CH₂Cl₂; (b) same sample with ¹H decoupler off.

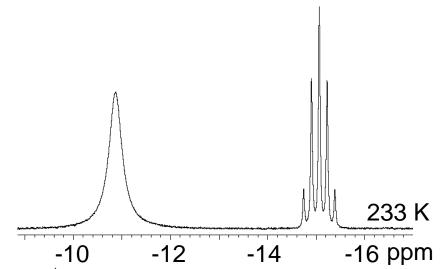

Figure S2. ${}^{31}P{}^{1}H$ NMR spectra (RT): (a) reaction mixture of DMeOPrPE treated with an excess of triflic acid in CH₂Cl₂; (b) same sample with ¹H decoupler turned off.

Figure S3. ³¹P{¹H} NMR spectra (233K): reaction mixture of **I** with H₂ (1-2 atm) in ethanol- d_6/D_2O (60/40 wt%) in the presence of one equivalent Proton Sponge

Figure S4. 500MHz ¹H NMR spectra (233K): (a) reaction mixture of **I** with H₂ (1-2 atm) in ethanol d_6/D_2O (60/40 wt%) in the presence of one equivalent Proton Sponge; (b) expanded NHN⁺ region of same sample; (c) expanded hydride region of same sample.

Figure S5. 500MHz ¹H NMR spectra (233K) of the hydride region of reaction mixture of **I** with H₂ (1-2 atm) in ethanol- d_6/D_2O (60/40 wt%)

Additional References

(38) Allman, T.; Goel, R. G. Can. J. Chem. 1982. 60, 716.

(39) Streuli, C.A. Anal. Chem. 1959. 31, 1652.

(40) Herbowski, A.; Deutsch, E.A. J. Organomet. Chem. 1993, 460, 19.