Ionic Liquids as a Convenient New Medium for the Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Osmium/Ligand

Luís C. Branco^a and Carlos A. M. Afonso^{*b}

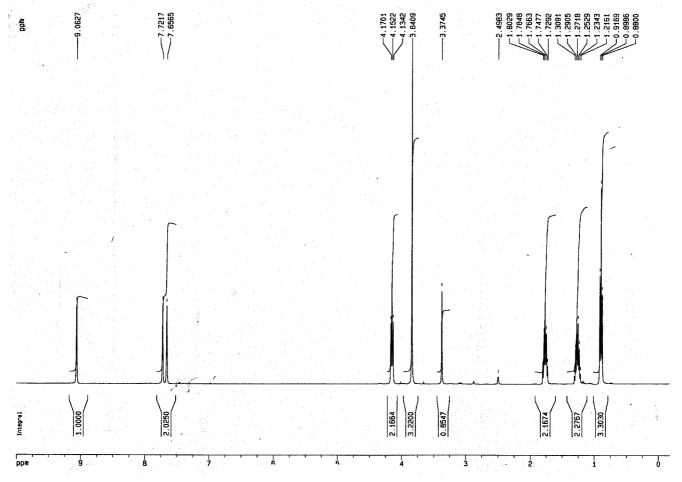
^a REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.; ^b CQFM, Department of Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal Email: carlosafonso@ist.utl.pt

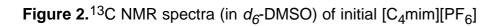
Content

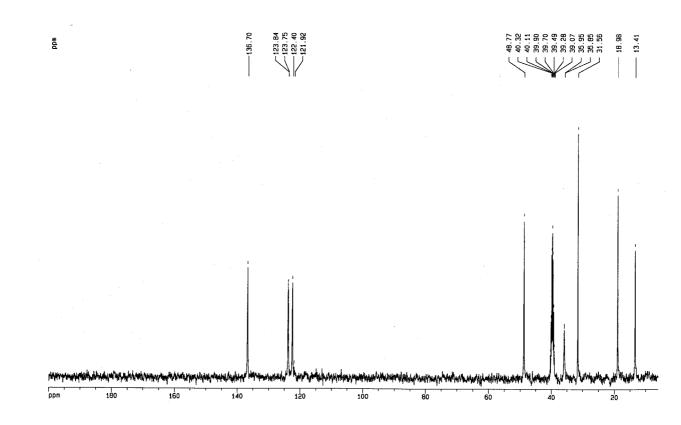
	Page
Figure 1. ¹ H NMR spectra (in <i>d₆-</i> DMSO) of initial [C ₄ mim][PF ₆]	S2
Figure 2. ¹³ C NMR spectra (in <i>d</i> ₆ -DMSO) of initial [C ₄ mim][PF ₆]	S3
Figure 3. ¹ H NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), using	
K ₃ Fe(CN) ₆ as co-oxidan	S3t
Figure 4. ¹³ C NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), using	J
K ₃ Fe(CN) ₆ as co-oxidant	S4
Figure 5. ¹ H NMR spectra (in <i>d</i> ₆ -DMSO) of [C ₄ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-Bu	ЭH),
using K ₃ Fe(CN) ₆ as co-oxidant	S4
Figure 6. ¹³ C NMR spectra (in <i>d</i> ₆ -DMSO) of [C ₄ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-Bu	JOH),
using K ₃ Fe(CN) ₆ as co-oxidant	S5
Figure 7. ¹ H NMR spectra (in <i>d</i> ₆ -DMSO) of initial [C ₈ mim][PF ₆]	S 5
Figure 8. ¹³ C NMR spectra (in <i>d₆</i> -DMSO) of initial [C ₈ mim][PF ₆]	S6
Figure 9. ¹ H NMR spectra (in d_6 DMSO) of [C ₈ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), using	
K ₃ Fe(CN) ₆ as co-oxidant	S6
Figure 10. ¹³ C NMR spectra (in d_6 -DMSO) of [C ₈ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), usin	g
K ₃ Fe(CN) ₆ as co-oxidant	S7
Figure 11. ¹ H NMR spectra (in <i>d</i> ₆ -DMSO) of [C ₈ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-Bu	JOH),
using K ₃ Fe(CN) ₆ as co-oxidant	S7
Figure 12. ¹³ C NMR spectra (in d_6 -DMSO) of [C ₈ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-	
BuOH), using K ₃ Fe(CN) ₆ as co-oxidant	S8
Figure 13. ¹ H NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), using	NMO
as co-oxidant	S8
Figure 14. ¹³ C NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in biphasic system (RTIL/ H ₂ O), NM	O as
co-oxidant	S9
Figure 15. ¹ H NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-B	JOH),
using NMO as co-oxidant	S9
Figure 16. ¹³ C NMR spectra (in d_6 -DMSO) of [C ₄ mim][PF ₆] after run 13 in monophasic system (RTIL/H ₂ O/t-	
BuOH), using NMO as co-oxidant	S10

General: The following chemicals were purchased from commercial sources and used as supplied: styrene, - methylstyrene, 1-hexene, 1-methylcyclohexene, *trans*-stilbene, *trans*-5-decene, K₂CO₃, K₂OsO₂(OH)₄, K₃[Fe(CN)₆], *N*-methyl-morpholine oxide (NMO), (DHQD)₂PHAL, (DHQD)₂PYR and *t*-butanol. All aqueous solutions were pre-pared using distilled water. The room temperature ionic liquids (RTIL) based on the methylimidazolium cation [mim]¹, and on the tetra-alkyl-dimethylguanidinium cation [(be)₂dmg]² were prepared following reported procedures. ¹H, and ¹³C NMR spectra were recorded on a Bruker AMX 400 spectrometer. Chemical shifts are reported downfield in parts per million (ppm) from a tetramethylsilane reference for ¹H and ¹³C NMR. IR spectra were recorded on a FTIR instrument as thinly dispersed films.

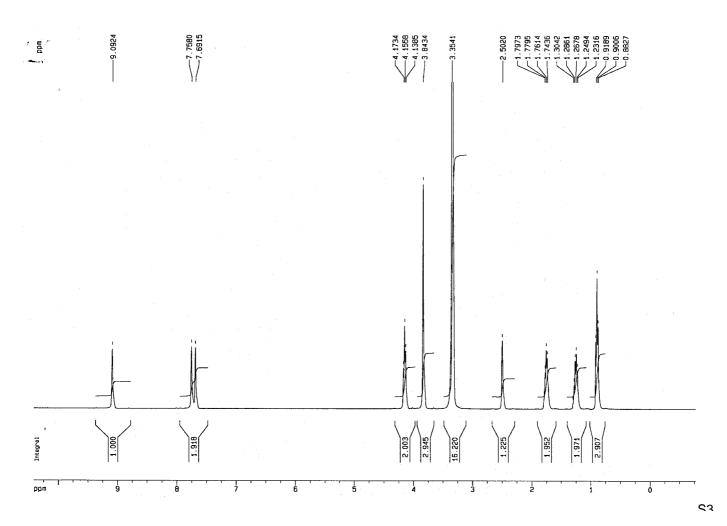
Gas liquid chromatography (GLC) was carried out using He as carrier gas and chiral capillary column Supelco -dex 120 (30m x 0.25 mm). HPLC analyses were performed using Chiralpak AD columm at 25 °C.Flash chromatography was carried out using an MN-Kiesel-gel 60M gel (230-400 mesh ASTM, Art. 815381). All eluents were distilled prior to use. Preparative and analytical thin layer chromatography (TLC) was carried out using, respectively, MN Kieselgel G/UV254 (Art. 816320) glass-backed plates and MN Alugram, SIL G/UV₂₅₄ (Art. 818133). The plates were visualised using ultraviolet light (254 nm) or using phosphomolybdic acid.

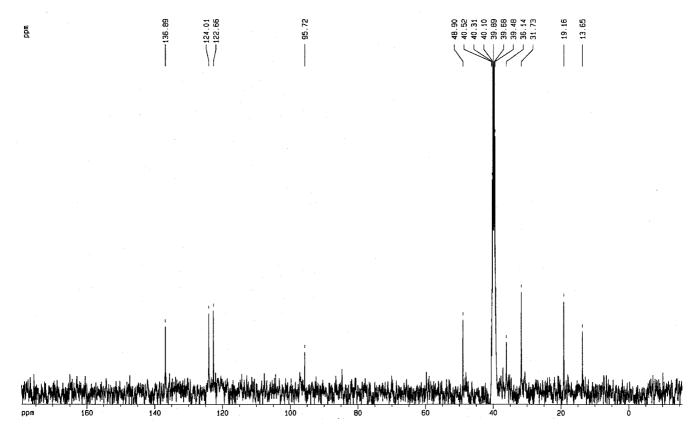

References

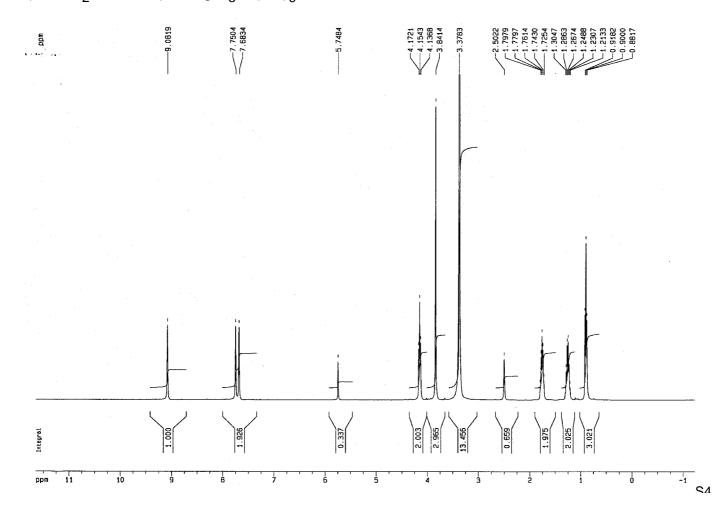

[1] a) T. Kitazume, F. Zulfiqar, G. Tanaka, *Green Chemistry*, 2000, 2, 133; b) A. E Visser, R. P. Swatloski,
R. D. Rogers, *Green Chemistry*, 2000, 2, 1. c) L. C. Branco, J. N. Rosa, J. J. M. Ramos, C. A. M. Afonso, *Chem. Eur. J.* 2002, 8, 3671.

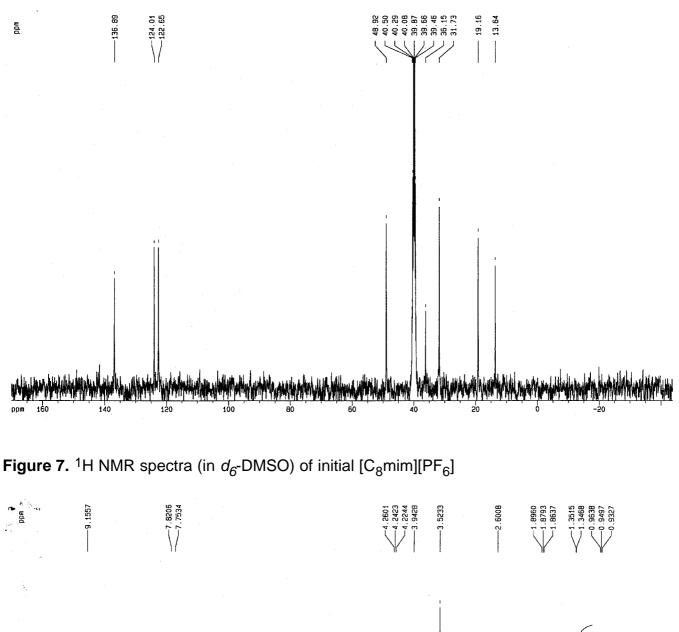

[2] N. M. M. Mateus, L. C. Branco, N. M. T. Lourenço, C. A. M. Afonso, Green Chem. 2003, 5, 347.

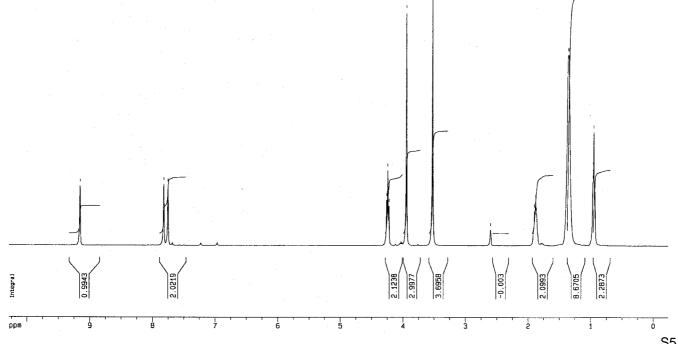
Comparison of Spectral Data (¹H and ¹³C NMR) of the Ionic Liquid Between the Initial and Final Recycled Samples

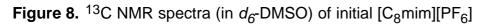

Figure 1. ¹H NMR spectra (in *d*₆-DMSO) of initial [C₄mim][PF₆]




Figure 3. ¹H NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in biphasic system (RTIL/ H₂O), using K₃Fe(CN)₆ as co-oxidant


Figure 4. ¹³C NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in biphasic system (RTIL/ H₂O), using K₃Fe(CN)₆ as co-oxidant




Figure 5. ¹H NMR spectra (in d_{6} -DMSO) of [C₄mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using K₃Fe(CN)₆ as co-oxidant

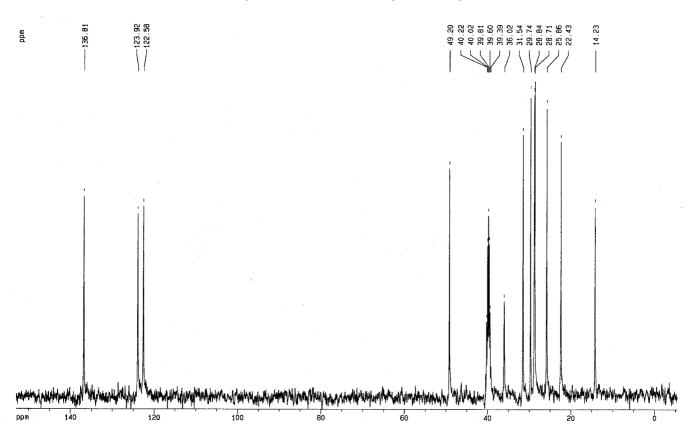
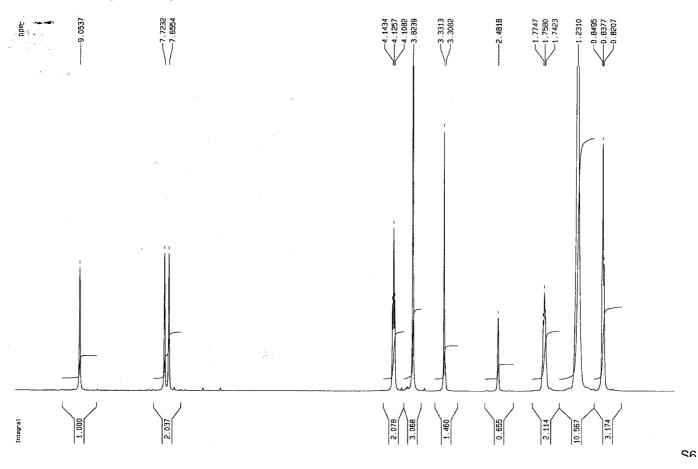
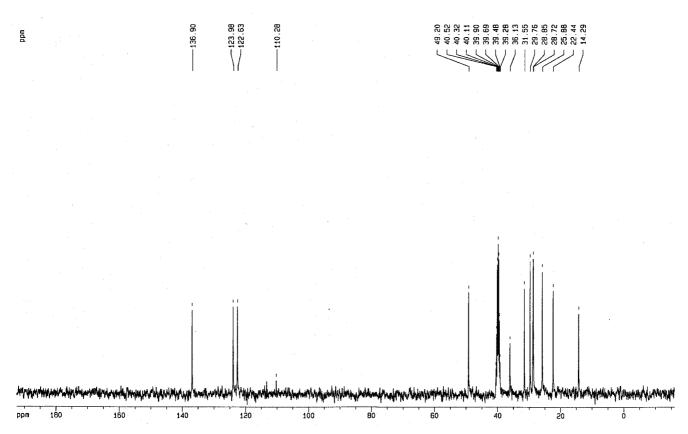


Figure 6. ¹³C NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using K₃Fe(CN)₆ as co-oxidant





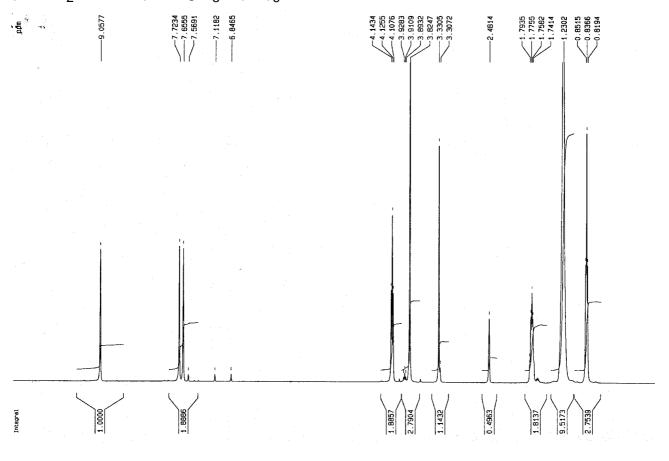

Figure 9. ¹H NMR spectra (in d_6 -DMSO) of [C₈mim][PF₆] after run 13 in biphasic system (RTIL/ H₂O), using K₃Fe(CN)₆ as co-oxidant

Figure 10. ¹³C NMR spectra (in d_6 -DMSO) of [C₈mim][PF₆] after run 13 in biphasic system (RTIL/ H₂O), using K₃Fe(CN)₆ as co-oxidant

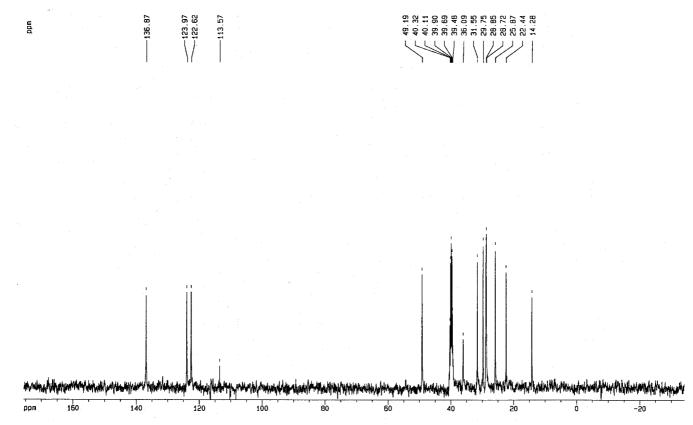
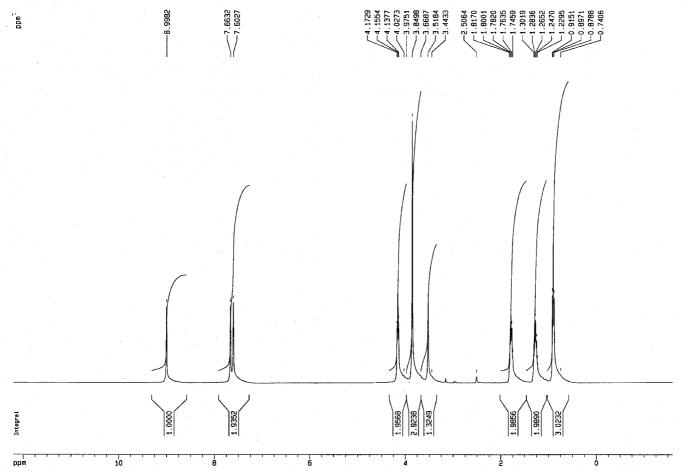
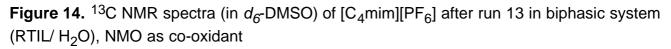
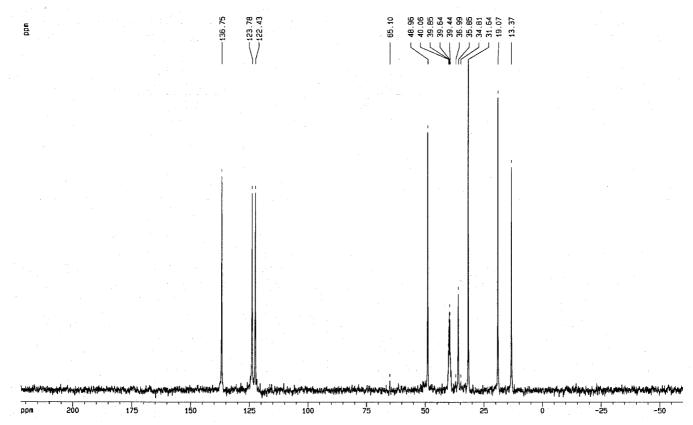
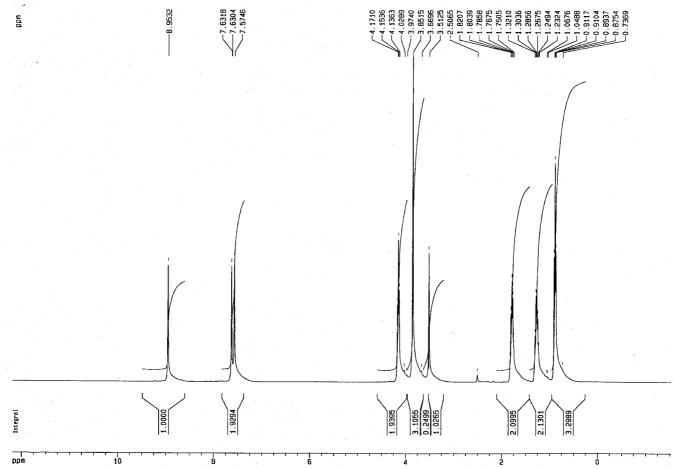


Figure 11. ¹H NMR spectra (in d_6 -DMSO) of [C₈mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using K₃Fe(CN)₆ as co-oxidant




\$7


Figure 12. ¹³C NMR spectra (in d_6 -DMSO) of [C₈mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using K₃Fe(CN)₆ as co-oxidant


Figure 13. ¹H NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in biphasic system (RTIL/ H₂O), using NMO as co-oxidant

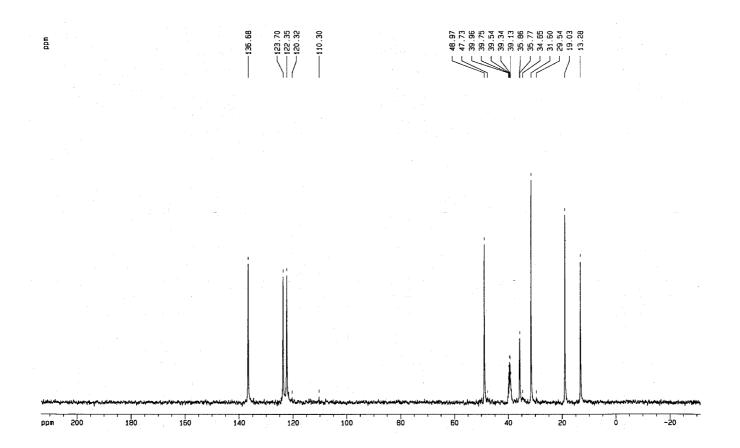


Figure 15. ¹H NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using NMO as co-oxidant

Figure 16. ¹³C NMR spectra (in d_6 -DMSO) of [C₄mim][PF₆] after run 13 in monophasic system (RTIL/H₂O/t-BuOH), using NMO as co-oxidant

