SUPPORTING INFORMATION

Studies on the Synthesis of Landomycin A. Synthesis of the Originally Assigned Structure of the Aglycone, Landomycinone, and Revision of Structure

William R. Roush, * and R. Jeffrey Neitz
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
e-mail: roush@umich.edu

Table of Contents

I. Experimental details for synthesis of $\mathbf{2}$ S-2
II. Literature Cited in Supporting Information S-17
III. ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{2}, \mathbf{1 9}, \mathbf{2 0}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 1}, \mathbf{3 3}$,
$35,36,38,45$, and 46
S-18

General Experimental

Unless otherwise noted, all reactions were performed in flame-dried or oven-dried $\left(120^{\circ} \mathrm{C}\right)$ glassware with magnetic stirring under atomospheres of dry nitrogen or argon. Diethyl ether, THF, methylene chloride, and toluene were purified by passage through a solvent column composed of activated alumina (A-1) (HPLC grade solvents). 2,6-Lutidine and diisopropylethylamine were dried by distillation over calcium hydride. Acetone was dried by distillation from anhydrous powdered calcium sulfate. Methanol was dried by distillation from magnesium methoxide. N, N Dimethylformamide and chloroform were dried over activated $4 \AA$ molecular sieves. All extraction and chromatography solvents were reagent grade and used without purification. Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 (250 $\square \mathrm{m}$ silica gel) glass plates and visualized with aqueous KMnO_{4} solution. Flash column chromatography was performed using Kieselgel 60 (230-400 mesh) silica gel. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR spectra were recorded on commercial $300 \mathrm{MHz}, 400 \mathrm{MHz}$, or 500 MHz spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on commercial $400(100 \mathrm{MHz})$ or $500(125 \mathrm{MHz})$ spectrometers. The proton signal of residual $\mathrm{CHCl}_{3}(\square 7.24)$ was used as an internal reference for ${ }^{1} \mathrm{H}$ spectra in CDCl_{3}, while the chemical shifts for ${ }^{13} \mathrm{C}$ spectra are reported relative to the $\square 77.0$ resonance of CDCl_{3}. Optical rotations were measured on a polarimeter using a quartz cell with a 1 mL capacity and a 10 cm cell path length. Melting points were determined on a hot stage melting point aparatus and are uncorrected. Mass spectra were recorded at the University of Michigan Mass Spectrometry Laboratory. Infrared (IR) spectra were recorded as thin films on a NaCl plates. HPLC purifications were performed using an HPLC system composed of two pumps connected to an axial compression column packed with $60 \AA$ irregular silica gel. Samples were loaded with a 2 mL injector and detected by using a combination of a UV detector (254 nm) or a RI detector. Single crystal X-ray diffraction analysis was performed by Dr. Jeff Kampf using a low temperature device at the University of Michigan

(3-Bromo-5-methyl-phenoxy)-tert-butyldimethylsilane (7a). The known phenol $\mathbf{4 0}^{2}$ ($26.3 \mathrm{~g}, 140 \mathrm{mmol}$, containing ca. 5% of the corresponding aryl iodide) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL})$ and chilled to $0^{\circ} \mathrm{C}$ before addition of imidazole ($16.3 \mathrm{~g}, 280 \mathrm{mmol}$), DMAP (catalytic),
and TBS-Cl ($27.4 \mathrm{~g}, 182 \mathrm{mmol}$). The mixture was allowed to warm slowly to $23{ }^{\circ} \mathrm{C}$ over the course of 18 h . At this point, saturated aqueous ammonium chloride was added. The organic phase was separated and rinsed with saturated sodium bicarbonate solution and brine before being dried over sodium sulfate. The drying agent was filtered and the filtrate concentrated under reduced pressure to give $7 \mathbf{7 a}(37.9 \mathrm{~g}, 82 \%$ yield) as a yellow oil. This material was used directly in the next step: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, $1.00(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 156.2,140.9,131.2,125.2,122.0,120.4$, 119.7, 25.6, -4.5; IR (thin film from CCl_{4} on NaCl): $\square 3054,1598,1566,1422,1265,1160,1020$, $896,845,783,750,705 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \operatorname{BrOSi}\left[\mathrm{M}^{+}\right] 300.0545$, found $300.0545 \mathrm{~m} / \mathrm{z}$.

(+)-1-[3-(tert-Butyldimethylsilyloxy)-5-methyl-phenyl]-3-(4-methoxy-benzyloxy)-

propan-2-ol (12) Asolution of aryl bromide $7 \mathbf{a}(1.5 \mathrm{~g}, 4.55 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(39 \mathrm{~mL})$ was added slowly (over 0.5 h) via a Teflon canula to a $-78{ }^{\circ} \mathrm{C}$ solution of $t-\mathrm{BuLi}(10.1 \mathrm{mmol}, 7.15 \mathrm{~mL}$ of a 1.4 M solution in pentanes). This mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before addition of epoxide $8(1.14 \mathrm{~g}, 5.85 \mathrm{mmol})$ via syringe as a neat oil. The reaction mixture was allowed to warm to 23 ${ }^{\circ} \mathrm{C}$ and stirred for 14 h . The reaction was quenched by addition of saturated ammonium chloride solution and extracted with ethyl acetate. The organic phase was separated and rinsed with saturated sodium bicarbonate solution and brine before being dried over sodium sulfate. The filtrate was concentrated under reduced pressure to yield the crude product as a yellow oil. The crude material was purified by flash chromatography (using 30 to 50% ethyl ether-hexanes as the mobile phase) to give $12(1.22 \mathrm{~g}, 64 \%$ yield $):[\square]_{\mathrm{D}}^{25.4}=+8.8\left(c 12.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=3.3,6.0,1 \mathrm{H}), 3.35(\mathrm{dd}, J=6.8,2.5,1 \mathrm{H}), 2.69$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 159.2, 155.5, 139.2, 139.0, 130.0, 129.3, 123.2, 123.1, 118.2, 118.8, 118.0, 117.9, 113.7, 113.7, 73.2, 72.9, 72.9, 71.2, 55.1, 39.7, 25.6, 21.2, 18.1, -4.5; IR (thin film from CDCl_{3} on NaCl$) \square 3460 \mathrm{~b}, 2954,2930,2858,1720,1609,1592,1513,1463,1361,1319,1303$, 1250, 1160, 1100, 1037, 839, $781 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 439.2281$, found $439.2286 \mathrm{~m} / \mathrm{z}$; Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.19 ; \mathrm{H}, 8.71$. Found C, $68.98 ; \mathrm{H}, 8.69$.

(+)-1-[3-(tert-Butyldimethylsilyloxy)-5-methyl-phenyl]-2-(tert-butyldimethylsilyloxy)-

 3-(4-methoxy-benzyloxy)-propane (41). To a $0{ }^{\circ} \mathrm{C}$ solution of alcohol $\mathbf{1 2}(1.10 \mathrm{~g}, 2.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added imidazole ($0.23 \mathrm{~g}, 3.97 \mathrm{mmol}$), DMAP (5 mg), and TBS-Cl $(0.48 \mathrm{~g}$, 3.18 mmol). The reaction mixture was allowed to warm slowly to $23^{\circ} \mathrm{C}$ and stir for 16 h . The reaction was quenched with a saturated ammonium chloride solution and extracted with ethyl acetate. The organic phase was separated and rinsed with saturated sodium bicarbonate solution and brine before being dried over sodium sulfate. The filtrate was concentrated under reduced pressure to yield the crude product as a clear oil. Purification of this material was effected by flash chromatography using 10% ethyl acetate-hexanes as the mobile phase to give $41(1.33 \mathrm{~g}$, 95% yield $):[\square]_{\mathrm{D}}^{28.4}=+8.7\left(c 10.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.37$ (dq, $J=5.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ (dd, $J=8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, $J=7.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ $(\mathrm{s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 159.1,155.3,140.0,138.6,130.5,129.2,124.2,123.9,118.6,118.5,118.4,118.3,113.8$, $113.6,73.9,73.8,73.1,72.9,72.8,72.7,55.2,55.1,41.2,41.1,25.8,25.7,25.6,21.4,21.2,18.1$, 18.1, -4.3, -4.4, -4.5, -4.7, -4.8, -5.1, -5.3; IR (thin film from CDCl_{3} on NaCl) $\square 2955,2930,2895$, $2857,1608,1593,1513,1471,1462,1389,1361,1317,1302,1250,1160,1110,1085,1038$, 1006, $838,778 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 553.3145$, found $553.3142 \mathrm{~m} / \mathrm{z}$. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 67.87; H, 9.49. Found C, 67.80; H, 9.74.
(+)-2-(tert-Butyldimethylsilyloxy)-3- [3-(tert-butyldimethylsilyloxy)-5-methyl-phenyl]-propan-1-ol (13) PMB ether $41(0.93 \mathrm{~g}, 1.75 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ in a 50 mL round bottom flask. To this solution was added 10 mL of pH 7 buffer and DDQ $(0.56 \mathrm{~g}, 2.45$ $\mathrm{mmol})$. This new mixture was vigorous stirred and monitored by TLC ($10 \% \mathrm{EtOAc} /$ hexanes) until deprotection was complete (1 h). The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and rinsed with a saturated bicarbonate solution, then the extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic filtrate was then concentrated under reduced pressure to yield the crude product as a yellow oil. Subsequent purification of this material by careful flash chromatography using Davisil (10% EtOAc/hexanes as mobile phase) gave $13(0.66 \mathrm{~g}, 1.61 \mathrm{mmol}, 92 \%$ yield) as a white solid: $[\square]_{\mathrm{D}}^{25.4}=+9.7\left(c 8.9, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=48{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, $6.50(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{sept}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=6.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{bs}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 155.5,139.3,139.1,123.6,118.7,118.2,74.1$,
65.7, 40.4, 25.8, 25.7, 21.3, 18.1, -4.4, -4.8; IR (thin film from CDCl_{3} on NaCl) $\square 3693$, 3584 , $3054,1593,1421,1265,1160,896,740,705 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ $433.2570 \mathrm{~m} / \mathrm{z}$, found 433.2548. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}$: C, 64.33; $\mathrm{H}, 10.31$. Found C , 64.35; H, 10.07.

(+)-3-(tert-Butyldimethylsilyloxy)-4-[3-tert-butyldimethylsilyloxy-5-methyl-phenyl]
butyne (14). To a solution of DMSO ($0.27 \mathrm{~g}, 3.4 \mathrm{mmol}, 0.24 \mathrm{~mL}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added oxalyl chloride $(0.39 \mathrm{~g}, 3.1 \mathrm{mmol}, 0.27 \mathrm{~mL})$ as a neat liquid. This mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h , then a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of the primary alcohol $\mathbf{1 3}(0.64 \mathrm{~g}, 1.55 \mathrm{mmol})$ was added contemporaneously with triethylamine ($0.63 \mathrm{~g}, 6.2 \mathrm{mmol}, 0.87 \mathrm{~mL}$) as a neat liquid. This mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then the reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and allowed to stir for an additional 15 min . Pentanes were then added to precipitate the amine salts. The resulting heterogeneous mixture was filtered through a sintered glass frit. The filtrate was concentrated under reduced pressure, and the resulting yellow oil was again treated with pentanes to precipitate any remaining amine salts. Again the mixture was filtered and the filtrate was concentrated under reduced pressure to give crude aldehyde $\mathbf{4 2}$ as a pale yellow oil. This material was used directly in the next step due to its instability to flash chromatographic purification: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.65(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (ddd, $J=8.8,3.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=13.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, $J=13.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $(\mathrm{s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \square 203.6,155.5,139.0,137.8,124.0,119.0,118.4,79.0,39.0,25.7,21.3,18.1,-4.4,-4.5,-$ 5.1, -5.4

A $0{ }^{\circ} \mathrm{C}$ solution of $\mathrm{CBr}_{4}\left(1.03 \mathrm{~g}, 3.1 \mathrm{mmol}\right.$, freshly sublimed) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with triphenylphosphine $(1.63 \mathrm{~g}, 6.2 \mathrm{mmol})$ added as a solid. To this red solution was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of crude aldehyde $\mathbf{4 2}$ from the previous experiment. The reaction was stirred for 5 min , then was quenched by addition to a saturated aqueous sodium bicarbonate solution. The resulting heterogeneous mixture was transferred to a separatory funnel and diluted with ethyl acetate. The organic solution was separated, dried over sodium sulfate and concentrated under reduced pressure to give a wet, yellow solid. The solid was dissolved in pentanes and filtered through a sintered glass funnel to give a yellow solution. Pentane was added to this solution to further precipitate any remaining solids, which were again filtered by passing the mixture through a sintered glass funnel. The resulting yellow filtrate was concentrated under reduced pressure and passed through a short plug of silica gel with 30% ethyl acetate-hexanes as
eluent to remove any remaining triphenylphosphine oxide. The filtrate was concentrated to give the crude dibromoolefin as a yellow oil. This material was taken directly to the next step: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (td, $J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, 0.96 (s, 9H), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.17(\mathrm{~s}, 3 \mathrm{H})$

The crude dibromoolefin from the previous step was dissolved in THF (10 mL) and cooled to $-78{ }^{\circ} \mathrm{C} . n-\operatorname{BuLi}(3.41 \mathrm{mmol}, 1.6 \mathrm{~mL})$ was added and the solution immediately turned dark red in color. After being stirred for fifteen minutes at $-78^{\circ} \mathrm{C}$, the reaction was quenched with a saturated, aqueous ammonium chloride solution. After being warmed to $23{ }^{\circ} \mathrm{C}$, the mixture was extracted with ethyl acetate. The organic extracts were rinsed with saturated sodium bicarbonate solution and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the filtrate under reduced pressure provided the crude alkyne as a yellow oil. Subsequent purification of this material by careful flash chromatography using silica gel ($6 \% \mathrm{EtOAc} /$ hexanes) gave pure $\mathbf{1 4}$ as a pale yellow oil ($0.37 \mathrm{~g}, 0.89 \mathrm{mmol}, 58 \%$ yield over three steps): $[\square]_{\mathrm{D}}^{26.4}=+23.5\left(c 14.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{bs}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}),-0.03(\mathrm{~s}$, 3 H), -0.07 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 155.5,139.0,138.7,124.1,119.2,118.7,85.4$, $72.7,64.3,45.2,25.9,21.5,18.4,-4.2,-4.8,-5.1$; IR (thin film from CDCl_{3} on NaCl) $\square 3312$, 2957, 2930, 2886, 2858, 1594, 1471, 1462, 1313, 1252, 1161, 1090, 1045, 838, $778 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 427.2465 \mathrm{~m} / \mathrm{z}$, found 427.2455. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}_{2}$: C, 68.25; H, 9.96. Found C, 67.98; H, 9.89.

(+)-3-[2-tert-Butyldimethysilyloxy)-but-3-ynyl]-5-methylphenol (43). A $0{ }^{\circ} \mathrm{C}$ solution of alkyne $14(362 \mathrm{mg}, 0.9 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ was treated with glacial acetic acid ($52 \mu \mathrm{~L}, 0.9$ mmol) and TBAF ($1.1 \mathrm{mmol}, 1.1 \mathrm{~mL}$ of a 1 M solution in THF), added simultaneously. The reaction was complete after 2 h , as determined by TLC analysis (10% ethyl acetate / hexanes). The reaction was worked up by addition of saturated, aqueous sodium bicarbonate solution and the mixture was extracted with ethyl acetate. The organic phase was rinsed with brine before being dried over sodium sulfate. The organic solution was then concentrated under reduced pressure to yield the crude phenol 43 as a yellow oil. Purification of this material by flash chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) gave $43\left(265 \mathrm{mg}, 0.9 \mathrm{mmol}, 99 \%\right.$ yield) as a pale yellow oil: $[\square]_{\mathrm{D}}^{25.0}=+28.6$ (c $14.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=5.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (d, $J=2.2,1 \mathrm{H}), 2.23$ (s, 3H), 0.81 (s ,
$9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 155.2,139.3,138.9,123.3,114.4$, $113.9,85.0,72.8,64.1,44.9,25.7,21.2,18.2,-5.1,-5.3$; IR (thin film from CDCl_{3} on NaCl) \square 3309, 2955, 2929, 2885, 2857, 1619, 1597, 1471, 1463, 1302, 1252, 1152, 1088, 1039, 838, 778 cm^{-1}; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 313.1600$, found $313.1601 \mathrm{~m} / \mathrm{z}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C, 70.29; H, 9.02. Found C, 70.34; H, 9.16.

(+)-3-(tert-Butyldimethylsilyloxy)-4-[3-acetoxy-5-methyl-phenyl]-butyne (6). A) ${ }^{\circ} \mathrm{C}$ solution of phenol $43(250 \mathrm{mg}, 0.86 \mathrm{mmol})$ in pyridine (2 mL) was treated with acetic anhydride $(0.88 \mathrm{~g}, 8.6 \mathrm{mmol}, 0.81 \mathrm{~mL})$. The solution was allowed to slowly warm to $23^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction was then worked up by addition of a saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic solution was rinsed with $1 \mathrm{M} \mathrm{HCl}(3 \times 20$ mL) and saturated, aqueous copper sulfate solution to remove any remaining pyridine. The organic solution was then rinsed with saturated, aqueous sodium bicarbonate, and brine before being dried over sodium sulfate. The dry solution was filtered and concentrated under reduced pressure to give the crude product as a light yellow oil. Purification of this material by flash chromatography (5% EtOAc-hexanes) gave pure $\mathbf{6}(280 \mathrm{mg}, 0.84 \mathrm{mmol}, 98 \%$ yield) as a colorless oil: $[\square]_{\mathrm{D}}^{25.8}=+32.5\left(c 7.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 4.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 169.5,150.4,139.0,138.8,128.4,120.4,119.9,84.9,63.8$, 44.7, 25.6, 21.2, 21.1, 18.1, -5.1, -5.4; IR (thin film from CDCl_{3} on NaCl) $\square 3307$, 2957, 2930, 2886, 2858, 2254, 1764, 1370, 1264, 1218, 1137, 1088, 908, 839, 733, $650 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNH}_{4}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]^{+} 350.2151$, found $350.2135 \mathrm{~m} / \mathrm{z}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}$, 68.63; H, 8.49. Found C, 68.41; H, 8.40.

Chromium Pentacarbonyl[(2,5-di-methoxymethoxy)-methoxymethylene] (5). A -78 ${ }^{\circ} \mathrm{C}$ solution of protected hydroquinone $15(3.0 \mathrm{~g}, 15.1 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was treated with t BuLi (11.9 mL of a 1.4 M solution in pentanes, 16.6 mmol), added by syringe. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stir for 0.5 h before $\mathrm{Cr}(\mathrm{CO})_{6}$ was added as a solid. The reaction was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 0.5 h at $23^{\circ} \mathrm{C}$. THF was removed in vacuo
and the red residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. MeOTf was added as a neat liquid and the reaction was allowed to stir for 0.5 h . The reaction mixture was concentrated under reduced pressure and the crude was purified by column chromatography using $20 \% \mathrm{EtOAc} /$ hexanes as the mobile phase. Pure carbene 5 ($4.78 \mathrm{~g}, 11.3 \mathrm{mmol}, 75 \%$ yield) was obtained as a cherry red oil: IR (thin film from CDCl_{3} on NaCl) 2956, 2904, 2828, 2064, 2018, 1989, 1933, 1852, 1487, 1442, 1152, $993,651 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CrO}_{10}$ [M] 432.0149, found $432.0139 \mathrm{~m} / \mathrm{z}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CrO}_{10}$: C, 47.23; H, 3.73. Found C, 47.29; H, 3.69.

6

5

44

(+)-2-[1-(tert-Butyldimethylsilyloxy)-2-(3-acetoxy-5-methyl-phenyl)-ethyl]-4-methoxy-5,8-dimethoxymethoxy-[1,4]naphthoquinone (4). A $5-\mathrm{mL}$ reaction vial was flame dried and charged with alkyne $6(209 \mathrm{mg}, 0.63 \mathrm{mmol})$ and carbene $5(271 \mathrm{mg}, 0.63 \mathrm{mmol})$. Dry heptanes $(200 \mu \mathrm{~L})$ were added and the solution was purged of oxygen by bubbling argon gas through it for fifteen minutes. A microcondenser was affixed under positive pressure of argon, and the reaction was heated to $57^{\circ} \mathrm{C}$. After being heated for 14 h , the reaction was allow to cool to $23^{\circ} \mathrm{C}$ before the condenser was removed. The reaction mixture was diluted with ethyl acetate before and then was stirred open to the air for 15 min to assure oxidation of the intermediate chromium arene complex. The organic solution was then rinsed with saturated, aqueous bicarbonate solution to give a red solution which was dried over sodium sulfate. The organic filtrate was concentrated under reduced pressure to give a red oil which was purified by column chromatography (20% ethyl acetate-hexanes), giving the unstable hydroquinone $44(130 \mathrm{mg}, 0.21 \mathrm{mmol}, 35 \%$ yield) as a brown oil. This material was used immediately in the following step: $[\square]_{\mathrm{D}}^{25.5}=+31.2$ (c 19.6, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=10.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=9.0,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.32(\mathrm{~s}, 3 \mathrm{H}),-0.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 169.6,150.4,149.7,149.0,148.7,143.0,141.2,138.6,128.8,128.7,126.7,120.1,120.0$, $119.7,117.5,114.6,108.9,108.3,108.3,97.8,96.5,70.1,57.3,56.8,56.4,56.3,44.9,25.7,21.2$, 21.1, 18.1, -5.3, -5.8; IR (thin film from CDCl_{3} on NaCl) 3379, 2953, 2928, 2898, 2855, 1765,

1610, 1593, 1518, 1471, 1448, 1401, 1378, 1247, 1211, 1154, 1086, 1051, 1024, 966, 837, 778 cm^{-1}; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 623.2652$, found $623.2651 \mathrm{~m} / \mathrm{z}$.

A $0{ }^{\circ} \mathrm{C}$ solution of the unstable phenol $44(110 \mathrm{mg}, 0.18 \mathrm{mmol})$ in acetonitrile $(2 \mathrm{~mL})$ was added to a $0{ }^{\circ} \mathrm{C}$ solution of ceric ammonium nitrate ($247 \mathrm{mg}, 0.45 \mathrm{mmol}$) in water (2 mL) contained within a $25-\mathrm{mL}$ separatory funnel. The mixture was shaken for five minutes before being extracted with methylene chloride ($3 \times 10 \mathrm{~mL}$). The organic solution was rinsed with a saturated, aqueous sodium bicarbonate and then was dried over sodium sulfate. The dry, filtered solution was concentrated under reduced pressure and the resulting red oil was purified by flash chromatography (20% ethyl acetate-hexanes) to give pure quinone 4 ($95 \mathrm{mg}, 0.16 \mathrm{mmol}, 89 \%$ yield) as a red oil: $[\square]_{\mathrm{D}}^{25.5}=+60.3\left(c 19.6, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.48,7.45(\mathrm{AB}$ system, $J=9.6,6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 3 \mathrm{H}), 5.24$ ($\mathrm{s}, 3 \mathrm{H}$), $4.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}$, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}),-0.28(\mathrm{~s}, 3 \mathrm{H}),-0.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 184.7,184.4,169.4,152.4,151.8,150.5,139.8,138.9,134.1,134.1,128.6$, $125.5,124.5,122.4,122.3,120.2,120.1,120.0,96.1,96.0,95.8,69.6,69.5,56.6,56.5,56.5,44.5$, 25.7, 21.1, 21.0, 18.0, -5.3, -5.9; IR (thin film from CDCl_{3} on NaCl) $\square 2955,2930,2901,2856$, $2829,1766,1658,1636,1617,1587,1565,1471,1442,1401,1369,1332,1252,1210,1153$, $1138,1084,1001,954,838,778,733 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 607.2339$, found $607.2341 \mathrm{~m} / \mathrm{z}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{9}$ Si: C, $63.68 ; \mathrm{H}, 6.90$. Found C, 63.66; H, 7.12.

(+)-2-[1-(tert-Butyldimethylsilyloxy)-2-(3-hydroxy-5-methyl-phenyl)-ethyl]-4-methoxy-5,8-dimethoxymethoxy-[1,4]naphthoquinone (20). To a $0^{\circ} \mathrm{C}$ solution of quinone 4 $(90 \mathrm{mg}, 0.15 \mathrm{mmol})$ in freshly distilled ethanol $(200 \mu \mathrm{~L})$ was added a 1 M solution of sodium ethoxide in ethanol $(200 \mu \mathrm{~L})$ by syringe. After 2 h the reaction was complete as determined by TLC analysis ($4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction was worked up by addition of a saturated, aqueous ammonium chloride solution and extracted with methylene chloride. The organic solution was rinsed with saturated, aqueous sodium bicarbonate, dried over sodium sulfate, and concentrated under reduced pressure. The crude red oil was purified by column chromatography (20 to 50% ethyl acetate-hexanes) to give pure $20\left(70 \mathrm{mg}, 0.13 \mathrm{mmol}, 87 \%\right.$ yield) : $[\square]_{\mathrm{D}}^{25.5}=+56.6$ (c $\left.20.7, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~} \square 7.48(\mathrm{AB}$ system, $J=9.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~d}, J=7.0,1 \mathrm{H})$, $3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (s, $3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.19(\mathrm{~s}, 3 \mathrm{H}),-0.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \square 184.9,184.5,155.8$,
$152.9,152.4,151.9,139.5,139.0,134.2,134.0,125.2,125.1,124.6,124.5,123.2,123.0,122.2$, $122.1,114.2,114.1,114.0,113.9,96.1,96.0,95.8,95.7,95.5,95.4,69.7,69.4,56.8,56.6,56.4$, $44.6,44.5,25.7,21.2,21.0,18.0,-5.2,-5.4,-5.7,-5.9$; IR (thin film from CDCl_{3} on NaCl) 3417 , 2955, 2929, 2856, 2830, 1654, 1618, 1597, 1564, 1471, 1402, 1334, 1300, 1253, 1212, 1197, $1153,1085,997,952,923,838,778,733 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 565.2234 , found $565.2230 \mathrm{~m} / \mathrm{z}$.

(+)-6-(tert-butyl-dimethyl-silyloxy)-1-hydroxy-8,11-dimethoxymethoxy-3-methyl-5,6-dihydro-benzo[a]anthracene-7,12-dione (19). Phenolic quinone 20 ($65 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in freshly distilled ethanol ($300 \mu \mathrm{~L}$) and $240 \mu \mathrm{~L}$ of a 0.05 M solution of sodium ethoxide in ethanol was then added. A spatula tip of activated, powdered $4 \AA$ molecular sieves were added to the vial and it was sealed under a blanket of argon via Teflon septum. The vial was heated to 55 ${ }^{\circ} \mathrm{C}$ for 17 h and then the reaction was quenched by addition of saturated, aqueous ammonium chloride solution. The mixture was extracted with methylene chloride, dried over sodium sulfate, and concentrated under reduced pressure to give crude product as a red oil. Purification of this material was effected via preparative thin layer chromatography ($500 \mu \mathrm{~m}$ plate $\mathrm{w} / 70 \%$ ethyl ether-hexanes) gave recovered phenol $20(20 \mathrm{mg}, 0.04 \mathrm{mmol}, 31 \%$ yield) and desired product 19 ($30 \mathrm{mg}, 0.06 \mathrm{mmol}, 50 \%$ yield): $[\square]_{633}^{23.7}=+166.1\left(c 5.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\square 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{AB}$ system, $J=9.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.26-5.36(\mathrm{~m}, 5 \mathrm{H})$, $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=12.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 190.1,182.4,154.9$, $151.5,151.1,142.7,141.1,140.7,137.6,125.0,124.2,123.8,123.3,121.9,118.8,113.5,95.8$, $95.7,59.3,56.6,56.4,38.0,25.6,21.2,17.9,-4.5,-5.0$; IR (thin film from CDCl_{3} on NaCl) 3405 , 2953, 2928, 2855, 1650, 1615, 1586, 1571, 1473, 1411, 1331, 1300, 1256, 1217, 1152, 1083, 1041, 1006, 926, 837, $779 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 563.2089$, found $563.2095 \mathrm{~m} / \mathrm{z}$.

(+)-6-(tert-Butyldimethylsilyloxy)-1,8,11-Tetrahydroxy-3-methyl-5,6-dihydro-
benzo[a]anthracene-7,12-dione (27). To a $0{ }^{\circ} \mathrm{C}$ solution of 19 ($21 \mathrm{mg}, 0.04 \mathrm{mmol}$) in diethyl ether (2 mL) was added $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(10 \mathrm{mg})$ as a white solid. The ice bath was removed and the mixture was warmed to $23{ }^{\circ} \mathrm{C}$. The mixture was stirred for 35 min , at which point the reaction was deemed complete according to TLC analysis $\left(4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. A saturated solution of sodium bicarbonate was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and dried over sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to give a red oil as crude product. Purification of this material by preparative TLC using a $500 \mu \mathrm{~m}$ silica plate with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the mobile phase gave 27 ($15 \mathrm{mg}, 0.033 \mathrm{mmol}, 82 \%$ yield): $[\square]_{633}^{25.2}=+367\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ $13.06(\mathrm{~s}, 1 \mathrm{H}), 12.79(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}$, $1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=15.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 162.2$, $155.3,144.0,143.4,141.0,137.9,132.3,130.6,123.7,119.7,112.6,59.3,38.0,25.5,21.2,17.8$, 4.5, -4.9 ; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}]^{+} 453.1733$, found $453.1750 \mathrm{~m} / \mathrm{z}$.

19

29

(+)-1,6,8,11-Tetrahydroxy-3-methyl-5-6-dihydrobenzo- [a]anthracene-7,12-dione (2). Protected quinone 19 ($285 \mathrm{mg}, 0.53 \mathrm{mmol}$) was dissolved in 2 mL of 0.05 M HCl in MeOH which had been chilled to $0{ }^{\circ} \mathrm{C}$. The reaction was carefully monitored by TLC $\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ until complete loss of starting material was observed after 65 min . The reaction was promptly quenched with saturated, aqueous sodium bicarbonate and the mixture was extracted with methylene chloride. The organic solution was dried over sodium sulfate, filtered and concentrated under reduced pressure to give a red oil as crude product. This material was purified by column chromatography using $1 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the mobile phase. The major product is the monoMOM protected aglycone 29 ($130 \mathrm{mg}, 0.34 \mathrm{mmol}, 64 \%$ yield); di-MOM protected 28 and elimination product $\mathbf{3 0}$ were recovered as a mixture in 25% yield.

Data for 29: $[\square]_{633}^{26.1}=+260\left(c 0.7, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ $12.48(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (dd, $J=16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 188.4,187.9,157.2,155.6$, $152.1,144.2,143.9,140.0,137.0,127.8,127.3,123.9,119.9,114.0,113.9,95.8,74.6,60.4,56.7$, 36.5, 21.3; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 405.0950$, found $405.0944 \mathrm{~m} / \mathrm{z}$.

Partial Data for 28: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square .95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~d}, J=4.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=15.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.

Data for 30: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 9.66(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 192.3,154.4,151.4,151.3,141.1,138.1$, $135.7,134.8,126.7,124.6,124.4,122.4,122.0,121.3,119.4,118.2,96.1,96.0,56.6,21.4$; IR (thin film from CDCl_{3} on NaCl) 2956, 2829, 1667, 1621, 1591, 1568, 1472, 1416, 1329, 1255, 1226, 1152, 1080, 990, 960, 922; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$431.1107, found 431.1109 m / z.

Partially deprotected quinone 29 was transferred to a 5 mL conical vial. THF ($100 \mu \mathrm{~L}$) was added by syringe, and the resulting solution was chilled to $0^{\circ} \mathrm{C} . \mathrm{MgBr}_{2}(50 \mu \mathrm{~L}$ of a 0.22 M THF solution, prepared immediately before following the method of Vedejs ${ }^{3}$) was then added. The stirred reaction mixture was judged to be complete by TLC analysis ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) after 0.5 h . The reaction mixture was added to an aqueous solution of sodium bicarbonate and this mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over sodium sulfate and filtered to remove the drying agent. The filtrate was concentrated under reduced pressure to give a purple solid. This material was purified by using multiple preparative TLC plates ($500 \mu \mathrm{~m}$) with a 5% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase. In this way, $\mathbf{2}(100 \mathrm{mg}, 95 \%$ yield) was recovered as a poorly soluble purple solid. Recrystallization of this material by the vapor diffusion method using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2}$ in a closed atmosphere saturated in heptanes yielded crystals suitable for X ray diffraction: $[\square]_{633}^{25.4}=+802\left(c 0.07, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 12.86$ ($\mathrm{s}, 1 \mathrm{H}), 12.76(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, $6.76(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{ad}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.6,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \square 7.27(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{ad}, J=17.8 \mathrm{hz}, 1 \mathrm{H}), 2.84(\mathrm{ad}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, partial) $\square 132.5,131.0,123.9,120.5,112.4,110.9,61.1,36.6,21.2$; IR (thin film from CDCl_{3} on NaCl) $\square 3457,3215,2561,1623,1589,1560,1455,1411,1358,1298$, $1252,1217,1184,1143 \mathrm{~cm}^{-1}$; UV ($\square_{\max }$) 495, 287, 258, 222 nM ; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{6}[\mathrm{M}]^{+}$ 338.0790 , found $338.0774 \mathrm{~m} / \mathrm{z}$.

1,8,11-Hydroxy-3-methyl-benzo[a]anthracene-7,12-dione (31—Synthetic Anhydrolandomycinone). A $15-\mathrm{mL}$ round bottom flask was charged with $2(30 \mathrm{mg})$ and $\mathrm{HCl}(5 \mathrm{~mL}$ of a 1

M solution in MeOH). The reaction was complete according to TLC analysis (1:1 EtOAc/hexanes) after 2 h . The reaction mixture was transferred into a solution of saturated sodium bicarbonate and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and dried over sodium sulfate. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure to give the known compound ${ }^{4} 31(27 \mathrm{mg}, 99 \%$ yield) as a red crust: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 12.98(\mathrm{~s}, 1 \mathrm{H}), 12.49(\mathrm{~s}, 1 \mathrm{H}), 11.06(\mathrm{~s}, 1 \mathrm{H})$, $8.36(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$; IR (thin film from CDCl_{3} on NaCl$) \square 3400,2960,2920$, $1607,1584,1554,1500 \mathrm{~cm}^{-1}$.

3-(tert-Butyldimethylsilanyloxy)-5-methyl-benzaldehyde (33). To a $-78^{\circ} \mathrm{C}$ solution of $t-\mathrm{BuLi}(13.2 \mathrm{mmol}, 9.4 \mathrm{~mL}$ of 1.41 M solution in pentanes) was added a solution of aryl bromide 7 ($6 \mathrm{mmol}, 2 \mathrm{~g}$) in THF (10 mL). The mixture was stirred 1 h at $-78^{\circ} \mathrm{C}$, then dry DMF was added as a neat liquid, and the temperature was raised to $0^{\circ} \mathrm{C}$. After being stirred for 30 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous solution of ammonium chloride. The biphasic mixture was extracted with ethyl acetate, rinsed with a saturated, aqueous solution of bicarbonate, and then dried over sodium sulfate. After filtration, the organic phase was concentrated under reduced pressure to yield a slightly yellow oil. The crude product was purified by column chromatography with $10 \% \mathrm{EtOAc} /$ hexanes used as the mobile phase giving $33(1.42 \mathrm{~g}, 95 \%$ yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz) $\square 192.25,156.22,140.34,137.74,127.24,124.19$, 117.16, 25.58, 21.11, 18.13, -4.47; IR (thin film from CDCl_{3} on NaCl) $\square 2956,2930,2886,2859$, $2724,1702,1592,1462,1387,1316,1254,1165,838,782 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}$ 250.1389 , found $250.1387 \mathrm{~m} / \mathrm{z}$.

1-[3-(tert-Butyldimethylsilanyloxy)-5-methyl-phenyl]-but-3-yn-1-ol (35). A solution of $n-\mathrm{BuLi}\left(3.24 \mathrm{mmol}, 1.33 \mathrm{~mL}\right.$ of a 2.1 M soution in hexanes), TMEDA ($1.39 \mathrm{mmol}, 0.19 \mathrm{~mL}$), $\mathrm{Et}_{2} \mathrm{O}$ $(6.3 \mathrm{~mL})$, and hexanes (3.8 mL) was cooled to $-78^{\circ} \mathrm{C}$. Propargyl bromide ($2.19 \mathrm{mmol}, 0.25 \mathrm{~mL}$ of an 80% solution in toluene) was added. The mixture was stirred for 2 minutes at $-78{ }^{\circ} \mathrm{C}$, then a solution of aldehyde $\mathbf{3 3}(0.37 \mathrm{~g}, 1.46 \mathrm{mmol})$ in THF (3 mL) was added. The reaction mixture was
stirred for 30 min at $-78^{\circ} \mathrm{C}$, then the cooling bath was removed and the solution was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for another 30 min . The reaction was then worked up by addition of a saturated, aqueous solution of ammonium chloride. The resulting mixture was extracted with ethyl acetate and rinsed with a saturated, aqueous solution of sodium bicarbonate before being dried over sodium sulfate. The organic phase was then decanted from the drying agent and concentrated under reduced pressure to give the crude product as a yellow oil. Purification of this material was affected by HPLC (20 \% EtOAc/hexanes) to give 35 ($276 \mathrm{mg}, 0.95 \mathrm{mmol}, 68 \%$ yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 155.48,143.84,139.34,120.20,119.34,114.47,80.76,72.06,72.04,70.70,29.23$, 25.58, 21.31, 18.06, -4.50; IR (thin film from CDCl_{3} on NaCl) 3350, 3313, 2956, 2930, 2886, $2858,1956,1596,1471,1461,1312,1254,1161,1037,838,781 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}+\mathrm{MeOH}\right]^{+} 345.1862$, found $345.1866 \mathrm{~m} / \mathrm{z}$.

1-(tert-Butyldimethylsilanyloxy)-3-[1-(tert-butyl-dimethyl-silanyloxy)-but-3-ynyl]-5methylbenzene (45). A solution of alcohol $35(276 \mathrm{mg}, 0.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with imidazole ($168 \mathrm{mg}, 3 \mathrm{mmol}$), TBS-Cl ($300 \mathrm{mg}, 2 \mathrm{mmol}$), and DMAP (10 mg). The reaction was stirred for 16 h at $23{ }^{\circ} \mathrm{C}$ before a saturated solution of ammonium chloride was added. The reaction mixture was extracted with EtOAc, and the organic layer was separated and dried over sodium sulfate. The mixture was filtered and the filtrate was concentrated under reduced pressure. The resulting yellow oil was purified by column chromatography using 10% EtOAc/hexanes as the mobile phase. Alkyne 45 ($256 \mathrm{mg}, 0.63 \mathrm{mmol}, 68 \%$ yield) was isolated as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.69$ (dd, $J=7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $J=16.6,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (ddd, $J=16.6,5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 155.23,145.26,138.83,119.85,119.56$, $119.53,114.49,114.46,81.78,73.48,73.46,69.63,30.86,25.75,25.69,25.58,21.31,18.15$, 18.07, -4.51, -4.81, -5.06; IR (thin film from CDCl_{3} on NaCl) $\square 3314 \mathrm{~s}, 2956,2930,2886,2858$, $1596,1471,1461,1361,1310,1253,1161,1096 \mathrm{~cm}^{-1} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 427.2465 , found $427.2456 \mathrm{~m} / \mathrm{z}$.

1-Acetoxy-3-[1-(tert-butyl-dimethyl-silanyloxy)-but-3-ynyl]-5-methyl-benzene (36). Alkyne $45(256 \mathrm{mg}, 0.63 \mathrm{mmol})$ was dissolved in THF $(4 \mathrm{~mL})$ and chilled to $0{ }^{\circ} \mathrm{C}$. TBAF $(0.63$ mL of a 1 M solution in THF) was added, followed by HOAc ($37 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$). The reaction was warmed to $23{ }^{\circ} \mathrm{C}$, and stirred for 0.5 h . TLC analysis ($10 \% \mathrm{EtOAc} /$ hexanes) showed complete consumption of starting alkyne. A saturated, solution of ammonium chloride was added, and the resulting mixture was extracted with EtOAc. The organic layer was separated and dried over sodium sulfate. The drying agent was filtered off and the filtrate was concentrated under reduced pressure to give a pale yellow oil which was dissolved in pyridine (5 mL). To this solution was added $\mathrm{Ac}_{2} \mathrm{O}(0.63 \mathrm{~mL}, 6.63 \mathrm{mmol})$. The mixture was stirred for 16 h , then a saturated solution of ammonium chloride was added, and the resulting mixture was extracted with EtOAc. The organic layer was separated and rinsed with an ammonium chloride solution (3 X 50 mL), saturated copper sulfate solution (2 X 30 mL), and brine ($1 \times 30 \mathrm{~mL}$), and then was dried over sodium sulfate. The resulting mixture was filtered and the filtrate was concentrated under reduced pressure to give crude 36. This material was purified by column chromatography using $5 \% \mathrm{EtOAc} /$ hexanes, yielding pure $36(148 \mathrm{mg}, 0.45 \mathrm{mmol}, 71 \%$ yield over 2 steps $):{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=7.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (ddd, $J=16.8,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (ddd, $J=16.8,5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.96$ $(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.28, $150.43,145.43,139.08,123.93,123.91,121.21,121.22,121.09,116.10,116.08,81.37,73.23$, $73.20,70.03,30.84,25.70,21.31,21.05,18.17,-4.81,-5.02$; IR (thin film from CDCl_{3} on NaCl) 3311s, 2955, 2930, 2886, 2857, 1770, 1617, 1596, 1471, 1463, 1367, 1288, 1252, 1207, 1135, 1099, $933,837,778 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 355.1705$, found $355.1701 \mathrm{~m} / \mathrm{z}$.

2-[2-(tert-Butyl-dimethyl-silanyloxy)-2-(3-acetoxy-5-methyl-phenyl)-ethyl]-5,8-
dimethoxymethoxy-[1,4]naphthoquinone (46). A 5 mL reaction vial was flame dried and charged with alkyne 36 ($45 \mathrm{mg}, 0.14 \mathrm{mmol}$), carbene $5(59 \mathrm{mg}, 0.14 \mathrm{mmol}$), and THF ($50 \mu \mathrm{~L}$). The solution was purged of oxygen by bubbling argon gas though it for 15 min . A microcondenser was affixed under positive pressure of argon, and the reaction was heated to 54 ${ }^{\circ} \mathrm{C}$. After being heated for 14 h , the reaction was allow to cool to $23^{\circ} \mathrm{C}$ before the condenser was removed and the reaction mix was diluted with diethyl ether. The mixture was stirred open to the air for 15 min to assure oxidation of the intermediate arene chromium(tricarbonyl) complex. The organic solution was then rinsed with saturated, aqueous bicarbonate solution to give a red solution, which was dried over sodium sulfate. The organic was concentrated under reduced pressure to give crude 37 which was purified by column chromatography (10% ethyl acetate / hexanes). In this way, naphthalene $37(28 \mathrm{mg}, 36 \%$ yield) was obtained as a red oil. This material was used directly in the subsequent oxidation step: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.55(\mathrm{~s}, 1 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, 5.37 (s, 2H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 6 \mathrm{H}), 3.07$ (dd, $J=12.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=12.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H}),-0.28(\mathrm{~s}$, $3 \mathrm{H}),-0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 169.48,150.51,149.33,148.82,147.92$, 147.61, 145.93, 138.84, 124.06, 120.51, 120.41, 120.14, 118.65, 117.57, 115.97, 114.87, 114.75, $108.74,98.02,96.38,73.68,57.52,56.78,56.37,43.04,25.73,21.33,21.15,18.06,-5.17,-5.41$; IR (thin film from CDCl_{3} on NaCl) 3387, 2953, 2929, 2897, 2855, 1953, 1879, 1768, 1611, 1595, $1495,1448,1402,1376,1250,1208,1154,1084,1049,1013,971 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 623.2652$, found $623.2662 \mathrm{~m} / \mathrm{z}$.

A $0{ }^{\circ} \mathrm{C}$ solution of hydroquinone $37(65 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was added to a $0^{\circ} \mathrm{C}$ solution of ceric ammonium nitrate ($148 \mathrm{mg}, 0.27 \mathrm{mmol}$) in water (2 mL) contained within a 25 mL separatory funnel. The mixture was shaken for 5 min before being extracted with methylene chloride ($3 \times 10 \mathrm{~mL}$). The organic solution was rinsed with a saturated, aqueous sodium bicarbonate and then was dried over sodium sulfate. The dry, filtered solution was concentrated under reduced pressure and the resulting red oil was purified by flash chromatography (20% ethyl acetate / hexanes) to give pure quinone 46 as a red oil ($53 \mathrm{mg}, 0.09$ mmol, 84% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.47(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.88$ (dd, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (dd, $J=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=12.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ; 0.77(\mathrm{~s}, 9 \mathrm{H}),-0.20(\mathrm{~s}, 3 \mathrm{H}),-0.25$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 184.97, 184.32, 169.39, 152.34, 151.69, 150.60, 146.84, $146.48,139.32,137.78,125.28,124.48,123.82$, $122.54,122.42,120.98,115.89,96.13,95.83$, $72.80,56.50,42.06,25.83,25.68,21.31,21.11,18.00,-4.86,-5.09$; IR (thin film from CDCl_{3} on $\mathrm{NaCl}) \square 2955,2929,2856,1769,1659,1471,1252,1206,1153,1083,1000,961,836,778 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 607.2339$, found $607.2343 \mathrm{~m} / \mathrm{z}$.

38

2-[2-(tert-Butyldimethylsilanyloxy)-2-(3-hydroxy-5-methyl-phenyl)-ethyl]-5,8-dimethoxymethoxy-[1,4]naphthoquinone (38). Quinone 46 ($23 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in freshly distilled ethanol $(200 \mu \mathrm{~L})$ and chilled to $0^{\circ} \mathrm{C}$. To this solution was added a 1 M solution of sodium ethoxide in ethanol $(200 \mu \mathrm{~L})$ by syringe. The reaction was complete after 2 h as determined by TLC analysis ($4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction was worked up by addition of a saturated, aqueous ammonium chloride solution and extracted with methylene chloride. The organic solution was rinsed with saturated, aqueous sodium bicarbonate and dried over sodium sulfate before being concentrated under reduced pressure. The crude red oil was purified by column chromatography (20 to 50% ethyl acetate / hexanes) to give pure $38(19 \mathrm{mg}, 0.04 \mathrm{mmol}$, 99% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.47(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (s, 1H), $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H})$, 4.83 (dd, $J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (s, 3 H), 3.52 ($\mathrm{s}, 3 \mathrm{H}$), 2.91 (dd, $J=12.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (dd, $J=12.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 185.0,184.4,155.5,152.3,151.7,147.1,146.6,139.5,137.7,125.2,124.5,122.5,118.9$, $114.9,109.6,96.1,95.9,73.0,56.6,41.9,25.7,21.3,18.0,-4.8,-5.0$; IR (thin film from CDCl_{3} on $\mathrm{NaCl}) \square 3406,2928,2856,1654,1598,1565,1470,1401,1325,1255,1223,1198,1153,1085$, 997, $957,836,777,732 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 565.2234$, found 565.2239 m / z.

References in Supporting Information

(1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(2) Brittain, J. M.; De la Mare, P. B. D.; Newman, P. A. J. Chem Soc., Perkin Trans. II 1981, 32-41.
(3) Vedejs, E.; Daugulis, O. a. J. Org. Chem. 1996, 61, 5702.
(4) Henkel, T.; Rohr, J.; Beale, J. M.; Schwenen, L. J. Antibiot. 1990, 43, 492-503.

NMR Spectra:

1ε

References:

(1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(2) Brittain, J. M.; De la Mare, P. B. D.; Newman, P. A. J. Chem Soc., Perkin Trans. II 1981, 32-41.
(3) Vedejs, E.; Daugulis, O. a. J. Org. Chem. 1996, 61, 5702.
(4) Henkel, T.; Rohr, J.; Beale, J. M.; Schwenen, L. J. Antibiot. 1990, 43, 492-503.

