Figure 3. Schematic of the CVD apparatus. To verify that H_3BO_3 is produced by exposing BI_3 powder to humid air, 0.5g of BI_3 powder is exposed to air (30% relative humidity and 23°C) for more than 20 hours. X-ray diffraction (XRD, a Rigaku 2-circle diffractometer with Cu K α radiation) is used to analyze the reaction product. When BI₃ powder is exposed to air (30% relative humidity and 23°C), the faintly red powder of BI₃ slowly loses its color. At the same time, a lot of gas comes out of the surface. After more than 20 hours, the BI₃ powder turns into a white powder, with some brown deposition around the container in which the powder is located. Figure 4(a) shows a XRD pattern taken from the white powder, while Figure 4(b) shows a XRD pattern from H₃BO₃ powder (99.999%, Aldrich). The great similarity between the two suggests that the white powder is H₃BO₃. It is well known that BI₃ reacts with water violently to form H₃BO₃ and HI¹⁶. HI is a gas at room temperature and reacts with O₂ to form H₂O and I₂¹⁶. After a long reaction time (more than 20 hours), all the BI₃ powder turns into H₃BO₃ and I₂. Solid iodine is quite volatile even at room temperature ¹⁶, so what is left is mainly H₃BO₃ powder. If the exposure time of BI₃ powder is short, for example 5 minutes, the originally pure BI₃ powder turns into a mixed powder of H₃BO₃, I₂ and BI₃. Since I₂ is volatile, the main composition of the mixed powder would be H₃BO₃ and BI₃. Both H₃BO₃ and BI₃ have high vapor pressure at relatively low temperature, so it is reasonable to believe that the vapor from the sublimator that contains BI₃/H₃BO₃ powder is composed of BI₃ and H₃BO₃ vapor. Figure 4(a) XRD pattern taken from the BI₃ powder exposed to air (30% relative humidity, 23°C) for more than 20 hours. (b) XRD pattern from H₃BO₃ powder (99.999%, Aldrich). To see if Mg₂B₂O₅ nanowires can be produced using either pure BI₃ or pure H₃BO₃ powder as the sublimate source, BI₃ or H₃BO₃ (99.999%, Aldrich), instead of the mixed powder of BI₃/H₃BO₃, is placed in the sublimator. BI₃ is transported into the sublimator inside a glove box to prevent it from reacting with H₂O vapor and O₂ in air. The CVD deposition process and the structure characterization processes are then repeated. The results show that no nanowires are produced using pure BI₃ or pure H₃BO₃ powder as the sublimate source. The device fabrication process is described briefly as following. Mg₂B₂O₅ nanowires are first dispersed in isopropyl alcohol by sonication and then deposited onto a degenerately doped p-type silicon substrate capped with 500 nm oxide layer ((100), Silicon Valley Microelectronics). Coordinate markers are predefined on top of the SiO₂ layer to mark the relative positions of the nanowires. Bilayer electron beam resists (PMMA&MMA/MAA) are spun onto the substrate, and the contact electrode patterns are exposed by a JEOL electron beam writer operated at 50 KeV. After developing, Au/Ti (10 nm/110 nm thick) contacts to the nanowires are metallized by electron beam evaporation. Figure 5 shows an AFM (Digital Instrument, Multimode SPM) image of a nanowire with two contact electrodes. The nanowire channel length between the electrodes is $1.28 \, \mu m$. To improve the electrical contact, the sample was further loaded into a 10^{-2} torr vacuum chamber and annealed for 1 hour at 500° C. But no essential change of conductance is observed. Figure 5. AFM image of a $Mg_2B_2O_5$ nanowire contacted with Au/Ti electrodes. The diameter of the nanowire is 36 nm and the channel length between electrodes is 1.28 μ m. ## Reference: 16. Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic Press, 2001.