SUPPORTING INFORMATION

Theoretical Prediction of Benzyne-like Species in Pyrene Diradicals

I. García-Cruz,^{a*} J. M. Martínez-Magadán,^a J. M. Bofill^b and F. Illas^{a,c}

a) Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Colonia San Bartolo Atepehuacán, México D. F., 07730, México b) Departament de Química Orgànica i Centre especial de Recerca en Química Teòrica, Universitat de Barcelona i Parc Científic de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain c) Departament de Química Física i Centre especial de Recerca en Química Teòrica, Universitat de Barcelona i Parc Científic de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain. Cartesian coordinates of the B3LYP/6-31++ G^{**} optimized geometries for electronic ground state of pyrene

С	-3.063420	0.000003	0.352603
С	-3.063768	0.000002	1.747930
С	-1.862421	0.000003	2.457666
С	-0.629260	0.000002	1.783222
С	0.629988	0.000001	2.479446
С	1.813951	-0.000001	1.804005
С	1.855337	-0.000001	0.365762
С	3.063420	-0.000003	-0.352603
С	3.063768	-0.000005	-1.747930
С	1.862421	-0.000003	-2.457666
С	0.629260	-0.000001	-1.783222
С	-0.629988	-0.000001	-2.479446
С	-1.813951	0.000001	-1.804005
С	-1.855337	0.000002	-0.365762
С	-0.620142	0.000001	0.353815
С	0.620142	-0.000001	-0.353815
Η	-4.003796	0.000004	-0.192360
Η	-4.007192	0.000003	2.286243
Η	-1.871744	0.000004	3.544517
Η	0.618291	0.000001	3.566351
Η	2.755636	-0.000001	2.346910
Η	4.003796	-0.000003	0.192360
Η	4.007192	-0.000007	-2.286243
Η	1.871744	-0.000003	-3.544517
Η	-0.618291	-0.000001	-3.566351
Η	-2.755636	0.000002	-2.346910

Cartesian coordinates of the B3LYP/6-31++ G^{**} optimized geometries for electronic ground state of the hydrogen molecule

Η	0.000000	0.000000	-0.371893
Η	0.000000	0.000000	0.371893

Cartesian coordinates of the B3LYP/6-31++G** optimized geometries for electronic ground state of the C_1 pyrene radical

С	0.654488	0.000000	-1.814846
С	0.661913	0.000000	-0.383031
С	1.899623	0.000000	0.336804
С	3.116254	0.000000	-0.383976
С	3.035805	0.000000	-1.756795
С	1.885585	0.000000	-2.510578
Η	1.899905	0.000000	-3.597189
Η	4.065525	0.000000	0.144997
С	1.865581	0.000000	1.774646
С	0.683596	0.000000	2.453646
С	-0.577279	0.000000	1.762179
С	-0.574745	0.000000	0.332611
С	-1.815481	0.000000	-0.377509
С	-1.786755	0.000000	-1.815256
С	-0.609114	0.000000	-2.501760
Η	-0.606181	0.000000	-3.588434
Η	-2.732560	0.000000	-2.350908
С	-3.019266	0.000000	0.348084
С	-3.012272	0.000000	1.743181
С	-1.806189	0.000000	2.444385
Η	-1.808264	0.000000	3.531179
Η	-3.952289	0.000000	2.287138
Η	-3.962606	0.000000	-0.191587
Η	0.676781	0.000000	3.540586
Η	2.809224	0.000000	2.313515

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for electronic ground state of the C_2 pyrene radical

С	0.622403	0.000000	-1.829557
С	0.633652	0.000000	-0.392380
С	1.877346	0.000000	0.315112
С	3.086434	0.000000	-0.403746
С	3.090456	0.000000	-1.807349
С	1.867829	0.000000	-2.438896
Η	4.025429	0.000000	-2.359992
Η	4.029310	0.000000	0.137908
С	1.843670	0.000000	1.754052
С	0.664176	0.000000	2.437482
С	-0.600085	0.000000	1.750714
С	-0.602372	0.000000	0.321213
С	-1.841872	0.000000	-0.391097
С	-1.813730	0.000000	-1.830305
С	-0.639021	0.000000	-2.521566
Η	-0.631406	0.000000	-3.606907
Η	-2.760776	0.000000	-2.363516
С	-3.044595	0.000000	0.335742
С	-3.034786	0.000000	1.731191
С	-1.828964	0.000000	2.433162
Η	-1.831519	0.000000	3.519937
Η	-3.974518	0.000000	2.275775
Η	-3.988868	0.000000	-0.202187
Η	0.661131	0.000000	3.524273
Η	2.787977	0.000000	2.292081

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for electronic ground state of the C_4 pyrene radical

С	0.627633	0.000000	-1.830215
С	0.613144	0.000000	-0.393228
С	1.852782	0.000000	0.317333
С	3.057067	0.000000	-0.407798
С	3.055125	0.000000	-1.803305
С	1.854559	0.000000	-2.514363
Η	1.854299	0.000000	-3.599632
Η	3.998062	0.000000	-2.342110
Η	3.999212	0.000000	0.133869
С	1.818489	0.000000	1.755853
С	0.637375	0.000000	2.435759
С	-0.626068	0.000000	1.746816
С	-0.627850	0.000000	0.317087
С	-1.873730	0.000000	-0.387658
С	-1.848451	0.000000	-1.837702
С	-0.650198	0.000000	-2.446715
Η	-2.787178	0.000000	-2.386232
С	-3.074752	0.000000	0.340195
С	-3.060413	0.000000	1.735995
С	-1.852740	0.000000	2.433513
Η	-1.851339	0.000000	3.520202
Η	-3.998747	0.000000	2.283088
Η	-4.019985	0.000000	-0.195713
Η	0.631325	0.000000	3.522580
Η	2.762517	0.000000	2.294542

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries for lowest singlet state of the (C_1, C_2) compound. This is a closed shell electronic state.

С	-3.033272	0.000000	-1.702966
С	-3.050366	0.000000	-0.453628
С	-1.949367	0.000000	0.399931
С	-1.904464	0.000000	1.828290
С	-0.705171	0.000000	2.479925
С	0.540451	0.000000	1.764599
С	1.777371	0.000000	2.434986
С	2.975701	0.000000	1.723921
С	2.968924	0.000000	0.328082
С	1.760208	0.000000	-0.387081
С	1.721675	0.000000	-1.823955
С	0.540742	0.000000	-2.502658
С	-0.725568	0.000000	-1.816341
С	-1.943893	0.000000	-2.552649
С	-0.720129	0.000000	-0.371880
С	0.523157	0.000000	0.332906
Η	-2.840292	0.000000	2.377315
Η	-0.674447	0.000000	3.566258
Η	1.788543	0.000000	3.521590
Η	3.920809	0.000000	2.258873
Η	3.907135	0.000000	-0.220275
Η	2.663271	0.000000	-2.366543
Η	0.534350	0.000000	-3.589227
Η	-1.955362	0.000000	-3.636887

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries for lowest singlet state of the (C_1, C_4) compound. This is a broken symmetry open shell singlet state

С	-3.177951	0.000000	-1.533880
С	-3.176725	0.000000	-0.158693
С	-1.913773	0.000000	0.479427
С	-1.717509	0.000000	1.880481
С	-0.545199	0.000000	2.538531
С	0.672864	0.000000	1.752466
С	1.944514	0.000000	2.348350
С	3.098661	0.000000	1.563509
С	3.008604	0.000000	0.172087
С	1.756869	0.000000	-0.468043
С	1.633004	0.000000	-1.900857
С	0.413969	0.000000	-2.510451
С	-0.802231	0.000000	-1.742972
С	-2.076469	0.000000	-2.357186
С	-0.713010	0.000000	-0.315008
С	0.566616	0.000000	0.324638
Η	-4.086212	0.000000	0.433069
Η	-0.478421	0.000000	3.623715
Η	2.021935	0.000000	3.432132
Η	4.074061	0.000000	2.041196
Η	3.911652	0.000000	-0.432336
Η	2.541917	0.000000	-2.496779
Η	0.340337	0.000000	-3.594625
Η	-2.158668	0.000000	-3.440765

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries for lowest singlet state of the (C_1, C_5) compound. This is a broken symmetry open shell singlet state

С	-3.143097	0.000000	-1.530822
С	-3.147427	0.000000	-0.156100
С	-1.889051	0.000000	0.487763
С	-1.774692	0.000000	1.934171
С	-0.539075	0.000000	2.460446
С	0.696119	0.000000	1.764556
С	1.962398	0.000000	2.372354
С	3.117594	0.000000	1.590038
С	3.033141	0.000000	0.197434
С	1.786653	0.000000	-0.452974
С	1.667468	0.000000	-1.886148
С	0.448148	0.000000	-2.495163
С	-0.770070	0.000000	-1.730535
С	-2.040906	0.000000	-2.351406
С	-0.691300	0.000000	-0.300880
С	0.591959	0.000000	0.330909
Η	-4.062501	0.000000	0.429567
Η	-2.677691	0.000000	2.539173
Η	2.028075	0.000000	3.455646
Η	4.091579	0.000000	2.070177
Η	3.940006	0.000000	-0.401394
Η	2.577421	0.000000	-2.480596
Η	0.375716	0.000000	-3.579345
Η	-2.119780	0.000000	-3.435083

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries for lowest singlet state of the (C_1, C_7) compound. This is a broken symmetry open shell singlet state

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.375252
С	1.256498	0.000000	2.023835
С	1.372081	0.000000	3.457891
С	2.587945	0.000000	4.074094
С	3.802914	0.000000	3.305191
С	5.082384	0.000000	3.839356
С	6.265768	0.000000	3.137441
С	6.176850	0.000000	1.737000
С	4.927010	0.000000	1.091136
С	4.811279	0.000000	-0.342579
С	3.595007	0.000000	-0.958401
С	2.373759	0.000000	-0.199306
С	1.103328	0.000000	-0.820694
С	2.449063	0.000000	1.230746
С	3.726085	0.000000	1.869897
Η	-0.916539	0.000000	1.959017
Η	0.459730	0.000000	4.047982
Η	2.662694	0.000000	5.156909
Η	7.231966	0.000000	3.633275
Η	7.085356	0.000000	1.139519
Η	5.722923	0.000000	-0.934268
Η	3.528656	0.000000	-2.042919
Η	1.024972	0.000000	-1.904529

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_1, C_8) compound. This is a broken symmetry open shell singlet state

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.374830
С	1.256035	0.000000	2.024618
С	1.368884	0.000000	3.457544
С	2.586001	0.000000	4.071341
С	3.805277	0.000000	3.310281
С	5.074455	0.000000	3.934134
С	6.180048	0.000000	3.116844
С	6.180048	0.000000	1.742103
С	4.924053	0.000000	1.092142
С	4.810981	0.000000	-0.340734
С	3.593954	0.000000	-0.954512
С	2.374580	0.000000	-0.193361
С	1.105512	0.000000	-0.817270
С	2.451638	0.000000	1.236502
С	3.728497	0.000000	1.880372
Η	-0.916612	0.000000	1.958596
Η	0.456457	0.000000	4.047820
Η	2.653515	0.000000	5.155927
Η	5.150147	0.000000	5.018208
Η	7.096626	0.000000	1.158156
Η	5.723371	0.000000	-0.931075
Η	3.526154	0.000000	-2.039108
Η	1.030065	0.000000	-1.901382

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_4) compound. This is a broken symmetry open shell singlet state

С	-0.014561	0.000000	0.030268
С	0.002305	0.000000	1.405697
С	1.127545	0.000000	2.214552
С	1.209574	0.000000	3.631745
С	2.327257	0.000000	4.376431
С	3.608341	0.000000	3.698159
С	4.824533	0.000000	4.399210
С	6.040164	0.000000	3.713232
С	6.067726	0.000000	2.319338
С	4.874618	0.000000	1.575564
С	4.871224	0.000000	0.137492
С	3.706664	0.000000	-0.569324
С	2.427862	0.000000	0.091232
С	1.221555	0.000000	-0.631486
С	2.401501	0.000000	1.522068
С	3.622305	0.000000	2.267246
Η	-0.944880	0.000000	-0.530187
Η	2.302254	0.000000	5.463403
Η	4.810622	0.000000	5.485600
Η	6.972044	0.000000	4.271167
Η	7.018386	0.000000	1.793026
Η	5.826482	0.000000	-0.380610
Η	3.724471	0.000000	-1.655887
Η	1.252418	0.000000	-1.718192

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_5) compound. This is a broken symmetry open shell singlet state

С	-3.044632	0.000000	-1.869804
С	-3.039704	0.000000	-0.492866
С	-1.928815	0.000000	0.327498
С	-1.962495	0.000000	1.780309
С	-0.784872	0.000000	2.427752
С	0.515039	0.000000	1.858092
С	1.714775	0.000000	2.587760
С	2.941776	0.000000	1.922573
С	2.997822	0.000000	0.528653
С	1.822223	0.000000	-0.242813
С	1.842677	0.000000	-1.681324
С	0.689010	0.000000	-2.407071
С	-0.601413	0.000000	-1.769288
С	-1.797282	0.000000	-2.511583
С	-0.652829	0.000000	-0.339200
С	0.556657	0.000000	0.420927
Η	-3.965814	0.000000	-2.445170
Η	-2.921374	0.000000	2.288763
Η	1.673637	0.000000	3.672221
Η	3.863252	0.000000	2.497234
Η	3.960118	0.000000	0.023745
Η	2.806429	0.000000	-2.183517
Η	0.726348	0.000000	-3.493197
Η	-1.750222	0.000000	-3.597764

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_7) compound. This is a broken symmetry open shell singlet state

С	-0.003022	0.000000	0.000635
С	-0.015842	0.000000	1.376484
С	1.090480	0.000000	2.213143
С	1.039294	0.000000	3.650918
С	2.181768	0.000000	4.394565
С	3.475757	0.000000	3.765627
С	4.688649	0.000000	4.438538
С	5.941499	0.000000	3.869796
С	6.010638	0.000000	2.467862
С	4.840468	0.000000	1.687236
С	4.880355	0.000000	0.248131
С	3.737961	0.000000	-0.495378
С	2.438298	0.000000	0.123897
С	1.250906	0.000000	-0.630186
С	2.367389	0.000000	1.552762
С	3.562633	0.000000	2.330773
Η	-0.917646	0.000000	-0.585061
Η	0.065569	0.000000	4.130313
Η	2.137538	0.000000	5.478993
Η	6.847333	0.000000	4.468995
Η	6.980402	0.000000	1.976304
Η	5.851096	0.000000	-0.240288
Η	3.791438	0.000000	-1.580741
Η	1.308081	0.000000	-1.715903

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_8) compound. This is a broken symmetry open shell singlet state

С	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.375873
С	1.112399	0.000000	2.203430
С	1.071908	0.000000	3.640443
С	2.222496	0.000000	4.371304
С	3.514634	0.000000	3.738712
С	4.713708	0.000000	4.488093
С	5.896135	0.000000	3.785824
С	6.038683	0.000000	2.418092
С	4.855971	0.000000	1.643056
С	4.885159	0.000000	0.205311
С	3.734686	0.000000	-0.525900
С	2.442697	0.000000	0.106619
С	1.249445	0.000000	-0.638544
С	2.386245	0.000000	1.536686
С	3.587610	0.000000	2.308245
Η	-0.919516	0.000000	-0.577888
Η	0.102831	0.000000	4.129428
Η	2.180635	0.000000	5.457039
Η	4.680069	0.000000	5.574201
Η	7.010851	0.000000	1.932560
Η	5.851519	0.000000	-0.291459
Η	3.777771	0.000000	-1.611867
Η	1.299375	0.000000	-1.724711

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_9) compound. This is a broken symmetry open shell singlet state

С	-2.983900	0.000000	-1.916618
С	-2.983653	0.000000	-0.540673
С	-1.870940	0.000000	0.286447
С	-1.904548	0.000000	1.724373
С	-0.750788	0.000000	2.450195
С	0.541735	0.000000	1.815911
С	1.735993	0.000000	2.558950
С	2.983902	0.000000	1.916623
С	2.983633	0.000000	0.540624
С	1.870909	0.000000	-0.286407
С	1.904553	0.000000	-1.724410
С	0.750821	0.000000	-2.450189
С	-0.541777	0.000000	-1.815853
С	-1.735953	0.000000	-2.558987
С	-0.599850	0.000000	-0.385739
С	0.599861	0.000000	0.385752
Η	-3.904310	0.000000	-2.493245
Η	-2.871469	0.000000	2.217207
Η	-0.790729	0.000000	3.536170
Η	1.688914	0.000000	3.645162
Η	3.904324	0.000000	2.493201
Η	2.871541	0.000000	-2.217116
Η	0.790595	0.000000	-3.536164
Η	-1.688863	0.000000	-3.645208

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries for lowest singlet state of the (C_2, C_{11}) compound. This is a broken symmetry open shell singlet state

С	-2.992572	0.000000	-1.948581
С	-2.993878	0.000000	-0.573416
С	-1.880745	0.000000	0.253585
С	-1.922678	0.000000	1.691576
С	-0.774117	0.000000	2.425038
С	0.520747	0.000000	1.796621
С	1.715638	0.000000	2.537234
С	2.956366	0.000000	1.898726
С	3.042636	0.000000	0.506027
С	1.875091	0.000000	-0.274811
С	1.840813	0.000000	-1.692958
С	0.752219	0.000000	-2.481449
С	-0.551783	0.000000	-1.844769
С	-1.743172	0.000000	-2.590094
С	-0.606405	0.000000	-0.412772
С	0.589541	0.000000	0.369101
Η	-3.911878	0.000000	-2.526926
Η	-2.893032	0.000000	2.177776
Η	-0.819212	0.000000	3.510866
Η	1.663835	0.000000	3.622682
Η	3.865719	0.000000	2.492381
Η	4.008781	0.000000	0.011751
Η	0.813750	0.000000	-3.566812
Η	-1.694169	0.000000	-3.676073

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_2, C_{14}) compound. This is a closed shell electronic state..

С	0.698062	0.000000	-1.771415
С	0.613986	0.000000	-0.349019
С	1.879124	0.000000	0.306459
С	1.882429	0.000000	1.748267
С	0.698432	0.000000	2.435522
С	-0.586986	0.000000	1.772402
С	-0.610024	0.000000	0.346752
С	-1.823181	0.000000	-0.402413
С	-1.735313	0.000000	-1.846143
С	-0.539098	0.000000	-2.511899
Η	-0.511089	0.000000	-3.596693
Η	-2.663057	0.000000	-2.412103
С	-3.030538	0.000000	0.316966
С	-3.018349	0.000000	1.715696
С	-1.822781	0.000000	2.441763
Η	-1.848551	0.000000	3.528073
Η	-3.962837	0.000000	2.252543
Η	-3.977087	0.000000	-0.216678
Η	0.710072	0.000000	3.522198
Η	2.828843	0.000000	2.279188
С	2.948502	0.000000	-0.571261
С	3.308560	0.000000	-1.880571
С	1.999327	0.000000	-2.241171
Η	4.250792	0.000000	-2.416140

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_4 , C_5) compound. This is a closed shell electronic state.

С	-3.129699	0.000000	-1.689735
С	-3.152499	0.000000	-0.291256
С	-1.953757	0.000000	0.423510
С	-1.727884	0.000000	1.826362
С	-0.650317	0.000000	2.428569
С	0.662926	0.000000	1.886014
С	1.899931	0.000000	2.532397
С	3.079126	0.000000	1.780217
С	3.033962	0.000000	0.389076
С	1.807028	0.000000	-0.303606
С	1.753188	0.000000	-1.741230
С	0.564594	0.000000	-2.405526
С	-0.688210	0.000000	-1.698195
С	-1.921101	0.000000	-2.380236
С	-0.674504	0.000000	-0.269470
С	0.582931	0.000000	0.433287
Η	-4.065082	0.000000	-2.241279
Η	-4.093470	0.000000	0.248556
Η	1.933366	0.000000	3.616715
Η	4.038927	0.000000	2.288081
Η	3.957653	0.000000	-0.183216
Η	2.690570	0.000000	-2.291024
Η	0.541705	0.000000	-3.492007
Η	-1.917952	0.000000	-3.466895

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_4, C_{11}) compound. This is a broken symmetry open shell singlet state

-3.079156	0.000000	-1.743589
-3.079706	0.000000	-0.348846
-1.866221	0.000000	0.359098
-1.751433	0.000000	1.772965
-0.621011	0.000000	2.499217
0.643969	0.000000	1.788331
1.879397	0.000000	2.456916
3.079162	0.000000	1.743531
3.079755	0.000000	0.348836
1.866193	0.000000	-0.359095
1.751432	0.000000	-1.772937
0.620976	0.000000	-2.499181
-0.643959	0.000000	-1.788298
-1.879410	0.000000	-2.456959
-0.619725	0.000000	-0.358287
0.619735	0.000000	0.358305
-4.022817	0.000000	-2.281070
-4.013497	0.000000	0.203999
-0.618605	0.000000	3.586358
1.892663	0.000000	3.543367
4.022766	0.000000	2.281141
4.013488	0.000000	-0.204092
0.618572	0.000000	-3.586335
-1.892557	0.000000	-3.543425
	-3.079156 -3.079706 -1.866221 -1.751433 -0.621011 0.643969 1.879397 3.079162 3.079755 1.866193 1.751432 0.620976 -0.643959 -1.879410 -0.619725 0.619735 -4.022817 -4.013497 -0.618605 1.892663 4.022766 4.013488 0.618572 -1.892557	-3.0791560.000000-3.0797060.000000-1.8662210.000000-1.7514330.000000-0.6210110.0000000.6439690.0000001.8793970.0000003.0791620.0000003.0797550.0000001.8661930.0000001.8661930.0000000.6209760.000000-0.6439590.000000-0.6197250.000000-0.6197250.000000-4.0228170.000000-4.0134970.0000004.0134880.0000004.0134880.000000-1.8925570.000000

Cartesian coordinates of the B3LYP/6-31G** optimized geometries for lowest singlet state of the (C_4, C_{12}) compound. This is a broken symmetry open shell singlet state

С	-3.104941	0.000000	-1.760677
С	-3.104493	0.000000	-0.365227
С	-1.893285	0.000000	0.346537
С	-1.774816	0.000000	1.759727
С	-0.642248	0.000000	2.482805
С	0.622105	0.000000	1.772008
С	1.855031	0.000000	2.444832
С	3.054115	0.000000	1.731696
С	3.050432	0.000000	0.336687
С	1.839952	0.000000	-0.375993
С	1.800815	0.000000	-1.825815
С	0.598751	0.000000	-2.426478
С	-0.674677	0.000000	-1.802465
С	-1.907415	0.000000	-2.476714
С	-0.644932	0.000000	-0.365741
С	0.600983	0.000000	0.340789
Η	-4.049609	0.000000	-2.296099
Η	-4.039100	0.000000	0.186429
Η	-0.639199	0.000000	3.569883
Η	1.866540	0.000000	3.531207
Η	3.999004	0.000000	2.267561
Η	3.988508	0.000000	-0.211355
Η	2.735139	0.000000	-2.381479
Η	-1.913538	0.000000	-3.561967

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_1, C_2) compound in the lowest triplet state

С	0.675219	0.000000	-1.850356
С	0.679379	0.000000	-0.411120
С	1.914599	0.000000	0.309027
С	3.135379	0.000000	-0.407671
С	3.108939	0.000000	-1.784828
С	1.906754	0.000000	-2.494043
Η	4.081523	0.000000	0.130170
С	1.874767	0.000000	1.745966
С	0.689484	0.000000	2.420486
С	-0.568419	0.000000	1.724777
С	-0.561141	0.000000	0.295284
С	-1.797470	0.000000	-0.422447
С	-1.762280	0.000000	-1.861529
С	-0.586165	0.000000	-2.548424
Η	-0.573521	0.000000	-3.633444
Η	-2.706325	0.000000	-2.400075
С	-3.003709	0.000000	0.296913
С	-3.003021	0.000000	1.692963
С	-1.801699	0.000000	2.400719
Η	-1.809606	0.000000	3.487429
Η	-3.945857	0.000000	2.231953
Η	-3.944486	0.000000	-0.247027
Η	0.678940	0.000000	3.507234
Η	2.815638	0.000000	2.289462

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_1, C_4) compound in the lowest triplet state

С	0.675323	0.000000	-1.855117
С	0.660135	0.000000	-0.415823
С	1.893886	0.000000	0.310274
С	3.114332	0.000000	-0.404315
С	3.047300	0.000000	-1.777762
С	1.906871	0.000000	-2.546517
Η	1.923165	0.000000	-3.631855
Η	4.059443	0.000000	0.132032
С	1.850070	0.000000	1.747715
С	0.663062	0.000000	2.417236
С	-0.593963	0.000000	1.718320
С	-0.585708	0.000000	0.288363
С	-1.829032	0.000000	-0.421243
С	-1.799778	0.000000	-1.870478
С	-0.600671	0.000000	-2.477126
Η	-2.736679	0.000000	-2.422159
С	-3.034052	0.000000	0.299931
С	-3.028549	0.000000	1.695539
С	-1.824380	0.000000	2.398413
Η	-1.827955	0.000000	3.485061
Η	-3.969771	0.000000	2.237452
Η	-3.975833	0.000000	-0.241949
Η	0.648544	0.000000	3.503987
Η	2.790006	0.000000	2.292979

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_1, C_5) compound in the lowest triplet state

С	0.643503	0.000000	-1.843663
С	0.634061	0.000000	-0.409245
С	1.867216	0.000000	0.318934
С	3.091218	0.000000	-0.389836
С	3.023999	0.000000	-1.762753
С	1.879878	0.000000	-2.526989
Η	1.904738	0.000000	-3.613265
Η	4.034650	0.000000	0.149214
С	1.825855	0.000000	1.756788
С	0.642083	0.000000	2.431885
С	-0.616260	0.000000	1.735746
С	-0.605149	0.000000	0.306464
С	-1.856194	0.000000	-0.400897
С	-3.064499	0.000000	0.315604
С	-3.054386	0.000000	1.710599
С	-1.848510	0.000000	2.412429
Η	-1.852946	0.000000	3.499161
Η	-3.993914	0.000000	2.255116
Η	-4.002012	0.000000	-0.231048
С	-1.750382	0.000000	-1.814980
С	-0.622547	0.000000	-2.547212
Η	-0.628328	0.000000	-3.634236
Η	0.631044	0.000000	3.518714
Η	2.767448	0.000000	2.299098

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_1, C_7) compound in the lowest triplet state

С	0.624216	0.000000	-1.816821
С	0.624808	0.000000	-0.384620
С	1.857533	0.000000	0.344048
С	3.078161	0.000000	-0.370225
С	3.005241	0.000000	-1.743343
С	1.859789	0.000000	-2.504431
Η	1.880787	0.000000	-3.590886
Η	4.024265	0.000000	0.164307
С	1.813943	0.000000	1.781327
С	0.627918	0.000000	2.453561
С	-0.630281	0.000000	1.756517
С	-0.614263	0.000000	0.325308
С	-1.852283	0.000000	-0.405022
С	-1.820305	0.000000	-1.842498
С	-0.634185	0.000000	-2.514175
Η	-0.620768	0.000000	-3.600644
Η	-2.763547	0.000000	-2.379499
С	-3.005276	0.000000	0.365031
С	-3.075552	0.000000	1.739128
С	-1.859904	0.000000	2.440087
Η	-1.865038	0.000000	3.527441
Η	-4.023243	0.000000	2.269482
Η	0.616214	0.000000	3.540324
Η	2.753970	0.000000	2.326238

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_1, C_8) compound in the lowest triplet state

С	-0.308616	1.787796	-0.537882
С	-0.308616	0.355807	-0.537882
С	-0.923835	-0.366840	-1.610137
С	-1.530675	0.349341	-2.667788
С	-1.493891	1.722191	-2.603677
С	-0.922637	2.478861	-1.608048
Η	-0.931139	3.565447	-1.622868
Η	-2.001798	-0.184334	-3.488901
С	-0.906110	-1.803836	-1.579245
С	-0.317732	-2.482135	-0.553770
С	0.308610	-1.787921	0.537871
С	0.308643	-0.355922	0.537929
С	0.923828	0.366982	1.610125
С	0.906094	1.803845	1.579217
С	0.317687	2.482221	0.553691
Η	0.313036	3.568896	0.545586
Η	1.375240	2.344407	2.396884
С	1.530673	-0.349327	2.667785
С	1.493909	-1.722222	2.603709
С	0.922694	-2.478849	1.608148
Η	0.931110	-3.565506	1.622816
Η	2.001849	0.184115	3.488990
Η	-0.313113	-3.568814	-0.545719
Η	-1.375340	-2.344160	-2.397058

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2,C_4) compound in the lowest triplet state

С	0.646460	0.000000	-1.866092
С	0.632355	0.000000	-0.421066
С	1.871006	0.000000	0.292906
С	3.085411	0.000000	-0.418402
С	3.106049	0.000000	-1.821978
С	1.892312	0.000000	-2.471412
Η	4.048390	0.000000	-2.361746
Η	4.023123	0.000000	0.131969
С	1.824082	0.000000	1.731609
С	0.637592	0.000000	2.402599
С	-0.621562	0.000000	1.705822
С	-0.614241	0.000000	0.275914
С	-1.854049	0.000000	-0.441062
С	-1.821340	0.000000	-1.891622
С	-0.621458	0.000000	-2.498539
Η	-2.758015	0.000000	-2.443405
С	-3.059973	0.000000	0.278602
С	-3.055498	0.000000	1.674610
С	-1.853833	0.000000	2.382405
Η	-1.861439	0.000000	3.468996
Η	-3.998100	0.000000	2.214277
Η	-4.001453	0.000000	-0.263713
Η	0.624409	0.000000	3.489249
Η	2.763202	0.000000	2.278606

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2,C_5) compound in the lowest triplet state

С	0.614919	0.000000	-1.856957
С	0.606434	0.000000	-0.417500
С	1.843760	0.000000	0.302181
С	3.061224	0.000000	-0.401975
С	3.081498	0.000000	-1.804923
С	1.867590	0.000000	-2.452785
Η	4.022818	0.000000	-2.346856
Η	3.997310	0.000000	0.150920
С	1.798987	0.000000	1.741313
С	0.616346	0.000000	2.418275
С	-0.643577	0.000000	1.723261
С	-0.633228	0.000000	0.294213
С	-1.880341	0.000000	-0.419994
С	-3.089969	0.000000	0.294303
С	-3.081177	0.000000	1.689582
С	-1.877729	0.000000	2.396185
Η	-1.886176	0.000000	3.482862
Η	-4.022099	0.000000	2.231842
Η	-4.026952	0.000000	-0.253117
С	-1.770627	0.000000	-1.834734
С	-0.645581	0.000000	-2.570308
Η	-0.642486	0.000000	-3.656429
Η	0.606420	0.000000	3.504994
Η	2.739986	0.000000	2.284961

Cartesian coordinates of the B3LYP/6-31G^{**} optimized geometries of the (C_2, C_7) compound in the lowest triplet state

С	0.596597	0.000000	-1.830366
С	0.597163	0.000000	-0.392649
С	1.834088	0.000000	0.326725
С	3.049115	0.000000	-0.381873
С	3.064155	0.000000	-1.785308
С	1.847368	0.000000	-2.427780
Η	4.003806	0.000000	-2.330002
Η	3.987446	0.000000	0.167436
С	1.787434	0.000000	1.765548
С	0.602621	0.000000	2.439204
С	-0.657476	0.000000	1.743350
С	-0.642922	0.000000	0.312314
С	-1.877260	0.000000	-0.423644
С	-1.842974	0.000000	-1.862790
С	-0.658229	0.000000	-2.536074
Η	-0.637853	0.000000	-3.621149
Η	-2.786255	0.000000	-2.399448
С	-3.031298	0.000000	0.343988
С	-3.102360	0.000000	1.717971
С	-1.888797	0.000000	2.423107
Η	-1.897903	0.000000	3.510376
Η	-4.051926	0.000000	2.245217
Η	0.592228	0.000000	3.525825
Η	2.727100	0.000000	2.311403

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2,C_8) compound in the lowest triplet state

С	0.595273	0.000000	-1.800624
С	0.592808	0.000000	-0.362838
С	1.832396	0.000000	0.352511
С	3.047173	0.000000	-0.357022
С	3.063250	0.000000	-1.760150
С	1.845354	0.000000	-2.400272
Н	4.002589	0.000000	-2.305223
Н	3.985386	0.000000	0.192531
С	1.791166	0.000000	1.790432
С	0.608642	0.000000	2.468587
С	-0.650431	0.000000	1.773821
С	-0.649090	0.000000	0.341623
С	-1.881376	0.000000	-0.388514
С	-1.840154	0.000000	-1.826599
С	-0.657899	0.000000	-2.505042
Η	-0.639861	0.000000	-3.590349
Η	-2.781742	0.000000	-2.368802
С	-3.102594	0.000000	0.324213
С	-3.031095	0.000000	1.697605
С	-1.886740	0.000000	2.460140
Η	-1.909270	0.000000	3.546576
Η	-4.048331	0.000000	-0.210896
Η	0.598745	0.000000	3.555111
Η	2.732387	0.000000	2.333832

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2, C_9) compound in the lowest triplet state

С	0.618486	0.000000	-1.788602
С	0.620698	0.000000	-0.351419
С	1.858884	0.000000	0.366245
С	3.072462	0.000000	-0.344223
С	3.085766	0.000000	-1.748017
С	1.868397	0.000000	-2.388881
Η	4.024931	0.000000	-2.293547
Η	4.011688	0.000000	0.203511
С	1.818061	0.000000	1.805992
С	0.638576	0.000000	2.488679
С	-0.618465	0.000000	1.788399
С	-0.620643	0.000000	0.351421
С	-1.858939	0.000000	-0.366364
С	-1.818060	0.000000	-1.805857
С	-0.638454	0.000000	-2.488554
Η	-0.624019	0.000000	-3.573774
Η	-2.760352	0.000000	-2.347181
С	-3.072498	0.000000	0.344367
С	-3.085937	0.000000	1.748128
С	-1.868323	0.000000	2.388625
Η	-4.024933	0.000000	2.293924
Η	-4.011743	0.000000	-0.203392
Η	0.623805	0.000000	3.573851
Η	2.760563	0.000000	2.346977

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2, C_{11}) compound in the lowest triplet state

С	0.644419	0.000000	-1.784521
С	0.646362	0.000000	-0.346826
С	1.891262	0.000000	0.362747
С	3.103210	0.000000	-0.348999
С	3.112032	0.000000	-1.752931
С	1.892443	0.000000	-2.388622
Η	4.049331	0.000000	-2.301754
Η	4.043202	0.000000	0.197184
С	1.852887	0.000000	1.813316
С	0.650572	0.000000	2.413353
С	-0.623686	0.000000	1.789290
С	-0.600154	0.000000	0.352705
С	-1.834209	0.000000	-0.368401
С	-1.792681	0.000000	-1.807331
С	-0.611386	0.000000	-2.486622
Η	-0.593908	0.000000	-3.571860
Η	-2.734621	0.000000	-2.349397
С	-3.043089	0.000000	0.348769
С	-3.050516	0.000000	1.744370
С	-1.855520	0.000000	2.464491
Η	-1.863324	0.000000	3.549702
Η	-3.997368	0.000000	2.276199
Η	-3.981682	0.000000	-0.198897
Η	2.786694	0.000000	2.370097

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2,C_{12}) compound in the lowest triplet state

С	0.678358	0.000000	-1.827486
С	0.681275	0.000000	-0.387328
С	1.916552	0.000000	0.351871
С	1.872931	0.000000	1.789446
С	0.682982	0.000000	2.453323
С	-0.571707	0.000000	1.749076
С	-0.560782	0.000000	0.318791
С	-1.795199	0.000000	-0.403568
С	-1.758299	0.000000	-1.841792
С	-0.579134	0.000000	-2.524825
Η	-0.564685	0.000000	-3.610102
Η	-2.701641	0.000000	-2.381232
С	-3.003923	0.000000	0.313862
С	-3.006296	0.000000	1.708861
С	-1.806387	0.000000	2.420505
Η	-1.817655	0.000000	3.507165
Η	-3.950423	0.000000	2.245697
Η	-3.943271	0.000000	-0.232505
Η	0.663639	0.000000	3.539849
Η	2.813186	0.000000	2.331518
С	3.080681	0.000000	-0.406598
С	3.144870	0.000000	-1.787467
С	1.925759	0.000000	-2.439282
Η	4.090761	0.000000	-2.324719

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_2, C_{14}) compound in the lowest triplet state

С	0.678358	0.000000	-1.827486
С	0.681275	0.000000	-0.387328
С	1.916552	0.000000	0.351871
С	1.872931	0.000000	1.789446
С	0.682982	0.000000	2.453323
С	-0.571707	0.000000	1.749076
С	-0.560782	0.000000	0.318791
С	-1.795199	0.000000	-0.403568
С	-1.758299	0.000000	-1.841792
С	-0.579134	0.000000	-2.524825
Η	-0.564685	0.000000	-3.610102
Η	-2.701641	0.000000	-2.381232
С	-3.003923	0.000000	0.313862
С	-3.006296	0.000000	1.708861
С	-1.806387	0.000000	2.420505
Η	-1.817655	0.000000	3.507165
Η	-3.950423	0.000000	2.245697
Η	-3.943271	0.000000	-0.232505
Η	0.663639	0.000000	3.539849
Η	2.813186	0.000000	2.331518
С	3.080681	0.000000	-0.406598
С	3.144870	0.000000	-1.787467
С	1.925759	0.000000	-2.439282
Η	4.090761	0.000000	-2.324719

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_4, C_5) compound in the lowest triplet state

С	0.578713	0.000000	-1.861305
С	0.579526	0.000000	-0.423863
С	1.826153	0.000000	0.274477
С	3.023717	0.000000	-0.460914
С	3.007449	0.000000	-1.856287
С	1.801475	0.000000	-2.556945
Η	1.791906	0.000000	-3.642063
Η	3.944420	0.000000	-2.405453
Η	3.970764	0.000000	0.071832
С	1.806949	0.000000	1.713495
С	0.634430	0.000000	2.408053
С	-0.636759	0.000000	1.733578
С	-0.650040	0.000000	0.304244
С	-1.910134	0.000000	-0.386333
С	-3.107920	0.000000	0.351570
С	-3.073016	0.000000	1.745880
С	-1.856993	0.000000	2.430530
Η	-1.844542	0.000000	3.517057
Η	-4.004767	0.000000	2.303846
Η	-4.054877	0.000000	-0.178265
С	-1.864406	0.000000	-1.810978
С	-0.692600	0.000000	-2.505675
Η	0.640722	0.000000	3.494843
Η	2.757110	0.000000	2.241048

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_4, C_{11}) compound in the lowest triplet state

С	0.617491	0.000000	-1.796011
С	0.619860	0.000000	-0.358720
С	1.872868	0.000000	0.332782
С	3.066846	0.000000	-0.407439
С	3.044503	0.000000	-1.803080
С	1.834711	0.000000	-2.497138
Η	1.819450	0.000000	-3.582239
Η	3.980064	0.000000	-2.354618
Η	4.016141	0.000000	0.121187
С	1.860375	0.000000	1.782493
С	0.666399	0.000000	2.399704
С	-0.617541	0.000000	1.795665
С	-0.619588	0.000000	0.358669
С	-1.873017	0.000000	-0.332600
С	-1.860264	0.000000	-1.782493
С	-0.666629	0.000000	-2.399983
Η	-2.803314	0.000000	-2.323529
С	-3.066658	0.000000	0.407404
С	-3.044473	0.000000	1.803399
С	-1.834919	0.000000	2.497270
Η	-1.819015	0.000000	3.582317
Η	-3.980273	0.000000	2.354522
Η	-4.016057	0.000000	-0.121012
Η	2.803201	0.000000	2.323841

Cartesian coordinates of the B3LYP/6-31G** optimized geometries of the (C_4, C_{12}) compound in the lowest triplet state

С	0.638366	0.000000	-1.814366
С	0.638719	0.000000	-0.378115
С	1.897438	0.000000	0.312155
С	3.095591	0.000000	-0.422477
С	3.069246	0.000000	-1.817526
С	1.858254	0.000000	-2.511375
Η	1.844859	0.000000	-3.596579
Η	4.003402	0.000000	-2.371108
Η	4.040465	0.000000	0.111345
С	1.809190	0.000000	1.728454
С	0.689794	0.000000	2.472501
С	-0.586226	0.000000	1.783500
С	-0.593393	0.000000	0.351419
С	-1.845700	0.000000	-0.343068
С	-1.836276	0.000000	-1.793457
С	-0.646082	0.000000	-2.417688
Η	-2.781729	0.000000	-2.330170
С	-3.042023	0.000000	0.392834
С	-3.018586	0.000000	1.787844
С	-1.806870	0.000000	2.478906
Η	-1.798161	0.000000	3.565340
Η	-3.953244	0.000000	2.341201
Η	-3.990628	0.000000	-0.136818
Η	0.706384	0.000000	3.559540

Table S1. Total Energies (hartrees) of H_2 , pyrene, and the C_1 , C_2 and C_4 radicals. Benzene and o-benzyne are include for comparison. For the three radicals the expectation value of square of the total spin operator is given in parenthesis.

Compound	B3LYP/6-31++G**
H_2	-1.178973
H•	-0.501666
Pyrene	-615.807985
C_1	-615.119484 (0.757)
C_2	-615.118843 (0.761)
C_4	-615.119471 (0.760)
Benzene	-232. 268451
o-Benzyne	-230.928491

Table S2. B3LYP/&-31++G^{**} total Energies (hartrees) of the (C₁,C₂), (C₁,C₄), (C₁,C₅), (C₁,C₇), (C₁,C₈), (C₂,C₄), (C₂,C₅), (C₂,C₇), (C₂,C₈), (C₂,C₉), (C₂,C₁₁), (C₂,C₁₂), (C₂,C₁₄), (C₄,C₅), (C₄,C₁₁), and (C₄,C₁₂) compounds in the lowest triplet and singlet states. Notice that for the (C₁,C₂), (C₂,C₁₄), and (C₄,C₅) the singlet is closed shell whereas in the rest of pyrene dehydrogenated compounds it is an open shell singlet. The (C₁,C₂), (C₂,C₁₄), and (C₄,C₅) ground state is a closed shell because a benzyne-like species is formed. In the case of broken symmetry solutions, the singlet energies have been obtained from the broken symmetry (BS) and triplet (T) energies as $E_S=2E_{BS}-E_T$ (cf. refs. 29 and 36).The expectation value of square of the total spin operator is also reported.

Compound	Triplet	<s<sup>2></s<sup>	Singlet	<s<sup>2></s<sup>
(C ₁ ,C ₂)	-614.418771	2.009	-614.468446	0.000
(C ₁ ,C ₄)	-614.430435	2.013	-614.430731	1.016
(C_1, C_5)	-614.430279	2.022	-614.433021	0.987
(C_1, C_7)	-614.430252	2.023	-614.429732	1.014
(C_1, C_8)	-614.430602	2.011	-614.430648	1.018
(C_2, C_4)	-614.429035	2.030	-614.429647	0.990
(C_2, C_5)	-614.429597	2.012	-614.431119	1.017
(C_2, C_7)	-614.429297	2.014	-614.429647	1.029
(C_2, C_8)	-614.430239	2.023	-614.429767	1.014
(C_2, C_9)	-614.429175	2.014	-614.430599	1.022
(C_2, C_{11})	-614.429763	2.012	-614.430573	1.026
(C_2, C_{12})	-614.43034	2.028	-614.42938	1.014
(C_2, C_{14})	-614.425752	2.034	-614.440859	0.000
(C_4, C_5)	-614.416666	2.005	-614.473792	0.000
(C_4, C_{11})	-614.430529	2.016	-614.431243	1.019
(C_4, C_{12})	-614.430119	2.024	-614.433171	0.988

Table S3. CASSCF/CASPT2 total Energies (hartrees) of the (C_1,C_2) , (C_1,C_8) , (C_2,C_{14}) , and (C_4,C_5) compounds in the lowest triplet and singlet states and at the B3LYP corresponding optimized geometries. These calculations are based on a CAS containing 2 active electrons and 2 active orbitals. The ANO (3s,2p,1d) and (2s,1p) is used for C and H, respectively.

Compound	Triplet	Singlet	
	CASSCF		
(C_1, C_2)	-610.4725003	<mark>-610.545556</mark>	
(C_1, C_8)	<mark>-610.5399963</mark>	<mark>-610.539963</mark>	
(C_2, C_{14})	<mark>-610.4596566</mark>	<mark>-610.505497</mark>	
(C_4, C_5)	<mark>-610.4913954</mark>	-610.560528	
	CASPT2		
(C_1, C_2)	<mark>-611.666797</mark>	<mark>-611.752074</mark>	
(C_1, C_8)	-611.705229	<mark>-611.705366</mark>	
(C_2, C_{14})	<mark>-611.652102</mark>	<mark>-611.733904</mark>	
(C_4, C_5)	-611.673545	<mark>-611.760306</mark>	

Table S4. CASSCF/CASPT2 total Energies (hartrees) of the (C_1,C_2) , (C_1,C_8) , (C_2,C_{14}) , and (C_4,C_5) compounds in the lowest triplet and singlet states and at the B3LYP corresponding optimized geometries. These calculations are based on a CAS containing 4 active electrons and 4 active orbitals. The ANO (3s,2p,1d) and (2s,1p) is used for C and H, respectively.

Compound	Triplet	Singlet	
	CASSCF		
(C_1, C_2)	<mark>-610.4963088</mark>	<mark>-610.5490651</mark>	
(C_1, C_8)	<mark>-610.5551254</mark>	<mark>-610.5551651</mark>	
(C_2, C_{14})	<mark>-610.5525396</mark>	<mark>-610.5312983</mark>	
(C_4, C_5)	<mark>-610.5306726</mark>	<mark>-610.562759</mark>	
	CASPT2		
(C_1, C_2)	<mark>-611.6635455</mark>	<mark>-611.7501246</mark>	
(C_1, C_8)	<mark>-611.7055541</mark>	<mark>-611.7058392</mark>	
(C_2, C_{14})	<mark>-611.7107931</mark>	<mark>-611.7348842</mark>	
(C_4, C_5)	-611.7049885	-611.7560838	