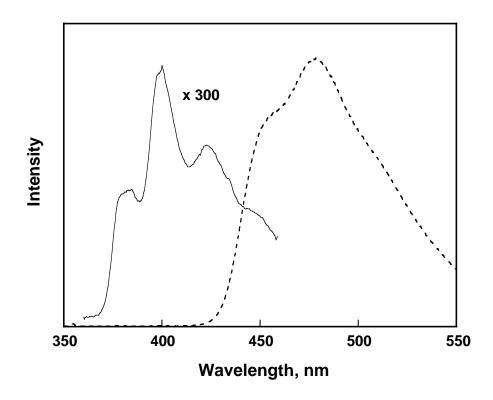
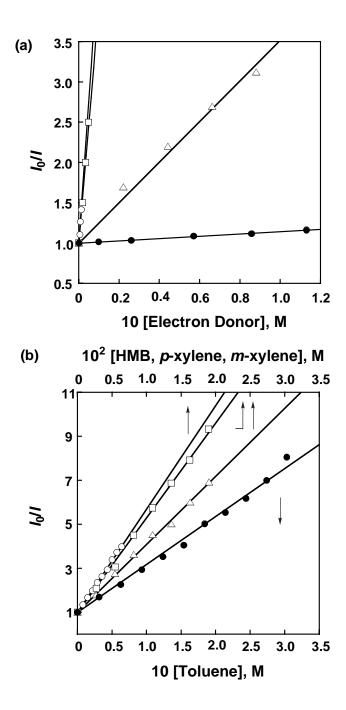
Supporting Information

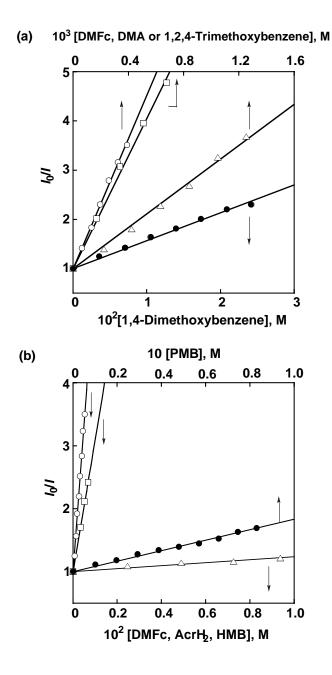

Scandium Ion-Promoted Photoinduced Electron Transfer from Electron Donors to Acridine and Pyrene. Essential Role of Scandium Ion in Photocatalytic Oxygenation of Hexamethylbenzene

Shunichi Fukuzumi,* Junpei Yuasa, Naoya Satoh, and Tomoyoshi Suenobu

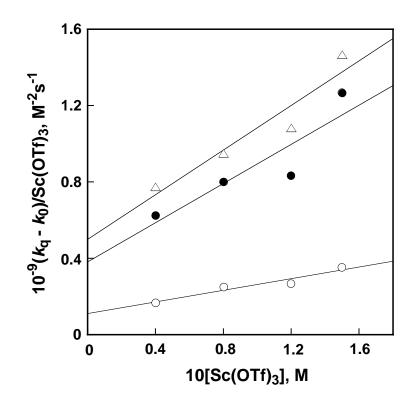
Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

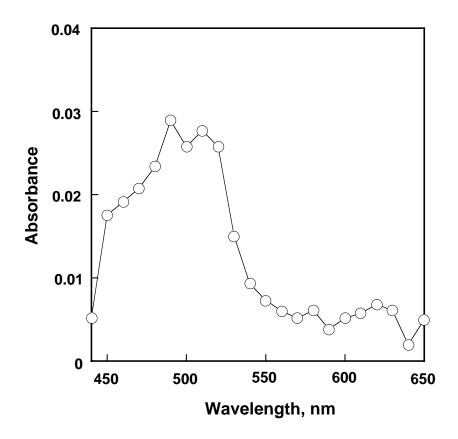

* To whom correspondence should be addressed.

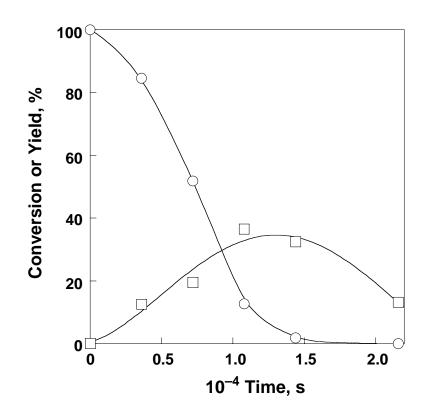
E-mail: fukuzumi@chem.eng.osaka-u.ac.jp



S1


Figure S1. Fluorescence spectra of acridine (AcrN) $(3.5 \times 10^{-5} \text{ M})$ in the absence (solid line) and in the presence of Sc(OTf)₃ (2.0 x 10^{-3} M, dashed line) in deaerated MeCN at 298 K.


Figure S2. Stern-Volmer plots for the fluorescence quenching of AcrN $(1.0 \times 10^{-4} \text{ M})$ by (a) 1,1'-dimethylferrocene (O), 10-methyl-9,10-dihydroacridine (\Box), 1,2,4-trimethoxybenzene (Δ) and 1,4-dimethoxybenzene (\bullet) in deaerated MeCN at 298 K and (b) hexamethylbenzene (HMB; O), *p*-xylene (\Box), *m*-xylene (Δ), and toluene (\bullet) in the presence of Sc(OTf)₃ (4.0 × 10⁻² M) in deaerated MeCN at 298 K.


Figure S3. Stern-Volmer plots for the fluorescence quenching of Py $(1.3 \times 10^{-6} \text{ M})$ by (a) 1,1'-dimethylferrocene (DMFc, O), *N*,*N*-dimethylaniline $(DMA, \Box),$ 1,2,4trimethoxybenzene (\triangle) and 1,4-dimethoxybenzene (\bullet) in deaerated MeCN at 298 K and (b) 10-methyl-9,10-dihydroacridine 1,1'-dimethylferrocene (O), (AcrH₂, □), hexamethylbenzene (HMB, \triangle) and pentamethylbenzene (PMB, \bullet) in the presence of $Sc(OTf)_3$ (4.0 × 10⁻² M) in deaerated MeCN at 298 K.

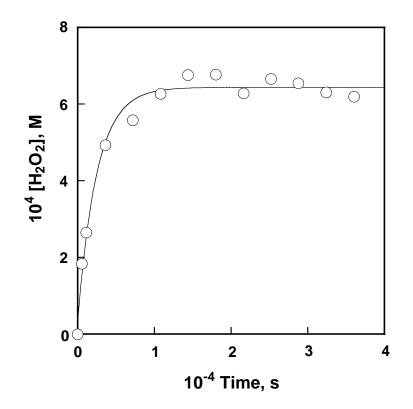

Figure S4. Plots of $(k_q - k_0)/[Sc(OTf)_3]$ vs $[Sc(OTf)_3]$ for the fluorescence quenching of Py $(1.3 \times 10^{-6} \text{ M})$ by 1,2,3,5–tetramethylbenzene (\bigcirc), 1,2,4,5–tetramethylbenzene (\bigcirc) and pentamethylbenzene (\bigtriangleup) in the presence of Sc(OTf)₃ in deaerated MeCN at 298 K.

Figure S5. Transient absorption spectrum in the photoreduction of AcrN (6.6×10^{-5} M) by ferrocene (1.2×10^{-2} M) in the presence of Sc(OTf)₃ (9.7×10^{-3} M) at 1µs after laser irradiation at $\lambda = 355$ nm in deaerated MeCN at 298 K.

Figure S6. Plots of the conversion of HMB (O) and the yield of pentamethylbenzyl alcohol (\Box) vs time determined based on the ¹H-NMR spectral change observed in the photosensitized oxygenation of HMB (2.0 × 10⁻³ M) in the presence of Py (2.0 × 10⁻⁵ M) and Sc(OTf)₃ (4.0 × 10⁻² M) under irradiation of UV-visible light (λ > 300 nm) in O₂-saturated MeCN at 298 K.

Figure S7. Plot of concentration of hydrogen peroxide vs reaction time in the photosensitized oxygenation of HMB (2.0×10^{-3} M) in the presence of AcrN (2.0×10^{-5} M) and Sc(OTf)₃ (4.0×10^{-2} M) under irradiation of UV-visible light ($\lambda > 300$ nm) in O₂-saturated MeCN at 298 K.