Supporting Information for Org. Lett.

Intramolecular Catalytic Friedel-Crafts Reactions with Allenyl Cations for the Synthesis of Quinolines and Their Analogues

Teruhiko Ishikawa ${ }^{\dagger *}$, Shinobu Manabe ${ }^{\ddagger}$, Toshiaki Aikawa ${ }^{\ddagger}$,
Takayuki Kudo ${ }^{\ddagger}$, and Seiki Saito**
Department of Bioscience and Biotechnology, School of Engineering ${ }^{*}$ and School of Education, ${ }^{\dagger}$ Okayama University, Tsushima, Okayama, Japan 700-8530
E-mail: seisaito@biotech.okayama-u.ac.jp

Experimental Section

Instrumentation. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian Mercury-300 (300 MHz for proton and 75 MHz for carbon-13) instrument. The chemical shifts are given in δ units relative to internal $\mathrm{CHCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}\left(77 \mathrm{ppm}\right.$ for $\left.{ }^{13} \mathrm{C}\right)$. All NMR experiments were performed using deuteriochloroform as a solvent unless otherwise indicated.

Analytical Procedure and Data Presentation. Analytical thin layer chromatography was performed on Merck pre-coated silica gel 60 F-254 (0.25 mm thickness). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data were indicated in the form: δ-value of signal (peak multiplicity, integrated number of protons and coupling constant (if any)). Splitting patterns are abbreviated as follows: s , singlet; d , doublet; t , triplet; m, multiplet; b , broad.

General Reaction Procedure. All reactions, unless otherwise noted, were conducted under a nitrogen or an argon atmosphere. Liquid reagents were transferred via a dry hypodermic syringe from sure seal bottles to a reaction flask through a rubber septa wired on to the reaction flask. The septa can also serve to permit evacuation to eliminate air and introduce the inert gas by means of a steady stream of inert gas flowing system. Organic extracts were concentrated by evaporation with a rotary evaporator evacuated at around 60 mmHg . Column chromatography, unless otherwise specified, was performed on a Merck silica gel 607734 using an appropriate ratio of ethyl acetate-hexane mixed solvent and abbreviated as CC.

Materials. Unless otherwise noted, materials were obtained from commercial suppliers and reagent grade materials were used without further purification. Dimethyl sulfoxide (DMF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were freshly distilled from CaH_{2} prior to use. Methanol (MeOH) and ethanol (EtOH) were distilled from magnesium turnings under argon. Tetrahydrofuran (THF) was distilled from benzophenone/ketyl prior to use.
N-(5-Trimethylsiloxy-5,5-diphenyl-3-pentynyl)- N-(\boldsymbol{p}-toluenesulfonyl)-m-methoxyaniline (1a). To a solution of m-anisidine ($3.29 \mathrm{~g}, 26.7 \mathrm{mmol}$) in THF (30 ml) was added $\mathrm{Et}_{3} \mathrm{~N}(4.46 \mathrm{~mL}$, 32.0 mmol) followed by the addition of p-toluenesulfonyl chloride ($5.09 \mathrm{~g}, 26.7 \mathrm{mmol}$) at room temperature. The mixture was stirred at room temperature for 15 h , quenched by the addition of water,
and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave N-tosylanisidine (A) as a yellow solid. (7.03 g , 95%).

To a solution of $\mathbf{A}(1.52 \mathrm{~g}, 5.48 \mathrm{mmol})$ in THF $(25 \mathrm{ml})$ were added triphenylphosphine $(1.87 \mathrm{~g}$, $7.12 \mathrm{mmol})$ and 3-butyn-1-ol $(0.50 \mathrm{ml}, 6.58 \mathrm{mmol})$ at room temperature followed by the addition of diethyl azodicarboxylate ($1.04 \mathrm{ml}, 6.58 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 15 min , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave N-(3-butynyl)- N-tosylanisidine (B) as a yellow oil. ($980 \mathrm{mg}, 54 \%$).

To a solution of $\mathbf{B}(442 \mathrm{mg}, 1.34 \mathrm{mmol})$ in THF (5 ml) was added BuLi ($1.05 \mathrm{ml}, 1.61 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ followed by the addition of benzophenone ($245 \mathrm{mg}, 1.34 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave N-(5-hydroxy-5,5-diphenyl-3-pentynyl)- N-tosylanisidine (C) as a yellow oil. (531 $\mathrm{mg}, 77 \%$).

To a solution of $\mathbf{C}(531 \mathrm{mg}, 1.04 \mathrm{mmol})$ in DMF (7 ml) were added imidazole (353 mg , 5.19 $\mathrm{mmol})$ and chlorotrimethylsilane $(0.33 \mathrm{ml}, 2.59 \mathrm{mmol})$ at rt . The mixture was stirred at rt for 30 min , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave 1a as a white solid. ($606 \mathrm{mg}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.08(\mathrm{~s}, 9 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}$, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.86(\mathrm{dd}, 1 \mathrm{H}, J=2.5,8.2 \mathrm{~Hz}), 7.31-7.15$ (m, 9H), 7.60-7.50 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 1.6,19.5,21.5,49.4,55.3,75.5,84.6,85.0,114.2,114.7$, $120.4,126.0,127.0,127.7,127.9,129.4,129.6,135.0,139.8,143.5,146.7,160.0$; IR (neat) 2239 , $1352 \mathrm{~cm}^{-1} ; R_{f}=0.70$ (hexane : $\mathrm{AcOEt}=3: 1$).

The following compounds $(\mathbf{1 b}-\mathbf{h}, \mathbf{9}, \mathbf{1 0})$ were synthesized by the similar procedure as that for 11.
\boldsymbol{N}-(5-Trimethylsiloxy-5,5-diphenyl-3-pentynyl)- \mathbf{N}-(\boldsymbol{p}-toluenesulfonyl)-p-methoxyaniline
(1b). ${ }^{1} \mathrm{H}$ NMR $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.79(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.85(\mathrm{~s}$, 3H), 6.8-6.83 (m, 2H), 7.03-6.98 (m, 2H), 7.38-7.23 (m, 8H), 7.63-7.54 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 1.5$, 19.5, 21.5, 49.6, 55.4, 75.5, 84.7, 84.9, 114.3, 126.0, 127.0, 127.7, 127.8, 129.4, 130.1, 131.1, 135.1, 143.4, 146.7, 159.1; IR (neat) 2242, $1350 \mathrm{~cm}^{-1} ; R_{f}=0.58$ (hexane : $\mathrm{AcOEt}=3: 1$).
\boldsymbol{N}-(5-Trimethylsiloxy-5,5-diphenyl-3-pentynyl)- \boldsymbol{N}-(\boldsymbol{p}-toluenesulfonyl)-m-methylaniline (1c). ${ }^{1} \mathrm{H}$ NMR $\delta 0.08(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.76(\mathrm{t}, 2 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 6.74-6.80(\mathrm{~m} \mathrm{~b}, 1 \mathrm{H}), 6.95(\mathrm{~b}, 1 \mathrm{H}), 7.14-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.50-7.65(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 1.6$, 19.6, 21.2, 21.5, 49.5, 75.5, 84.7, 84.9, 125.3, 126.0, 127.0, 127.7, 127.9, 128.8, 129.0, 129.4, 130.0, 135.2, 138.6, 139.1, 143.5, 146.7; IR (neat) $2243,1352 \mathrm{~cm}^{-1} ; R_{f}=0.67$ (hexane : $\mathrm{AcOEt}=3: 1$).

\boldsymbol{N}-(6-Methyl-5-trimethylsiloxy-5-phenyl-3-heptynyl)- \boldsymbol{N}-(\boldsymbol{p}-toluenesulfonyl)-m-methyl-

 aniline (1d). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $1.92(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 1 \mathrm{H})$, 6.99-6.96 (m, 1H) 7.31-7.09 (m, 7H), 7.52-7.45 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\delta 1.5,17.5,17.7,19.5,21.2,21.5$,$42.0,49.7,78.3,83.4,83.8,125.2,126.3,126.8,127.4,127.7,128.8,129.0,129.4,130.0,135.2,138.7$, 139.1, 143.4, 145.2; IR (neat) 2237, $1354 \mathrm{~cm}^{-1} ; R_{f}=0.57$ (hexane : $\mathrm{AcOEt}=3: 1$).
\boldsymbol{N}-(5-Trimethylsiloxy-5-phenyl-3-hexynyl) $\mathbf{N} \boldsymbol{N}$-(\boldsymbol{p}-toluenesulfonyl)-m-methoxyaniline (1e). ${ }^{1} \mathrm{H}$ NMR $\delta 0.12(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 5 \mathrm{H}), 6.63-6.59$ $(\mathrm{m}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 1.7,19.5,21.5,35.9$, $49.6,55.3,71.2,82.1,85.9,114.1,114.8,120.5,125.0,127.0,127.7,127.9,129.4,129.6,135.2,140.0$, 143.5, 147.0, 160.0; IR (neat) 2240, $1352 \mathrm{~cm}^{-1} ; R_{f}=0.73$ (hexane : $\mathrm{AcOEt}=3: 1$).
\boldsymbol{N}-(5-Trimethylsiloxy-5-phenyl-3-pentynyl)- \boldsymbol{N}-(\boldsymbol{p}-toluenesulfonyl)- \boldsymbol{m}-methoxyaniline (1f). ${ }^{1} \mathrm{H}$ NMR $\delta 0.16(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.67(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 3.70, (s, $3 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.52(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.18,19.5$, $21.5,49.6,55.2,64.6,82.3,82.6,114.0,114.8,120.6,126.3,127.6,127.7,128.3,129.4,129.5,135.2$, 139.9, 141.5, 143.4, 159.9.
\boldsymbol{N}-(5-Trimethylsiloxy-5,5-diphenyl-3-pentynyl)- \boldsymbol{N}-(p-toluenesulfonyl)aniline (1g). ${ }^{1} \mathrm{H}$ NMR $\delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.54(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.15 (m, 11H), 7.54-7.45 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 1.6,19.6,21.5,49.5,84.6,85.0,126.0,127.0$, $127.7,127.9,128.1,128.8,129.1,129.4,135.1,138.8,143.5,146.7$; $\mathrm{IR}(\mathrm{KBr}) 2243,1339 \mathrm{~cm}^{-1} ; R_{f}=$ 0.67 (hexane : AcOEt = $3: 1$).
\boldsymbol{N}-(5-Trimethylsiloxy-5,5-diphenyl-3-pentynyl)- \boldsymbol{N}-(\boldsymbol{p}-toluenesulfonyl)- \boldsymbol{m}-chloroaniline (1h). ${ }^{1} \mathrm{H}$ NMR $\delta 0.08(\mathrm{~s}, 9 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.74(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, 6.98-6.93 (m, 1H), 7.06 (t, 1H, J = 2.2 Hz$), 7.32-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.51(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 1.7,19.6,21.5,49.3,84.3,85.2,125.9,126.97,127.03,127.6,127.9,128.4,128.9$, $129.5,130.0,134.5,134.6,140.0,143.9,146.6$; IR (neat) $2240,1354 \mathrm{~cm}^{-1} ; R_{f}=0.70$ (hexane : AcOEt $=3: 1$).
\boldsymbol{N}-(7-Trimethylsiloxy-6,6-diphenyl-4-hexynyl)- \mathbf{N}-(\boldsymbol{p}-toluenesulfonyl)-m-methoxyaniline (9). ${ }^{1} \mathrm{H}$ NMR $\delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 1.75($ quin, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.44-2.37(\mathrm{~m}, 5 \mathrm{H}), 3.62(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 6.56-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.60(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.11(\mathrm{~m}, 9 \mathrm{H}), 7.52-7.43$ (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 1.5,16.2,21.5,27.4,49.9,55.2,75.5,83.8,87.3,113.8,114.7,120.4,125.9$, $126.9,127.7,129.3,129.5,135.0,140.3,143.3,146.9,159.9$; IR (neat) $2235,1352 \mathrm{~cm}^{-1} ; R_{f}=0.63$ (hexane : $\mathrm{AcOEt}=3: 1$).
\boldsymbol{N}-(7-Trimethylsiloxy-7,7-diphenyl-5-heptynyl)- \boldsymbol{N}-(\boldsymbol{p}-toluenesulfonyl)-m-methoxyaniline (10). ${ }^{1} \mathrm{H}$ NMR $\delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 6.65-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.13(\mathrm{~m}, 9 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 1.5,18.4,21.5,25.2,27.4,49.8,55.2,75.5,83.5,88.1,113.6,114.6,120.5,125.9,126.8,127.7,127.8$, 129.3, 129.4, 135.1, 140.1, 143.3, 147.0, 159.8; IR (neat) $2235,1350 \mathrm{~cm}^{-1} ; R_{f}=0.67$ (hexane : AcOEt $=3: 1$).

7-Methoxy-4-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2a). To a solution of $\mathbf{1 a}(60 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0026 \mathrm{ml}$, 0.021 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated by a rotary evaporator to give a yellow gum, which, on CC, gave a mixture of 2a and 3a (10:1, inseparable by SiO_{2} column) as a white solid ($49 \mathrm{mg}, 99 \%$); 2a: ${ }^{1} \mathrm{H}$ NMR $\delta 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}), 7.45-7.11(\mathrm{~m}$, $14 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.6,25.6,45.7,55.5,100.2,110.0,113.6,114.0,117.0,126.7$, $127.0,127.5,127.9,128.2,128.3,128.4,129.7,136.5,136.7,137.4,143.7,159.0,204.5$; IR (neat) $1356 \mathrm{~cm}^{-1} ; R_{f}=0.50$ (hexane : $\mathrm{AcOEt}=3: 1$).

The following compounds ($\mathbf{2 b}-\mathbf{e}, \mathbf{g}, \mathbf{h}, \mathbf{1 1 a}, \mathbf{1 2}$) were synthesized by the similar procedure as that for $\mathbf{2 a}$ and were obtained as a mixture of 7-(2) and 5-substituted (3) isomers except for $\mathbf{2 b}$.g. These mixtures were inseparable by SiO_{2} column chromatography. The spectroscopic data only for the major isomer (2) were listed, which were carefully read from the corresponding spectra of the mixtures.

6-Methoxy-4-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2b). ${ }^{1} \mathrm{H}$ NMR $\delta 2.44-2.36(\mathrm{~m}, 5 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{dd}, 1 \mathrm{H}, J=2.7,9.1 \mathrm{~Hz})$, $7.03(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 7.36-7.17(\mathrm{~m}, 12 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.6,25.0,45.5,55.3,100.3,110.8,114.0,114.3,126.4,127.1,127.6,128.1,128.3,128.4,129.1$, 129.7, 136.0, 137.4, 143.6, 157.4, 205.1; IR (neat) $1350 \mathrm{~cm}^{-1} ; R_{f}=0.55$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, m/z 493.17122 (calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S} \mathrm{~m} / \mathrm{z} 493.17116$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 75.43 ; \mathrm{H}, 5.51 ; \mathrm{N}, 2.84$. Found: C, $75.30 ; \mathrm{H}, 5.50 ; \mathrm{N}, 2.80$.

7-Methyl-4-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2c). ${ }^{1} \mathrm{H}$ NMR $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H})$, $7.49-7.07(\mathrm{~m}, 12 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 21.4,21.5$, $25.5,45.5,100.3,110.8,114.0,121.9,126.5,126.7,126.97,127.01,127.3,127.5,128.28,128.33$, $128.4,129.59,129.64,135.6,136.3,137.5,137.9,143.6,204.8$; IR (neat) $1356 \mathrm{~cm}^{-1} ; R_{f}=0.67$ (hexane : $\mathrm{AcOEt}=3: 1$).

4-(2-Isopropyl-2-phenylvinylidene)-7-methyl-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2d). ${ }^{1} \mathrm{H}$ NMR $\delta 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.40-2.29(\mathrm{~m}, 8 \mathrm{H})$, 2.96-2.82 (m, 1H), 4.10-3.78 (m, 2H), 6.97-6.92 (m, 1H), 7.36-7.18 (m, 8H), 7.54-7.48 (m, 2H) 7.63 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.3,21.5,22.2,22.4,25.4,29.1,45.7,101.2,117.6,123.1,126.2,126.4$, $126.6,126.8,126.9,127.0,127.1,128.4,128.4,129.6,135.3,136.0,137.4,137.5,143.5201 .9$; IR (neat) $1348 \mathrm{~cm}^{-1} ; R_{f}=0.57$ (hexane : $\mathrm{AcOEt}=3: 1$).

7-Methoxy-4-(2-methyl-2-phenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2e). ${ }^{1} \mathrm{H}$ NMR $\delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.3-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.04-3.86(\mathrm{~m}$, 2H), $6.70(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.7 \mathrm{~Hz}), 7.40-7.13(\mathrm{~m}, 9 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 16.7,21.6$, $25.5,45.9,55.5,98.9,104.8,109.9,113.5,117.8,118.3,125.67,125.74,126.1,126.9,127.06,127.13$, $128.0,128.1,128.3,129.7,136.5,137.4,143.7,158.7,202.6$; IR (neat) $1352 \mathrm{~cm}^{-1} ; R_{f}=0.53$ (hexane : $\mathrm{AcOEt}=3: 1$).

4-(2,2-Diphenylvinylidene)-1-(p-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2g). ${ }^{1} \mathrm{H}$ NMR $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.09(\mathrm{~m}, 14 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H})$, 7.79 (dd, $1 \mathrm{H}, J=1.4,8.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.6,25.7,45.5,100.4,114.1,124.9,125.8,126.1,126.95$, 127.04, 127.6, 127.8, 128.3, 128.4, 129.7, 135.8, 136.1, 137.4, 143.7, 205.1; IR $\left(\mathrm{CHCl}_{3}\right) 1356 \mathrm{~cm}^{-1} ; R_{f}$ $=0.67$ (hexane : AcOEt) $=3: 1$). Exact Mass: exact mass, m/z 463.16045 (calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}$
463.16060). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 77.72 ; \mathrm{H}, 5.44 ; \mathrm{N}, 3.02$. Found: C, 77.58; H, 5.31; N, 2.99 .

7-Chlolo-4-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4-tetrahydroquinoline (2h). ${ }^{1} \mathrm{H}$ NMR $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.05(\mathrm{~m}, 13 \mathrm{H}), 7.84(\mathrm{~d}$, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.53-7.11(\mathrm{~m}, 12 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.6,25.0,45.5$, $55.3,100.3,110.8,114.0,114.3,126.4,127.1,127.7,127.9,128.1,128.3,129.1,129.7,136.1,137.4$, 143.6, 157.4, 205.1; IR $\left(\mathrm{CHCl}_{3}\right) 1358 \mathrm{~cm}^{-1} ; R_{f}=0.60$ (hexane : $\mathrm{AcOEt}=3: 1$).

8-Methoxy-5-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-2,3,4,5-tetrahydro-1-benz-

 azepine (11a). ${ }^{1} \mathrm{H}$ NMR $\delta 2.01$ (quin, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.71(\mathrm{dd}, 1 \mathrm{H}, J=2.5,8.5 \mathrm{~Hz}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.40-7.26(\mathrm{~m}, 11 \mathrm{H}), 7.75-7.49$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 21.5,28.2,29.6,50.6,55.3,107.2,110.3$, 112.6, 113.5, 126.0, 127.2, 127.3, 128.4, 128.4, 129.6, 130.7, 136.8, 138.2, 139.0, 143.3, 159.0, 206.3; IR (neat) $1346 \mathrm{~cm}^{-1} ; R_{f}=0.47$ (hexane : AcOEt $=3: 1$). Exact Mass: exact mass, m/z 507.18677 (calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S} \mathrm{~m} / \mathrm{z} 507.18681$). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 75.71 ; \mathrm{H}, 5.76 ; \mathrm{N}, 2.76$. Found: C, 75.77; H, 5.71; N, 2.74.9-Methoxy-6-(2,2-diphenylvinylidene)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2,3,4,5,6-hexahydro-2-
benzazocine (12). ${ }^{1} \mathrm{H}$ NMR $\delta 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.04(\mathrm{~m}$, $2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 6.79(\mathrm{dd}, 1 \mathrm{H}, J=2.7,9.1 \mathrm{~Hz})$, $7.45-7.23(\mathrm{~m}, 12 \mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.5,23.9,27.6,31.2$, 51.3, 55.2, 107.8, 109.8, 113.6, 115.0, 127.1, 127.6, 128.3, 128.4, 129.6, 129.8, 130.7, 136.4, 136.8, 137.7, 143.3, 159.2, 208.4; IR $\left(\mathrm{CHCl}_{3}\right) 1346 \mathrm{~cm}^{-1} ; R_{f}=0.38$ (hexane : AcOEt $=3: 1$). Exact Mass: exact mass, $\mathrm{m} / \mathrm{z} 521.20233$ (calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S} \mathrm{~m} / \mathrm{z} 521.20246$). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}$, $75.98 ; \mathrm{H}, 5.99$; N, 2.68. Found: C, 75.79; H, 6.06; N, 2.54.

7-Methoxy-4-(2,2-diphenylvinyl)-1-(p-toluenesulfonyl)-1,2-dihydroquinoline (4a). To a solution of $\mathbf{1 a}(75 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0033 \mathrm{ml}, 0.026 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC , gave a mixture of $\mathbf{4 a}$ and $\mathbf{5 a}$ (10: 1; inseparable by SiO_{2} column) as a yellow oil. ($63 \mathrm{mg}, 99 \%$). Data for 4a: ${ }^{1} \mathrm{H}$ NMR $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~S}, 3 \mathrm{H}), 4.16-4.09$ (m, 2H), 4.95-4.90 (m, 1H), 5.86-5.83 (m, 1 H), 6.78 (dd, 1H, $J=2.8,8.5 \mathrm{~Hz}$), 7.05-7.00 (m, 2H), $7.25-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.26(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 21.5,45.3,55.6,112.0,113.2,120.4,124.2,124.3$, $125.6,127.3,127.4,127.5,127.6,127.7,127.8,128.06,128.13,129.0,129.7,133.6,136.1,136.8$, 139.6, 142.6, 143.2, 145.5, 159.3; IR $\left(\mathrm{CHCl}_{3}\right) 1352 \mathrm{~cm}^{-1} ; R_{f}=0.50$ (hexane : AcOEt = $\left.3: 1\right) .4-(\mathbf{2 , 2 -}$ Diphenylvinyl)-1-(\boldsymbol{p}-toluenesulfonyl)-1,2-dihydroquinoline ($\mathbf{4 g}$). To a solution of $\mathbf{2 g}$ (65 mg , 0.14 mmol) in $\mathrm{EtOH}(5 \mathrm{ml})$ was added p-toluenesulfonic acid monohydrate ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) at room temperature. The mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 24 h , neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave $\mathbf{4 g}$ as a yellow gum ($64 \mathrm{mg}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR δ $2.47(\mathrm{~s}, 3 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.84(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.10$
(m, 15H), 7.74-7.69 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 21.5,45.2,123.2,123.9,124.6,126.8,127.1,127.4,127.5$, 127.7, 127.8, 128.08, 128.13, 128.2, 129.0, 129.7, 131.3, 133.8, 135.4, 136.1, 139.5, 142.5, 143.2, 145.6; IR (neat) $1354 \mathrm{~cm}^{-1} ; R_{f}=0.67$ (hexane : AcOEt $=3: 1$). Exact Mass: exact mass, m / z 463.16066 (calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z} 463.16060$). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 77.72 ; \mathrm{H}, 5.44$; N, 3.02. Found: C, 77.61 ; H, 5.42; N, 3.10.

The following compound was prepared in a similar way as that described for $\mathbf{4 g}$.

5-(2,2-Diphenylvinyl)-8-methoxy-1-p-toluenesulfonyl-2,3-dihydro-1-benzazepine (11b).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.06-3.95(\mathrm{~b}, 2 \mathrm{H}), 5.46-5.38(\mathrm{~m}$, $1 \mathrm{H}), 5.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}), 6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.08(\mathrm{~m}, 14 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 21.6,27.5,55.5,55.7,114.3,115.9,126.9,127.4,127.6,128.0,128.1,129.0,129.2,129.8,129.9$, $130.1,131.0,137.0,137.7,138.3,140.0,142.8,143.0,143.1,159.0 ; R_{f}=0.47$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, $\mathrm{m} / \mathrm{z} 507.18693$ (calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S} \mathrm{~m} / \mathrm{z} 507.18681$). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 75.71 ; \mathrm{H}, 5.76 ; \mathrm{N}, 2.76$. Found: C, $75.62 ; \mathrm{H}, 5.69 ; \mathrm{N}, 2.70$.

7-Methoxy-4-(2,2-diphenylvinyl)quinoline (6a) and 5-methoxy-4-(2,2-diphenylvinyl)quinoline (7a). To a solution of a mixture of $\mathbf{4 a}$ and $\mathbf{5 a}(60 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was added potassium hydroxide $(95 \mathrm{mg}, 1.69 \mathrm{mmol})$ at room temperature. The mixture was stirred at $64{ }^{\circ} \mathrm{C}$ for 30 h , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave $\mathbf{6 a}$ (29 $\mathrm{mg}, 72 \%)$ and $7 \mathrm{a}(4 \mathrm{mg}, 9 \%)$ both as a yellow gum. $\mathbf{6 a}$: ${ }^{1} \mathrm{H}$ NMR $\delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=4.7$ $\mathrm{Hz}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 7 \mathrm{H}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.50(\mathrm{~d}, 1 \mathrm{H}$, $J=4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.5,107.7,119.4,119.6,122.6,123.3,125.6,127.8,128.17,128.25,128.31$, 128.35, 130.3, 139.2, 142.5, 143.5, 147.7, 148.9, 150.0, 150.1, 160.4; $R_{f}=0.17$ (hexane : $\mathrm{AcOEt}=3$: 1); Exact Mass: exact mass, m/z 337.14660 (calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO} \mathrm{m} / \mathrm{z} 337.14666$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 85.43 ; \mathrm{H}, 5.68 ; \mathrm{N}, 4.15$. Found: C, 85.29; H, 5.62; N, 4.11.

7a: ${ }^{1} \mathrm{H}$ NMR $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.78(\mathrm{dd}, 1 \mathrm{H}, J=1.1,4.7 \mathrm{~Hz}), 6.78(\mathrm{dd}, 1 \mathrm{H}, J=1.1,7.7 \mathrm{~Hz})$, $7.20-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.72-7.59(\mathrm{~m}, 3 \mathrm{H}), 8.47(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 56.1$, 105.6, 120.5, 122.4, 122.9, 127.2, 127.6, 128.06, 128.09, 128.2, 128.9, 129.6, 130.9, 139.6, 141.7, $142.9,144.2,149.7,150.2,150.1,157.2 ; R_{f}=0.27$ (hexane $: \operatorname{AcOEt}=3: 1$).

4-(2,2-Diphenylvinyl)quinoline ($\mathbf{6 g}$). To a solution of $\mathbf{4 g}$ ($75 \mathrm{mg}, 0.16 \mathrm{mmol}$) in MeOH (5 $\mathrm{ml})$ was added potassium hydroxide $(95 \mathrm{mg}, 1.69 \mathrm{mmol})$ at room temperature. The mixture was stirred at $64^{\circ} \mathrm{C}$ for 30 h , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave $\mathbf{6 g}$ $(47 \mathrm{mg}, 94 \%)$ as a yellow gum: ${ }^{1} \mathrm{H}$ NMR $\delta 6.87(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.09(\mathrm{~m}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 121.5123 .1,124.3,126.4,127.6,127.8,128.1,128.26,128.33,129.2,129.9$, 130.3, 139.1, 142.4, 143.6, 147.8, 148.3, 149.7; $R_{f}=0.33$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, $\mathrm{m} / \mathrm{z} 307.13601$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N} \mathrm{~m} / \mathrm{z} 307.13610$). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 89.87 ; \mathrm{H}$, 5.57; N, 4.56. Found: C, 89.77; H, 5.51; N, 4.59.

Methyl quinoline-4-carboxylate ($\mathbf{8 g}$). To a solution of $\mathbf{6 g}(47 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (3 ml) was added potassium permanganate ($121 \mathrm{mg}, 0.76 \mathrm{mmol}$) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h , neutralized with aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$, and concentrated by a rotary evaporator to give an oil. To a solution of the oil in MeOH (5 ml) was added chlorotrimethylsilane $(0.50 \mathrm{ml} 3.93 \mathrm{mmol})$ at room temperature. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 3 days, neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave $\mathbf{8 g}$ ($17 \mathrm{mg}, 60 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.04(\mathrm{~s}, 3 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.91$ $(\mathrm{d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 8.20-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.80-8.74(\mathrm{~m}, 1 \mathrm{H}), 9.20(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 52.7$, $122.2,125.0,125.6,128.2,129.7,130.0,134.8,149.1,149.8,166.6$; IR (neat) $1728 \mathrm{~cm}^{-1} ; R_{f}=0.33$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, $\mathrm{m} / \mathrm{z} 187.06333$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z}$ 187.06333). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, $70.58 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.48$; O, 17.09. Found: C, 70.50; H, 4.90; N, 7.42.

N-Methoxy- N-(4-trimethylsiloxy-4,4-diphenyl-2-butynyl)-(m-methoxybenzyl)amine

(13a). To a solution of 3-methoxybenzyl bromide ($3.00 \mathrm{ml}, 21.4 \mathrm{mmol}$) in DMF (50 ml) was added N, N-diisopropylethylamine $(8.96 \mathrm{~mL}, 64.3 \mathrm{mmol})$ followed by the addition of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(2.15 \mathrm{~g}$, 25.7 mmol) at room temperature. The mixture was stirred at room temperature for 19 h , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which on, CC, gave N-(3-methoxybenzyl)- O methylhydroxylamine (D) as a yellow oil ($2.06 \mathrm{~g}, 58 \%$).

To a solution of $\mathbf{D}(1.65 \mathrm{~g}, 9.84 \mathrm{mmol})$ in DMF (20 ml) was added N, N-diisopropylethylamine ($2.51 \mathrm{ml}, 14.8 \mathrm{mmol}$) followed by the addition of propargyl bromide $(0.89 \mathrm{ml}, 11.8 \mathrm{mmol})$ at room temperature. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 15 h , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave N -(3-methoxybenzyl)- N -(2-propynyl)- O methylhydroxylamine (\mathbf{E}) as a yellow oil ($1.98 \mathrm{~g}, 98 \%$).

To a solution of $\mathbf{E}(520 \mathrm{mg}, 2.44 \mathrm{mmol})$ in THF (12 ml) was added BuLi ($2.05 \mathrm{ml}, 3.17 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ followed by the addition of benzophenone ($532 \mathrm{mg}, 2.92 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave N-(3-methoxybenzyl)- N-(4-hydroxy-4,4-diphenyl-2-propynyl)-O-methylhydroxylamine (\mathbf{F}) as a yellow oil ($709 \mathrm{mg}, 75 \%$).

To a solution of $\mathbf{F}(709 \mathrm{mg}, 1.83 \mathrm{mmol})$ in DMF (12 ml) was added imidazole ($747 \mathrm{mg}, 10.1$ $\mathrm{mmol})$ and chlorotrimethylsilane $(0.70 \mathrm{ml}, 5.49 \mathrm{mmol})$ at room temperature. The mixture was stirred at rt for 1 h , quenched by the addition of water, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which on, CC , gave 13a as a yellow oil. ($808 \mathrm{mg}, 96 \%$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.13$ (s, 9H), 3.42 ($\mathrm{s}, 3 \mathrm{H}$), 3.72 (s, 2H), 3.79 (s, 3H), 3.92 (s, $2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 1.5$,
46.3, 55.2, 60.7, 61.3, 75.6, 83.7, 87.4, 113.1, 114.8, 121.9, 126.1, 127.1, 127.9, 129.2, 138.6, 146.7, 159.5; IR (neat) $2349 \mathrm{~cm}^{-1} ; R_{f}=0.77$ (hexane : $\mathrm{AcOEt}=3: 1$).

The following compounds were synthesized by the similar procedure as that for 13a.
\boldsymbol{N}-Methoxy- \boldsymbol{N}-(4-trimethylsiloxy-4,4-diphenyl-2-butynyl) -(\boldsymbol{m}-methylbenzyl) amine (13b). ${ }^{1} \mathrm{H}$ NMR $\delta 0.18$ ($\mathrm{s}, 9 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.10(\mathrm{~m}, 10 \mathrm{H})$, $7.69-7.63(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 1.5,21.3,46.2,60.6,61.2,75.6,83.8,87.3,126.1,126.6,127.1,127.9$, 128.1, 130.3, 136.8, 137.8, 146.7; IR (neat) $2341 \mathrm{~cm}^{-1} ; R_{f}=0.80($ hexane $: ~ \mathrm{AcOEt}=3: 1$).

2,7-Dimethoxy-4-(2,2-diphenylvinylidene)-1,2,3,4-tetrahydroisoquinoline (14a). To a solution of 13a ($127 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added TMSOTf ($0.05 \mathrm{ml}, 0.28 \mathrm{mmol}$) dropwise at $-30^{\circ} \mathrm{C}$. The mixture was stirred at $-25^{\circ} \mathrm{C}$ for 45 min , neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave 14a as a yellow gum. ($91 \mathrm{mg}, 89 \%$); ${ }^{1} \mathrm{H}$ NMR δ $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.40-4.00(\mathrm{~b}, 4 \mathrm{H}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 6.78(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.5,8.5 \mathrm{~Hz}), 7.56-7.26(\mathrm{~m}, 11 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 54.9,55.3,57.2,59.6,100.7,111.7,114.0,114.5,121.1$, 127.4, 128.4, 133.2, 136.6, 159.3, 204.1; $R_{f}=0.53$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, $\mathrm{m} / \mathrm{z} 369.17276$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z} 369.17288$). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 81.27 ; \mathrm{H}, 6.27$; $\mathrm{N}, 3.79$. Found: C, 81.22; H, 6.30; N, 3.69.

The following compound was synthesized by the similar procedure as that for 14a.
2-Methoxy-7-methyl-4-(2,2-diphenylvinylidene)-1,2,3,4-tetrahydroisoquinoline (14b). ${ }^{1} \mathrm{H}$ NMR $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.40-3.98(\mathrm{~b}, 4 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.26(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.2,55.0,57.0,59.5,101.1,114.5,125.8,125.9,127.2,127.4,127.8,128.1,128.4,131.7$, 136.5, 137.6, 204.4; $R_{f}=0.67$ (hexane $: \mathrm{AcOEt}=3: 1$).

7-Methoxy-4-(2,2-diphenylvinyl)isoquinoline (16a). To a solution of 14a containing 15a ($230 \mathrm{mg}, 0.62 \mathrm{mmol}$) in $\mathrm{EtOH}(8 \mathrm{ml}$) was added p-toluenesulfonic acid ($107 \mathrm{mg}, 1.0$ equiv) at room temperature. The mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 24 h , neutralized with aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$, and extracted with AcOEt. The combined extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by a rotary evaporator to give an oil, which, on CC, gave 16a as a brown gum. ($190 \mathrm{mg}, 91 \%$); ${ }^{1} \mathrm{H}$ NMR $\delta 3.95$ (s, $3 \mathrm{H}), 7.22-7.04(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 7 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.4,105.0$, $122.5,123.3,125.4,127.5,128.0,128.1,128.2,128.3,128.7,129.3,130.4,139.5,142.3,142.8,146.5$, 149.5, 158.2; $R_{f}=0.20$ (hexane : $\mathrm{AcOEt}=3: 1$). Exact Mass: exact mass, m/z 337.14659 (calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO} \mathrm{m} / \mathrm{z} 337.14666$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 85.43 ; \mathrm{H}, 5.68 ; \mathrm{N}, 4.15$. Found: C, 85.29; H, 5.64; N, 4.14.

The following compound was synthesized by the similar procedure as that for 16a.
7-Methyl-4-(2,2-diphenylvinyl)isoquinoline (16b) and 5-methyl-4-(2,2-diphenylvinyl)isoquinoline (17b) (5:1). ${ }^{1} \mathrm{H}$ NMR $\delta 2.55(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.04(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.72(\mathrm{~s}$, 1H), 8.05-7.97 (m, 2H), 8.95 (s, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 21.6,122.5,123.5,126.8,127.5,128.0,128.1,128.2$, $128.3,128.40,128.44,128.6,129.9,130.4,132.6,133.1,137.0,139.6,142.9,143.2,146.4,150.3 ; R_{f}=$ 0.43 (hexane : $\mathrm{AcOEt}=3: 1$).

			Bg								suof7t7edex 9โt zH 9.5988T ч7ртм seexbep 0.sp estnd Des tos.0 Ketep -xetey ตวNanరas astad		
urdd	0 S	09	OL	08	06	007	OTT	0てし	0 OL	0\%T	OST	097	OLT

\qquad
$\tau 0 \% \cdot 8 \boxed{\pi}]$
ゅで・レて

$0<\tau \cdot \varepsilon \varepsilon \tau$
S6S•9と
scz•6ST
\qquad －
素

