Supporting Material: (manuscript no. ol0492290)

Purpurinimide-Fullerene Dyads: A Remarkable Effect of the Position of the Fullerene Moiety in the Formation of Atropisomers

Guolin Li, ${ }^{\dagger}$ Mahabeer P. Dobhal, ${ }^{\dagger}$ Masayuki Shibata\# ${ }^{\text {and }}$ Ravindra K. Pandey ${ }^{\dagger, \ddagger, *}$
${ }^{\dagger}$ Photodynamic Therapy Center and the ${ }^{\ddagger}$ Department of Nuclear Medicine and Radiology, Roswell Park Cancer Institute, Elm \& Carlton Streets, Buffalo, NY 14263. \#Department of Health Informatics, UMDNJ-SHRP, 65 Bergen Street, Newark, NJ 07107

1. Computational Method
2. NMR data

Computational Method:

The structures of compounds $1,5,10 \mathrm{~s}$ are built from the following two major components, fullerene and chlorin. The crystal structure of benzimidazo[2,1-n]purpurin-18 13^{1}-imino- 13^{2} imide methyl ester (1) was used to build the chlorin moiety of the compounds, 1,5 , and 10 . Appropriate modifications were performed with the SYBYL modeling program version 6.9 (Tripos Inc., St. Louis, MO) using the standard geometry and the SYBYL fragment library. The extended conformation was assumed for n-hexyl tail. The coordinate of fullerene was obtained from the data archive at Computational Chemistry List (2). The geometry of each compound was fully optimized with a semiempirical molecular orbital method, AM1, with the SPARTAN (Wavefunction Inc., Irvine, CA) program. The AM1 optimized fullerene and chlorine moieties are combined by appropriate linker structure by using SYBYL, which are again subjected to the restrained and later unrestrained geometry optimizations by the AM1 method with the SPARTAN program.

Similar to the study by Helaja et al (Ref4a), two diastereomer at C2' position and both atropisomers (alpha nad beta) were examined within the frameof the semi-empirical MO, AM1.

In addition, the azomethine ylides for the 12 position derivative were also examined by the semiempirical MO, AM1, with the SPARTAN program. The calculation was also performed to obtain the HOMO/LUMO of various ylides. Standard parameters were used to generate the HOMO/LUMO figures. In addition, HOMO/LUMO of unsubstituted fullerene was also obtained by AM1 with the SPARTAN program. It is interesting to note that the nodal pattern of ylide

HOMO is compatible with the fullerene LUMO for the bond along the 6,6 ring junction but not with that of the bond along the 5,6 ring junction.
(1) Kozyrev, A. N.; Suresh, V.; Das, S.; Senge, M. O.; Shibata, M.; Dougherty, T. J.; Pandey, R. K., Tetrahedron 2000, 56, 3353. http://www.ccl.net/cca/data/fullerenes/c60.cart3d.shtml

Experimental

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AMX-400 Spectrometer at 400.1 and 100.6 MHz , respectively. Chemical shifts are reported in ppm and referenced to residual solvent resonance peaks $\left(\mathrm{CDCl}_{3}\right.$: for ${ }^{1} \mathrm{H}, 7.26 \mathrm{ppm}$ and $\left.{ }^{13} \mathrm{C}, 77.2 \mathrm{ppm}\right)$. Hydrogen connectivity ($\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$) information was obtained from DEPT-135 experiments. Proton and carbon peak assignments were based on 2D NMR analysis (COSY, ROESY). UV-vis spectra were recorded on a Varian (Cary-50 Bio) spectrophotometer. CD (Circular Dichroism) spectra were recorded on JASCO J-715 spectrometer. Fluorescence experiment was performed on FluoroMax-2 spectrophotometer (ISA, Inc). Column chromatographic separations were performed over silica gel 60 (70-230 mesh) or neutral alumina (Brockmann grade III, ~ 150 mesh). Preparative TLC was performed on silica $20 \times 20 \mathrm{~cm}$ TLC plates (Analtech).

Reagents and conditions: (a) $\mathrm{NaIO}_{4}, \mathrm{OsO}_{4}, \mathrm{H}_{2} \mathrm{O}$, THF, rt. (b) C_{60}, sarcosine, toluene, reflux. (c) $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CHCl}_{3}$, rt.

3-Formyl-3-devinyl-purpurin-18-N-hexylimide methyl ester (S1). To a solution of purpurin-18-N-hexylimide methyl ester $(1,366 \mathrm{mg}, 0.553 \mathrm{mmol})$ in THF $(80 \mathrm{ml})$ were added a solution of $\mathrm{OsO}_{4}(96 \mathrm{mg}, 0.378 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(20 \mathrm{ml})$ and a solution of $\mathrm{NaIO}_{4}(2.0 \mathrm{~g}, 9.35 \mathrm{mmol})$ in water $(50 \mathrm{ml})$ sucessively. The mixture was stirred at rt for 6 h . It was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$
ml), washed with water, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed and the residue was purified with column chromatography on alumina eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v} 40 / 1$) to provide compound 2 ($301 \mathrm{mg}, 82 \%$) as dark brown plates. Mp : $169-170{ }^{\circ} \mathrm{C}$. UV vis in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left[\lambda_{\max }(\varepsilon)\right]: 311$ (16058), 424 (80795), 494 (4299), 521 (4931), 561 (22506), 672 (7333), 738 (58541). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.41(1 \mathrm{H}, \mathrm{s}), 10.15(1 \mathrm{H}, \mathrm{s}), 9.66(1 \mathrm{H}, \mathrm{s}), 8.75(1 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}$, dd, $J=8.9,2.3 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s})$, $3.66(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}), 3.57(3 \mathrm{H}, \mathrm{s}), 3.23(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{m}), 2.41(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{m})$, $1.78(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.69(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.62(2 \mathrm{H}, \mathrm{m}), 1.52-1.36(4 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{t}, J$ $=7.1 \mathrm{~Hz}),-0.23(1 \mathrm{H}, \mathrm{s}),-0.41(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{ESI}) m / z 664.5\left(\mathrm{MH}^{+}, 54\right), 686.5\left(\mathrm{MNa}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 70.57 ; H, 6.85 ; N, 10.55. Found: C, $71.14 ; \mathrm{H}, 6.85 ; \mathrm{N}, 10.53$.

Purpurinimide-C60 dyad 1. A mixture of compound S1 (104 mg, 0.157 mmol) and buckminsterfullerene ($\mathrm{C}_{60}, 127 \mathrm{mg}, 0.176 \mathrm{mmol}$) and sarcosine ($72 \mathrm{mg}, 0.808 \mathrm{mmol}$) in dry toluene (50 ml) was refluxed under N_{2} for 17 h . After the reaction mixture was cooled to rt , it was passed through an alumina column with dichloromethane as eluent. The crude product was further purified by column chromatography on alumina eluting with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v/v first $2 / 3$, then $1 / 2$) to give compound $\mathbf{1}(67 \mathrm{mg}, 30 \%)$ and unreacted compound $\mathbf{S} \mathbf{S}(25 \mathrm{mg})$. Data of compound 1: Dark brown plates. $\mathrm{Mp}:>300{ }^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 370$ (59638), 421 (149136), 485 (7979), 514 (8802), 551 (25911), 655 (8637), 711 (57417). This compound is a mixture of four isomers with a ratio of 1:1:0.6:0.6 based on ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.05,11.03,9.54,9.53(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 9.65,9.61(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 8.69,8.65,8.57,8.54$ $(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 6.423,6.415,5.99,5.88\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 5.40(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 4.92,4.82,4.26,3.98$ $\left(2 \mathrm{H}\right.$, doublets or overlapping doublets, $\left.5{ }^{\prime}-\mathrm{H}\right), 4.56-4.30(3 \mathrm{H}, \mathrm{m}, \quad 18-\mathrm{H}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.84,3.81,3.79,3.77\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CH}_{3}\right), 3.81,3.73,3.37,3.30(3 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{3}\right), 3.66\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.61,3.55,3.52\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.25,3.24,3.04,3.01(3 \mathrm{H}$, s, $\left.7-\mathrm{CH}_{3}\right), 2.82,2.72,2.58,2.54\left(3 \mathrm{H}, \mathrm{s}, 1\right.$ '- $\left.\mathrm{CH}_{3}\right), 2.74,2.44,1.99(1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 17-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ and $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.88-1.56\left(8 \mathrm{H}, \mathrm{m}, 18-\mathrm{CH}_{3}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.45\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), -0.09--0.22 (2 H , overlapping s, $\left.2 \times-\mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $176.92,176.88,176.75,174.84,174.64,174.12,174.00,173.90,167.58,167.54,167.48,163.49$, $163.44,163.40,163.37,156.63,156.58,155.96,155.09,154.99,154.86,154.76,153.82,153.77$,
153.64, 153.56, 153.49, 153.43, 153.37, 153.06, 153.02, 152.74, 150.82, 150.54, 147.4-134.6 (very complex signals), $134.12,133.92,133.86,133.76,132.58,132.44,116.68,108.31,108.24$, 107.07, 106.98, 103.43, 103.28, 98.13, 98.04, 97.81, 97.77, 95.16, 94.92, 78.57, 78.52, 78.21, $78.12,77.85,77.42,70.62,70.42,69.80,69.57,69.52,55.11,51.72,51.66,49.55,49.31,49.13$, $40.65,40.60,40.42,40.27,40.16,32.83,32.01,31.79,29.91,29.65,29.25,27.41,24.39,24.33$, $24.14,24.07,22.96,19.69,19.66,17.84,14.36,13.10,12.98,12.75,12.68,12.24,12.19,11.56$, 11.18, 11.10. MS (FAB) $m / z 690.4$ (100), $1411.4\left(\mathrm{MH}^{+}, 4\right)$. HRMS (FAB): Calcd for $\mathrm{C}_{101} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$, 1411.3970; Found 1411.3930. Anal. Calcd for $\mathrm{C}_{101} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 85.94; H , 3.57; N, 5.95. Found: C, 85.81; H, 3.87; N, 5.85.

Zn-purpurinimide-C60 dyad 2. To a solution of the compound 1 (42 mg) in CHCl_{3} (50 ml) was added a solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(500 \mathrm{mg})$ in $\mathrm{MeOH}(15 \mathrm{ml})$. The resultant solution was degassed with vacuum and N_{2}, and it was stirred under N_{2} at rt for 19 hours. The reaction mixture was washed with water $(6 \times 50 \mathrm{ml})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent was removed to provide compound 2 as dark brown plates in quantitative yield. $\mathrm{Mp}:>300^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 404$ (71468), 427 (120372), 515 (6745), 555 (11082), 631 (12688), 685 (57094). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.04,11.01,9.42,9.39,8.42,8.41,8.31,8.30(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}, 10-\mathrm{H}$, $20-\mathrm{H}), 6.41,6.02,5.98\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 5.32-5.02,4.48-3.90\left(6 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}, 18-\mathrm{H}, 5{ }^{\prime}-\mathrm{H},-\right.$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.73, 3.49, 3.48, 3.44, 3.31, 3.27, 3.24, 3.14, 3.03, 2.98, 2.95, 2.83 $\left(15 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}, 7-\mathrm{CH}_{3}, 12-\mathrm{CH}_{3}, \mathrm{I}^{\prime}-\mathrm{CH}_{3},-\mathrm{COOCH}_{3}\right), 3.62\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.74-1.92(4 \mathrm{H}$, $\left.17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 1.88-1.52\left(8 \mathrm{H}, \mathrm{m}, 18-\mathrm{CH}_{3}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.44\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}$, m, $-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). MS (FAB) $m / z 752.4$ (100), $1475.4\left(\mathrm{MH}^{+}, 62\right)$. Anal. Calcd for $\mathrm{C}_{101} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Zn} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.42 ; \mathrm{H}, 3.65 ; \mathrm{N}, 5.43$. Found: C, $78.59 ; \mathrm{H}, 3.77$; N, 5.33.

8-Formyl-8-deethyl-meso-purpurin-18-N-hexylimide methyl ester 4. Followed the procedure described for the preparation of compound $\mathbf{S 1}$, compound $\mathbf{4}$ was obtained as dark brown plates in 77% yield from compound 3. Data of compound 4: Mp: 210-203 ${ }^{\circ} \mathrm{C}$. UV vis in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left[\lambda_{\max }\right.$ (ع)]: 321 (25603), 348 (24899), 372 (24076), 417 (50149), 440 (211520), 523 (11979), 558 (7047), 626 (5285), 681 (39227). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.82(1 \mathrm{H}, \mathrm{s}), 10.16(1 \mathrm{H}, \mathrm{s}), 8.97(1 \mathrm{H}, \mathrm{s})$, $8.47(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz})$, $3.67(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.22(3 \mathrm{H}, \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{m}), 2.44$
$(2 \mathrm{H}, \mathrm{m}), 1.98(3 \mathrm{H}, \mathrm{m}), 1.80(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.67(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.62(2 \mathrm{H}, \mathrm{m}), 1.55-1.36$ $(4 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}),-0.18(1 \mathrm{H}, \mathrm{s}),-0.23(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 663.8\left(\mathrm{M}^{+}, 100\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 186.9(\mathrm{CH}), 178.8(\mathrm{C}), 176.2(\mathrm{C}), 173.9(\mathrm{C}), 167.2(\mathrm{C}), 162.8(\mathrm{C}), 150.1(\mathrm{C})$, 148.7 (C), 146.3 (C), 144.6 (C), 144.0 (C), 143.7 (C), 139.6 (C), 135.6 (C), 134.0 (C), 132.9 (C), $131.1(\mathrm{C}), 116.9(\mathrm{C}), 111.3(\mathrm{CH}), 102.4(\mathrm{CH}), 97.4(\mathrm{C}), 95.0(\mathrm{CH}), 55.2(\mathrm{CH}), 51.7\left(\mathrm{CH}_{3}\right), 49.1$ $(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{3}\right), 23.0$ $\left(\mathrm{CH}_{2}\right)$, $19.3\left(\mathrm{CH}_{2}\right), 17.0\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right), 10.9\left(\mathrm{CH}_{3}\right), 10.8\left(\mathrm{CH}_{3}\right)$.
Purpurinimide-C60 dyad 5. Followed the procedure described for the preparation of compound 1, compound 5 ($102 \mathrm{mg}, 34 \%$) was obtained by reacting compound 4 ($140 \mathrm{mg}, 0.211 \mathrm{mmol}$) with C60 ($183 \mathrm{mg}, 0.254 \mathrm{mmol}$) and sarcosine ($94 \mathrm{mg}, 1.055 \mathrm{mmol}$) in dry toluene (30 ml). Unreacted compound $4(39 \mathrm{mg})$ was recovered. Data of 5: Dark brown plates. $\mathrm{Mp}:>300^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 312$ (60216), 342 (60118), 426 (202838), 512 (12903), 548 (18280), 639 (8602), 693 (55133). This compound is a mixture of four isomers with a ratio of 1:1:0.3:0.3 based on ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.58,11.56,9.94,9.89(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 9.31$, 9.30, $9.21,9.19(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.50,8.47,8.45(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 6.40,6.31,5.91,5.87\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, $5.36,5.31(1 \mathrm{H}$, br d, $J=8.8 \mathrm{~Hz}, 17-\mathrm{H}), 4.99,4.91,4.82,4.27,4.16,4.13(2 \mathrm{H}$, doublets or overlapping doublets, $\left.5^{\prime}-\mathrm{H}\right), 4.47\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.31(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, 3.94, $3.68\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{CH}_{3}\right), 3.75,3.71,3.30,3.23\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.70\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.61$, $3.58,3.57,3.55\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.20,3.19\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.90,2.81,2.78,2.74(3 \mathrm{H}, \mathrm{s}, 1$ '$\left.\mathrm{CH}_{3}\right)$, 2.71, 2.43, $1.99\left(1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right.$ and $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.75\left(3 \mathrm{H}\right.$, overlapping doublets, $\left.18-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.62(2 \mathrm{H}, \mathrm{m},-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.45 ($4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.95 ($3 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.16,0.14,0.10,0.15,-0.01,-0.04,-0.09,-0.03(2 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.48,177.41,177.31,176.03,175.85,175.62,175.52,173.96,173.89$, $167.48,167.41,163.52,163.46,156.99,156.96,156.35,156.28,155.28,154.31,154.28,153.99$, $153.86,153.77,153.64,153.13,149.42,149.32,148.34,148.31,146.91,146.56-135.40$ (very complex signals), $131.75,131.68,131.48,131.42,130.98,116.31,116.28,116.20,116.14$, $113.98,108.96,102.26,102.22,101.82,97.89,97.77,97.58,97.49,94.81,94.71,94.58,94.54$, $78.82,78.23,78.19,78.05,70.60,70.46,70.38,69.83,69.47,69.42,54.96,54.90,51.69,51.64$, $49.47,49.28,49.22,40.54,40.37,40.29,32.77,32.66,31.97,31.83,31.56,29.20,27.38,24.21$,
24.10, 23.96, 22.92, 19.43, 17.10, 14.34, 13.01, 12.35, 12.30, 12.22, 11.00. MS (FAB) m/z 690.2 (100), $1411.0\left(\mathrm{MH}^{+}, 20\right)$. HRMS (FAB): Calcd for $\mathrm{C}_{101} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}), 1411.3970$; Found 1411.3980. Anal. Calcd for $\mathrm{C}_{101} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 85.40 ; H, 3.62; N, 5.92. Found: C, 85.13; H, 4.02; N, 5.87.

Zn-purpurinimide-C60 dyad 6. Followed the procedure described for the preparation of compound 2, compound 6 was obtained as dark brown plates in quantitative yield from compound 5. Data of 6: Mp: $>300^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 313$ (55593), 431 (133991), 513 (8509), 552 (8169), 618 (11913), 666 (45609). This compound is a mixture of four isomers with a ratio of 1:1:0.4:0.4 based on ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.20,11.18,9.62$, 9.59, 9.09, 8.99, 8.26, 8.21, 8.19, 8.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5, \mathrm{H}-10, \mathrm{H}-20$), 8.39, 8.36, 5.98 ($1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}$), 5.26-4.92, 4.46-3.80 ($6 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}, 18-\mathrm{H}, 5$ '-H, $-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.72, 3.70, 3.65, $3.52,3.36,3.28,3.11,3.08,3.06,3.03,2.99,2.94,2.92,2.89\left(15 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}, 7-\mathrm{CH}_{3}, 12-\mathrm{CH}_{3}, 1\right.$ '-$\left.\mathrm{CH}_{3},-\mathrm{COOCH}_{3}\right), \quad 3.59\left(2 \mathrm{H}, \quad \mathrm{m}, \quad 3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 2.40-1.12\left(18 \mathrm{H}, \quad \mathrm{m}, ~ 8-\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad 17-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}, \quad 18-\mathrm{CH}_{3}, \quad-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 0.88 \quad(3 \mathrm{H}, \quad \mathrm{m}, \quad-$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). MS (FAB) $m / z 752.4$ (100), $1474.4\left(\mathrm{M}^{+}, 82\right)$.
12-Hydroxymethyl-12-demethyl-purpurin-18-N-hexylimide methyl ester (8) and 12-formyl-12-demethyl-purpurin-18-N-hexylimide methyl ester (9). To a solution of compound 7 (458 $\mathrm{mg})$ in a mixture of THF (45 ml) and $\mathrm{MeOH}(30 \mathrm{ml})$ was added a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(600$ mg) in water (30 ml). With exposure to air, the mixture was stirred under dark (covered with aluminum foil) at rt for 21 h . After addition of aqueous acetic acid $(1 \%, 100 \mathrm{ml})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was then treated with excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (made from 1.0 g of Diazald ${ }^{\text {B }}$). Solvent was removed, and the residua was purified with column chromatography on silica gel eluting with 3% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide compounds $\mathbf{8}(152 \mathrm{mg}, 33 \%)$ and $9(124 \mathrm{mg}, 26 \%)$.

Converting compound 8 to compound 9. To a solution of compound $\mathbf{8}$ ($129 \mathrm{mg}, 0.190 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ were added TPAP $(20 \mathrm{mg})$ and NMO $(138 \mathrm{mg})$. The mixture was stirred at rt for 3 h . It was filtered, and solvent was removed. The resultant residua were purified by column chromatography on silica gel eluting with 3% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound 9 (84 $\mathrm{mg}, 65 \%$) as dark brown plates.

Purpurinimide-C60 dyads 10a and 10b. A mixture of compound 9 ($163 \mathrm{mg}, 0.241 \mathrm{mmol}$) and buckminsterfullerene (C60, $174 \mathrm{mg}, 0.242 \mathrm{mmol}$) and sarcosine ($108 \mathrm{mg}, 1.212 \mathrm{mmol}$) in dry
toluene (80 ml) was refluxed under N_{2} for 20 h . After the reaction mixture was cooled to rt , it was passed through an alumina column with dichloromethane as eluant. The fast moving fraction was collected and concentrated to a volume of around $10 \mathrm{ml} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the mixture was refrigerated for 3 h . It was then filtered, and the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated to dryness. The residua was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, and refrigerated. The solid was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The two crops of solid compound were combined and dried under high vacuum to give pure compound $\mathbf{1 0 a}$ ($45 \mathrm{mg}, 13 \%$). The filtrate was further purified by preparative silica TLC using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.8%) as developing solvent to give compound 10b (48 mg, 14\%). Data of compound 10a: Brown powder. $\mathrm{Mp}:>300^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 372$ (55271), 424 (88524), 561 (20221), 655 (10874), 713 (49070). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CS}_{2} / \mathrm{CDCl}_{3}=2 / 1\right) \delta 11.62(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 9.18(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.44(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.18.0,11.6 \mathrm{~Hz}, 3^{1}-\mathrm{H}\right), 7.67\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 6.29\left(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, 3^{2 \mathrm{~b}}-\mathrm{H}\right), 6.17(1 \mathrm{H}, \mathrm{d}, J=11.7$ $\left.\mathrm{Hz}, 3^{2 \mathrm{a}}-\mathrm{H}\right), 5.36\left(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}\right.$, part of AB system, one of protons of $\left.5{ }^{\prime}-\mathrm{H}\right), 5.20(1 \mathrm{H}, \mathrm{dd}, J=$ $9.1,2.2 \mathrm{~Hz}, 17-\mathrm{H}), 4.73\left(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}\right.$, part of AB system, one of protons of $\left.5{ }^{\prime}-\mathrm{H}\right), 4.35(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.7 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.30(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, 18-\mathrm{H}), 3.77(2 \mathrm{H}, \mathrm{m}, 8-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.07(3 \mathrm{H}, \mathrm{s}, 1 \mathrm{l}-$ $\left.\mathrm{CH}_{3}\right), 2.75,2.53,2.41,1.87\left(1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 1.85(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 8-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.50$ ($2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.38\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.0 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.57(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 0.39(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ 702.4 (100), $1423.3\left(\mathrm{MH}^{+}, 0.5\right)$. HRMS (FAB): Calcd for $\mathrm{C}_{102} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}), 1423.3970$; Found 1423.3930. Anal. Calcd for $\mathrm{C}_{102} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 81.91$; H, 3.91; N, 5.62. Found: C, 81.88; H, 4.25; N, 5.24. Data of $\mathbf{1 0 b}$: Brown powder. Mp: $>300{ }^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]$: 369 (55556), 424 (89558), 562 (20134), 655 (10610), 714 (49290). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CS}_{2} / \mathrm{CDCl}_{3}=2 / 1\right)$ $\delta 11.63(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 9.18(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.44(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 7.86\left(1 \mathrm{H}, \mathrm{dd}, J=18.0,11.6 \mathrm{~Hz}, 3^{1}-\right.$ H), $7.71\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 6.29\left(1 \mathrm{H}, \mathrm{d}, J=17.9 \mathrm{~Hz}, 3^{2 \mathrm{~b}}-\mathrm{H}\right), 6.17\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 3^{2 \mathrm{a}}-\mathrm{H}\right), 5.35$ $\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}\right.$, part of AB system, one of protons of $\left.5^{\prime}-\mathrm{H}\right), 5.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 17-\mathrm{H})$, $4.75\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}\right.$, part of AB system, one of protons of $\left.5{ }^{\prime}-\mathrm{H}\right), 4.36(2 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.29(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 18-\mathrm{H}), 3.77(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 8-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 3.16(3 \mathrm{H}, \mathrm{s}, 1$ '$\left.\mathrm{CH}_{3}\right), 2.70,2.40,1.94\left(1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 1.85(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 8-$
$\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.81\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.49$ $\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.0 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.56(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 0.38(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 11.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 9.20(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 7.80\left(1 \mathrm{H}, \mathrm{dd}, J=18.0,11.6 \mathrm{~Hz}, 3^{1}-\right.$ H), $7.63\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 6.23\left(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, 3^{2 \mathrm{~b}}-\mathrm{H}\right), 6.12\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 3^{2 \mathrm{a}}-\mathrm{H}\right), 5.35$ $(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}, 17-\mathrm{H}), 5.15\left(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}\right.$, part of AB system, one of protons of $5^{\prime}-$ H), $4.55\left(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}\right.$, part of AB system, one of protons of $\left.5^{\prime}-\mathrm{H}\right), 4.39(2 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.27(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 18-\mathrm{H}), 3.73\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.58(3 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{COOCH}_{3}\right), 3.25\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 2.96\left(3 \mathrm{H}, \mathrm{s}, 1 \mathrm{l}^{\prime}-\mathrm{CH}_{3}\right), 2.68,2.37,2.00$ $\left(1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 1.81\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.75(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.49(2 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.69(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 0.48(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 177.21, $176.99,173.96,167.32,163.04,157.91,157.39,155.49,154.21,153.65,150.51,147.45,147.21$, $146.75,146.32,146.23,146.09,146.00,145.91,145.88,145.85,145.82,145.78,145.70,145.64$, $145.56,145.48,145.33,145.04,144.92,144.55,144.51,144.30,144.00,143.21,142.84,142.68$, $142.52,142.39,142.33,142.19,142.10,142.06,142.01,141.89,141.56,141.49,141.20,141.16$, $140.28,140.20,140.01,139.21,137.84,137.57,137.08,136.59,136.46,136.24,135.17,134.39$, $132.27,130.96,128.59,123.56,116.78,113.58,102.01,98.49,94.75,78.51,70.75,70.18,54.51$, $51.69,49.72,40.70,40.60,32.66,32.00,31.63,29.89,29.01,27.16,23.94,22.85,19.89,17.43$, 14.39, 12.04, 11.25. MS (FAB) $m / z 702.4$ (100), $1423.4\left(\mathrm{MH}^{+}, 8\right)$. HRMS (FAB): Calcd for $\mathrm{C}_{102} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$, 1423.3970; Found 1423.3900. Anal. Calcd for $\mathrm{C}_{102} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 85.52; H, 3.59; N, 5.87. Found: C, 85.46; H, 4.14; N, 5.71.

Zn-purpurinimide-C60 dyad 11a. Compound 10a (32 mg) was dissolved in CS_{2} (20 ml), the solution was then diluted with $\mathrm{CHCl}_{3}\left(150 \mathrm{ml}\right.$, washed with $5 \% \mathrm{NaHCO}_{3}$ before use). A solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g})$ in $\mathrm{MeOH}(70 \mathrm{ml})$ was added to above solution. The mixture was degassed with vacuum and N_{2}, and stirred at rt under N_{2} for 66 h . TLC analysis showed the reaction was complete. The reaction mixture was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to a volume of about 10 ml . It was passed though a silica column eluting with acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \%)$ to provide compound $11 \mathrm{a}(31 \mathrm{mg}, 93 \%)$ as dark green powder. $\mathrm{Mp}:>300{ }^{\circ} \mathrm{C} . \mathrm{UV}$ vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 409$ (61562), 431 (69741), 563 (10785), 640
(12762), 695 (55990). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CS}_{2} / \mathrm{CDCl}_{3}=2 / 1\right) \delta 11.55(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 9.07(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.31$ $(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J=17.8,11.6 \mathrm{~Hz}, 3^{1}-\mathrm{H}\right), 7.56\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 6.11(1 \mathrm{H}, \mathrm{d}, J=17.9$ $\left.\mathrm{Hz}, 3^{2 \mathrm{~b}}-\mathrm{H}\right), 6.03\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, 3^{2 \mathrm{a}}-\mathrm{H}\right), 5.31(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}$, part of AB system, one of protons of $\left.5^{\prime}-\mathrm{H}\right), 5.11(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 17-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}$, part of AB system, one of protons of $\left.5^{\prime}-\mathrm{H}\right), 4.24\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 18-\mathrm{H}), 3.78\left(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.26,3.17,3.09,3.05$ (each $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}, 7-$ $\left.\mathrm{CH}_{3}, 1 \mathrm{l}^{-}-\mathrm{CH}_{3},-\mathrm{COOCH}_{3}\right), 2.37,2.07,1.72\left(1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.82\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.64(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 18-$ $\left.\mathrm{CH}_{3}\right), 1.44\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{FAB}) m / z 764.4$ (100), $1487.4\left(\mathrm{MH}^{+}\right.$, 51). Anal. Calcd for $\mathrm{C}_{102} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Zn} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 79.04 ; H, 3.58; N, 5.42. Found: C, 78.92; H, 3.57; N, 5.35.

Zn-purpurinimide-C60 dyad 11b. To a solution of compound $\mathbf{1 0 b}$ (35 mg) in CHCl_{3} (60 ml , washed with $5 \% \mathrm{NaHCO}_{3}$ before use) was added a solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~g})$ in MeOH $(30 \mathrm{ml})$ was added to above solution. The mixture was degassed with vacuum and N_{2}, and stirred at rt under N_{2} for 24 h . TLC analysis showed the reaction was complete. The reaction mixture was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent was removed to give compound 11b ($36 \mathrm{mg}, 98 \%$) as dark green powder. $\mathrm{Mp}:>300{ }^{\circ} \mathrm{C}$. UV vis in $\mathrm{CHCl}_{3}\left[\lambda_{\max }(\varepsilon)\right]: 409(60735)$, 431 (69674), 564 (10192), 641 (12866), 695 (56809). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CS}_{2} / \mathrm{CDCl}_{3}=2 / 1\right) \delta 11.60(1 \mathrm{H}$, s, $10-\mathrm{H}), 9.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J=17.5,11.3 \mathrm{~Hz}, 3^{1}-\mathrm{H}\right), 7.64(1 \mathrm{H}$, $\left.\mathrm{s}, 2^{\prime}-\mathrm{H}\right), 6.12\left(1 \mathrm{H}, \mathrm{d}, J=18.1 \mathrm{~Hz}, 3^{2 \mathrm{~b}}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, 3^{2 \mathrm{a}}-\mathrm{H}\right), 5.37(1 \mathrm{H}, \mathrm{d}, J=9.5$ Hz , part of AB system, one of protons of $\left.5^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 17-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, J$ $=9.5 \mathrm{~Hz}$, part of AB system, one of protons of 5 ' -H), $4.29\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.18(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, 18-\mathrm{H}), 3.80\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.53\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.21,3.20$, 3.19 (each $3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}, 7-\mathrm{CH}_{3}, 1$ '- CH_{3}), 2.65, 2.41, 2.27, 1.96 (each $1 \mathrm{H}, \mathrm{m}, 17-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), \quad 1.85\left(3 \mathrm{H}, \quad \mathrm{t}, \quad J=7.3 \mathrm{~Hz}, 8-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.77(2 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 1.66\left(3 \mathrm{H}, \mathrm{d}, \quad J=7.2 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.46(2 \mathrm{H}, \mathrm{m},-$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37\left(4 \mathrm{H}, \mathrm{m},-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). MS (FAB) m/z 764.4 (100), $1486.4\left(\mathrm{M}^{+}, 2\right)$. Anal. Calcd for $\mathrm{C}_{102} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Zn} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 81.41 ; \mathrm{H}, 3.35 ; \mathrm{N}, 5.58$. Found: C, 81.60; H, 3.45; N, 5.54.

Figure S1. Fluorescence spectra of dyads 10a, 10b, 11a, 11b and chlorins 7, Zn-7. (Concentration: $1.0 \mu \mathrm{M}$ in CHCl_{3}. Excited at the corresponding Soret band. For 7, 416 nm ; Zn-7, 425 nm ; 10a, 424 nm ; 10b, 424 nm ; 11a, 431 nm ; 11b, 431 nm .)

Figure S2. Partial ${ }^{1} \mathrm{H}$ NMR spectra of dyads 1, 5, 10a, 10b.
(The signals labeled with + are the resonances of residual CHCl_{3} in CDCl_{3}.)

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectral study of the atropisomerism of the fast-moving isomers of dyad $\mathbf{5}$ at different time point. (The same study for the slow-moving isomers is very similar to the fastmoving one, and overlapping the 17 h spectra of the fast-moving and slow-moving isomers gives the spectrum of dyad 5 as shown in Figure 2.) (The signals labeled with + are the resonances of residual CHCl_{3} in CDCl_{3}; All NMR spectra were measured at room temperature, i.e. $20^{\circ} \mathrm{C}$.)

