Supporting Information cm049574j

1D-XRD of $1 \mathrm{a}\left(190{ }^{\circ} \mathrm{C}, \mathrm{SmA}\right)$

1D-XRD of 1b (black line: $180{ }^{\circ} \mathrm{C}(\mathrm{SmC})$, red line: $\left.205{ }^{\circ} \mathrm{C}(\mathrm{SmA})\right)$
(a)

(b)

$\left(\begin{array}{l}\text { The molecules are well aligned. } \\ \text { However, the rod directions are } \\ \text { slightly disordered. }\end{array}\right)$

Temperature-variable FT-IR spectra of 1d

2a: $\mathrm{R}^{1}=n-\mathrm{C}_{4} \mathrm{H}_{9}$
2b: $\mathrm{R}^{1}=n-\mathrm{C}_{12} \mathrm{H}_{25}$

Synthetic Route of 1a-1d

An example for preparation of 2. To a 300 mL -round-bottom flask were added 4-benzyloxybenzoyl chloride ($9.47 \mathrm{~g}, 38.4 \mathrm{mmol}$), 3-butoxyaniline ($4.23 \mathrm{~g}, 25.6 \mathrm{mmol}$), triethylamine ($21.4 \mathrm{~mL}, 153.6$ mmol), and toluene (100 mL). The mixture was then stirred at reflux for 1.5 h . After cooling, the solution was washed with $1 N \mathrm{HCl}(200 \mathrm{~mL})$, and aqueous solution of $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, and dried over MgSO_{4}. The solvent was evaporated under reduced pressure, and a yellow solid was obtained as the residue. The crude product was purified by silica gel chromatography eluting with chloroform to give 2a as a white solid ($8.79 \mathrm{~g}, 91.4 \%)$.

2a: yield 91.4 \%; white solid; mp 116.7-117.1 ${ }^{\circ} \mathrm{C}$ (methanol-ethyl acetate); IR (KBr) 2952, 2869, $1648,1606,1507,1437,1249,1173,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $1.48(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.76(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.98(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.04(\mathrm{~d}, 3 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.22(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.65 MHz, CDCl_{3}) $\delta 13.87,19.25,31.32,67.79,70.18,106.31,110.98,111.97,114.90$, $127.44,127.50,128.25,128.72,128.90,129.67,136.28,139.29,159.86,161.65,165.15$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}:$ C, 76.77, H, 6.71, N, 3.73, Found: C, 76.46, H, 6.62, N, 3.61

2b: yield 63.9 \%; white solid; mp 104.6-104.9 ${ }^{\circ} \mathrm{C}$ (methanol-ethyl acetate); IR (KBr) 2915, 2847, $1644,1600,1508,1467,1249,1173,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $1.26-1.38(\mathrm{~m}, 16 \mathrm{H}), 1.43(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.78(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.98(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 5.14(\mathrm{~s}$, $2 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 3 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.23(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $7.40(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.65 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.12,22.70,26.06,29.28,29.37,29.42,29.60,29.62$, $29.65,29.69,31.93,68.12,70.20,106.31,110.98,111.95,114.93,127.46,127.50,128.25,128.72$,
$128.89,129.68,136.29,139.28,159.87,161.67,165.12$; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NO}_{3}: \mathrm{C}, 78.81, \mathrm{H}$, 8.47, N, 2.87, Found: C, 78.69, H, 8.69, N, 2.78

A typical procedure for synthesis of 3. To a 500 mL -flask were added $\mathbf{2 a}(8.50 \mathrm{~g}, 22.6 \mathrm{mmol})$, ethanol (100 mL), THF (100 mL), and 10% palladium-activated carbon $(1.50 \mathrm{~g})$. The mixture was stirred at room temperature for 2 h under an atmosphere of hydrogen. After filtrating off by celite, the solution was concentrated in vacuo to give a white solid $(6.45 \mathrm{~g})$. The solid was added to a $300 \mathrm{~mL}-$ roun-bottom flask, and 4-benzyloxybenzoyl chloride $(8.36 \mathrm{~g}, 33.9 \mathrm{mmol})$, $4-(\mathrm{N}, \mathrm{N}-$ dimethlamino)pyridine ($2.00 \mathrm{~g}, 16.4 \mathrm{mmol}$), and THF (150 mL) were added. The mixture was stirred at room temperature for 20 h . To the solution was added ethyl acetate (100 mL), and the solution was washed with aqueous solution of $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated under reduced pressure, and a white solid was obtained as the residue. The crude product was purified by silica gel chromatography (chloroform) to give 3a as a white solid (9.35 g, 83.5%)

3a: yield 83.5%; white solid; mp 159.3-159.8 ${ }^{\circ} \mathrm{C}$ (methanol-ethyl acetate); IR (KBr) 2957, 2871, $1656,1606,1510,1454,1274,1170,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $1.49(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.78(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.00(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 7.08(\mathrm{~d}, 3 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.18(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.65 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.85,19.23,31.29$, $67.80,70.24,106.37,111.23,112.03,114.85,121.50,122.26,127.50,128.34,128.56,128.74,129.73$, $132.45,132.48,136.02,139.01,153.78,159.86,163.30,164.08,164.85 ;$ Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 75.13, H, 5.90, N, 2.83, Found: C, 75.17, H, 5.61, N, 2.86

3b: yield 66.2 \%; white solid; mp 132.4-132.9 ${ }^{\circ} \mathrm{C}$ (methanol-ethyl acetate); IR (KBr) 2920, 2852, $1732,1655,1606,1511,1473,1271,1171,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.26-1.37(\mathrm{~m}, 16 \mathrm{H}), 1.44(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.77(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.96(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.07(\mathrm{~d}, 3 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.23(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.9 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 7.88(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.65 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.13,22.70,26.04,29.27,29.37,29.43,29.60,29.63,29.65,29.69,31.93,68.11,70.24,106.34$, $111.18,112.08,114.83,121.50,122.18,127.51,128.34,128.53,128.75,129.69,132.47,132.52$, 136.03, 139.12, 153.73, 159.82, 163.32, 164.55, 165.04 ; Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{5}: \mathrm{C}, 77.07, \mathrm{H}$, 7.46, N, 2.30, Found: C, 76.78, H, 7.58, N, 2.19

An example for synthesis of 1. To a 100 mL -flask were added 3a(1.10 g, 2.22 mmol), ethanol (30 mL), THF (30 mL), and 10% palladium-activated carbon (300 mg). The mixture was stirred at room temperature for 2 h under an atmosphere of hydrogen. After filtrating off by celite, the solution was concentrated in vacuo to give a white solid $(0.90 \mathrm{~g})$. The solid was added to a 100 mL -roun-bottom flask, and 4-butoxybenzoyl chloride ($0.71 \mathrm{~g}, 3.33 \mathrm{mmol}$), 4-(N, N-dimethlamino) pyridine ($0.50 \mathrm{~g}, 4.09$ mmol), and THF (50 mL) were added. The mixture was stirred at room temperature for 20 h . To the solution was added ethyl acetate (50 mL), and the solution was washed with aqueous solution of $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated under reduced pressure, and a white solid was obtained as the residue. The crude product was purified by silica gel chromatography (chloroform) to give 1a as a white solid ($0.94 \mathrm{~g}, 73 \%$)

1a: yield 72.8 \%; white solid (methanol-ethyl acetate); IR (KBr) 2956, 2871, 1733, 1657, 1604, 1510, $1474,1271,1163,762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.00(\mathrm{t}, 3 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}), 1.51(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.52(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.79(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.81(\mathrm{t}, 2 \mathrm{H}, J=$
$7.4 \mathrm{~Hz}), 4.00(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.07(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.28(\mathrm{~d}$, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.65 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.83,13.87,19.21,19.26,31.13,31.32,67.83$, 68.11, 106.43, 111.26, 112.09, 114.48, 120.90, 122.20, 122.27, 126.40, 128.59, 129.75, 131.93, 132.47, 132.77, 139.05, 153.63, 155.68, 159.89, 163.92, 164.13, 164.35, 164.90 ; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{7}: \mathrm{C}, 72.27, \mathrm{H}, 6.06, \mathrm{~N}, 2.41$, Found: C, $72.00, \mathrm{H}, 6.04, \mathrm{~N}, 2.22$

1b: yield 70.1 \%; white solid (methanol-ethyl acetate); IR (KBr) 2956, 2871, 1733, 1657, 1604, 1510, 1474, 1271, 1163, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.98(\mathrm{t}, 3 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 1.27-1.38(\mathrm{~m}, 16 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 1.83(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.00(\mathrm{t}$, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.06(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.2 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.28(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.65 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.88,14.13,19.26,22.70,25.99,29.10,29.37,29.57,29.60,29.65$, $29.67,31.33,31.93,67.84,68.44,106.42,111.26,112.07,114.48,120.91,122.22,122.26,126.40$, $128.58,129.75,131.93,132.47,132.79,139.04,153.64,155.62,159.90,163.92,164.13,164.32$, 164.85 ; Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{NO}_{7}$: C, 74.43, H, 7.41, N, 2.02, Found: C, 74.18, H, 7.31, N, 1.85

1c: yield 45.1 \%; white solid (methanol-ethyl acetate); IR (KBr) 2921, 2852, 1656, 1604, 1510, 1473, $1267,1164,780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.00(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $1.27-1.37(\mathrm{~m}, 16 \mathrm{H}), 1.46(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.52(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.81(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.99(\mathrm{t}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.07(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.29(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$

NMR (125.65 MHz, CDCl_{3}) $\delta 13.80,14.11,19.18,22.68,26.03,29.26,29.34,29.41,29.59,29.60$, $29.63,29.66,31.11,31.92,68.08,68.13,106.38,111.21,112.00,114.45,120.85,122.11,122.24$, $126.36,128.56,129.72,131.91,132.44,132.75,138.99,153.60,155.62,159.80,163.90,164.11$, 164.32, 164.85 ; Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{NO}_{7}: \mathrm{C}, 74.43, \mathrm{H}, 7.41, \mathrm{~N}, 2.02$, Found: C, 74.26, H, 7.50, N, 1.92

1d: yield 40.7%; white solid (methanol-ethyl acetate); IR (KBr) 2921, 2851, 1736, 1656, 1604, 1510, $1469,1264,1165,761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.27-1.38(\mathrm{~m}, 32 \mathrm{H}), 1.46(\mathrm{t}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.81(\mathrm{t}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.99(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $4.06(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.24$ $(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.83(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.28(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125.65$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.12,22.70,25.99,26.06,29.09,29.28,29.37,29.42,29.56,29.60,29.62,29.65$, $29.69,31.93,68.15,68.43,106.41,111.25,112.07,114.47,120.88,122.21,122.26,126.39,128.58$, $129.74,131.93,132.46,132.76,139.02,153.62,155.67,159.88,163.91,164.11,164.34,164.87$; Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{NO}_{7}: \mathrm{C}, 75.99, \mathrm{H}, 8.38, \mathrm{~N}, 1.74$, Found: C, $76.00, \mathrm{H}, 8.47, \mathrm{~N}, 1.65$

