Synthetic Applicability and In Situ Recycling of a B-Methoxy Oxazaborolidine Catalyst Derived from cis-1-Amino-Indan-2-ol

Nathan J. Gilmore, Simon Jones* and Mark P. Muldowney ${ }^{\dagger}$Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, BrookHill, Sheffield, UK. S3 7HF.
Email Address simon.jones@sheffield.ac.uk
${ }^{\dagger}$ Rhodia Pharma Solutions, Dudley, Northumberland, UK. NE23 7QG.
Supporting Information - Contents
Document A - Experimental
General Experimental S2
Preparation of B-methyl-($1 R, 2 S$)-1-amino-indan-2-ol S2
Preparation of B-methyl-($1 R, 2 S$)-1-amino-indan-2-ol S3
with methyl diisopropyl borate
Preparation of B-methyl-($1 R, 2 S$)-1-amino-indan-2-ol S3 with methyl boronic acid
Preparation of the B-alkoxy-($1 R, 2 S$)-amino-1-indan-2-ol S3 with trialkylborates
General procedure for the racemic reduction of ketones S4
General procedure for the two-step asymmetric reduction of ketones S4
General procedure for the one-pot B-OMe catalyst preparation S4 and reduction of prochiral ketones
(S)-1-Phenylethanol 1 S5
(S)-1-Phenylpropan-1-ol 2 S5
(S)-1-Phenyl-2-methypropan-1-ol 3 S5
(S)-1-Cyclopropyl-phenylmethanol 4 S5
(S)-1,2,3,4-Tetrahydronaphthalen-1-ol 5 S6
(R)-2-Chloro-1-phenylethanol 6 S6
(R)-2-Bromo-1-phenylethanol 7 S6
(S)-1-(4-Chlorophenyl)-ethanol 8 S6
(R)-2,2-Dibromo-1-(4-bromophenyl)-ethanol 9 S7
(S)-3,3-Dimethyl-butan-2-ol 10 S7
(S)-1-Bromo-3,3-dimethyl-butan-2-ol 11 S7
(R)-2-Amino-1-phenyl-ethanol 13 S7
N -(2-Oxo-2-phenyl-ethyl)-benzamide 14 S8
(R)-N-(2-Hydroxy-2-phenyl-ethyl)-benzamide 15 S8
(2-Oxo-2-phenyl-ethyl)-carbamic acid tert-butyl ester 16 S8
(R)-(2-Hydroxy-2-phenyl-ethyl)-carbamic acid tert-butyl ester 17 S9

References S9

Document B-Copies of all ${ }^{\mathbf{1}} \mathrm{H} \mathbf{n m r}$ spectra

General Experimental

All solvents were dried over sodium (except dichloromethane, which was dried over lithium aluminium hydride). Glassware was flame dried and cooled under vacuum before use. All reactions were carried out under a nitrogen atompshere. $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $63 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR was carried out on a Bruker Avance 300 spectrometer. Residual proton signals from chloroform ($\left.{ }^{1} \mathrm{H} 7.25 \mathrm{ppm}\right)$ were used as a reference. 500 $\mathrm{MHz}{ }^{11} \mathrm{~B}$ NMR was conducted on JEOL (Japan Electron Optical Limited) $\lambda 500 \mathrm{MHz}$ spectrometer. Specific rotations were performed on a Polaar 2001 automatic polarimeter at 589 nm and measured at $20^{\circ} \mathrm{C}$ unless otherwise stated. $[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. HPLC was carried out using a Spectra Physics Analytical system (consisting of a P4000 pump, an AS1000 auto sampler, a UV2000 detector and using PC 1000 version 2.0 software). A Chiralcel OD ($4.8 \times 250 \mathrm{~mm}$) column and 10% IPA in heptane solvent system. The flow rate was $1.00 \mathrm{~cm}^{3}$ per minute and the detector was set at 254 nm . Gas Chromatography was carried out on a Perkin Elmer Auto System instrument using flame ionisation detector. A fused silica capillary column was used with β-cyclodextrin as the stationary phase. Hydrogen was used as the carrier gas.

Preparation of B-methyl-(1R, 2S)-1-amino-indan-2-ol

Trimethylboroxine $\left(0.19 \mathrm{~cm}^{3}, 1.34 \mathrm{mmol}\right)$ was added to a solution of $(1 R, 2 S)-1-$ amino-indan-2-ol (2.01 mmol) in toluene $\left(10 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere and stirred at room temperature for 30 min . Toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added and the resulting solution was concentrated to approximately $2 \mathrm{~cm}^{3}$ by distillation. This process was
repeated twice after which the toluene was removed under reduced pressure to give the catalyst as a white solid. THF $\left(2 \mathrm{~cm}^{3}\right)$ was added to produce an approximately 1.0 M solution of catalyst in THF that was used in subsequent reactions. This solution was stable for a limited period (48 h) at room temperature when stored under a nitrogen atmosphere.

Preparation of B-methyl-(1R,2S)-1-amino-indan-2-ol with methyl diisopropyl borate

Methyl diisopropyl borate ${ }^{1}(0.29 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a solution of $(1 R, 2 S)-1$ -amino-indan-2-ol (2.01 mmol) in toluene $\left(10 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere and stirred at room temperature for 30 min . Toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added and the resulting solution was concentrated to approximately $2 \mathrm{~cm}^{3}$ by distillation. This process was repeated twice after which the toluene was removed under reduced pressure to give the catalyst as a white solid. THF ($2 \mathrm{~cm}^{3}$) was added to produce an approximately 1.0 M solution of catalyst in THF that was used in subsequent reactions. This solution was stable for a limited period (48 h) at room temperature when stored under a nitrogen atmosphere.

Preparation of B-methyl-($1 R, 2 S$)-1-amino-indan-2-ol with methyl boronic acid

Methyl boronic acid ${ }^{1}(0.12 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a solution of ($1 R, 2 S$)-amino-1-indan-2-ol (2.01 mmol) in toluene $\left(10 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere and stirred at room temperature for 30 min . Toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added and the resulting solution was concentrated to approximately $2 \mathrm{~cm}^{3}$ by distillation. This process was repeated twice after which the toluene was removed under reduced pressure to give the catalyst as a white solid. THF ($2 \mathrm{~cm}^{3}$) was added to produce an approximately 1.0 M solution of catalyst in THF that was used in subsequent reactions. This solution was stable for a limited period (48 h) at room temperature when stored under a nitrogen atmosphere.

Preparation of the B-alkoxy-($1 R, 2 S$)-amino-1-indan-2-ol with trialkylborates

Trialkylborate (1 mmol) was added to a solution of ($1 R, 2 S$)-1-amino-indan-2-ol (2.01 mmol) in THF ($2 \mathrm{~cm}^{3}$) under a nitrogen atmosphere and stirred at room temperature for 30 min . The catalyst formed in situ is approximately 1.0 M concentration that was used in subsequent reactions without further isolation.

General procedure for the racemic reduction of ketones

Reduction of acetophenone with sodium borohydride is a representative. Sodium borohydride (1.66 mmol) was added to ethanol $\left(3 \mathrm{~cm}^{3}\right)$ and stirred at room temperature. Ketone (1.66 mmol) was added drop-wise with stirring and the reaction was left for 1 h at room temperature. Water $\left(10 \mathrm{~cm}^{3}\right)$ was added, the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic layer washed with water $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried over MgSO_{4}. The solution was filtered and concentrated under reduced pressure. NMR chemical shifts and other relevant characterisation is detailed in the asymmetric reduction section.

General procedure for the two-step asymmetric reduction of ketones

BH_{3}.DMS (1.83 mmol) was added to a solution of previously prepared B-methyl($1 R, 2$ S)-1-amino-indan-2-ol $\left(0.17 \mathrm{~cm}^{3}, 0.166 \mathrm{mmol}\right)$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ and stirred at room temperature under a nitrogen atmosphere for 30 min . The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and the ketone (1.67 mmol) in solvent $\left(1 \mathrm{~cm}^{3}\right)$ added via cannula. The reaction mixture was stirred for a further 30 min at room temperature then quenched with methanol $\left(5 \mathrm{~cm}^{3}\right)$. Water was added $\left(5 \mathrm{~cm}^{3}\right)$ and the solvent removed under reduced pressure. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic phase washed with $1 \mathrm{M} \mathrm{HC1}\left(30 \mathrm{~cm}^{3}\right)$, water $\left(30 \mathrm{~cm}^{3}\right)$ and dried over MgSO_{4}. Filtration, and removal of the solvent under reduced pressure produced the crude product that could be purified if necessary by silica gel chromatography eluting with ethyl acetate / petroleum ether.

General procedure for the one-pot \boldsymbol{B}-OMe catalyst preparation and reduction of prochiral ketones

Trimethyl borate $\left(0.2 \mathrm{~cm}^{3}, 0.17 \mathrm{mmol}\right)$ was added to a solution of the $(1 R, 2 S)-1$ -amino-indan-2-ol ($25 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\operatorname{THF}\left(1 \mathrm{~cm}^{3}\right)$ and stirred at room temperature under a nitrogen atmosphere for $30 \mathrm{~min} . \mathrm{BH}_{3}$.DMS complex $\left(0.11 \mathrm{~cm}^{3}, 1.83 \mathrm{mmol}\right)$ was added, the reaction stirred for 30 min , then acetophenone $\left(0.2 \mathrm{~cm}^{3}, 1.67 \mathrm{mmol}\right)$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ added via cannula. The reaction mixture was stirred for a further 30 min at room temperature then quenched with methanol $\left(5 \mathrm{~cm}^{3}\right)$. Water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the solvent removed under reduced pressure. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic phase washed with $1 \mathrm{M} \mathrm{HC1}\left(30 \mathrm{~cm}^{3}\right)$, water (30 cm^{3}) and dried over MgSO_{4}. Filtration, and removal of the solvent under reduced
pressure produced the crude product that could be purified if necessary by silica gel chromatography eluting with ethyl acetate / petroleum ether.

The following compounds were all reduced using the 'one-pot' reduction procedure detailed immediately above.

(S)-1-Phenylethanol $\mathbf{1}^{2}$

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31-7.08(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.80(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHOH}), 1.97$ ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), $1.41\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right.$); $[\alpha]_{\mathrm{D}}-47.3$ (c $1, \mathrm{CHCl}_{3}$), ee $85 \%(5 \% i-\mathrm{PrOH}$ in heptane, Chiralcel OD); lit. ${ }^{2}-46.8\left(c 1, \mathrm{CHCl}_{3}\right)$; ee 82%.

(S)-1-Phenylpropan-1-ol $\mathbf{2}^{2}$

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.33-7.26 \mathrm{ppm}(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.59(1 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{CHOH}), 1.84$ ($1 \mathrm{H}, \mathrm{brOH}$), $1.90-1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95-0.88\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ;[\alpha]_{\mathrm{D}}-$ 45.4 (c 1, CHCl_{3}), ee 65% (β-cyclodextrin, initial temp. $100{ }^{\circ} \mathrm{C}$, ramp at $1.0^{\circ} \mathrm{C} / \mathrm{min}$ to $150{ }^{\circ} \mathrm{C}$, hold for 10 min); lit. ${ }^{2}-36.6\left(c 1, \mathrm{CHCl}_{3}\right)$; ee 69%.
(S)-1-Phenyl-2-methypropan-1-ol 3^{3}

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.35(1 \mathrm{H}$, br d, $J 6.7 \mathrm{CHOH}), 1.90$ $\left[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.05\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.4$, CH_{3}); $[\alpha]_{\mathrm{D}}-17.5\left(c 1, \mathrm{CHCl}_{3}\right)$; ee 22% (β-cyclodextrin, $130{ }^{\circ} \mathrm{C}$ for 30 min); lit. ${ }^{3}+8(c$ 5, $\mathrm{Et}_{2} \mathrm{O}$); ee 16.8%.

(S)-1-Cyclopropyl-phenylmethanol 4^{2}

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.07(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHOH}), 1.91$ ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), $1.25-1.19[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}], 0.69-0.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;[\alpha]_{\mathrm{D}}-10.9$ (c $1, \mathrm{CHCl}_{3}$), ee 30% (β-cyclodextrin, $140{ }^{\circ} \mathrm{C}$ for 20 min); lit. ${ }^{2}-6.1$ (c $1, \mathrm{CHCl}_{3}$); ee 25%.

(S)-1,2,3,4-Tetrahydronaphthalen-1-ol $\mathbf{5}^{2}$

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.28-7.08(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.80(1 \mathrm{H}, \mathrm{br}$, $\mathrm{CHOH}), 2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.10-1.60\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OH} \& \mathrm{CH}_{2}\right) ;[\alpha]_{\mathrm{D}}+30.4(c 1$, CHCl_{3}), ee 85% ($2 \% i$-PrOH in heptane, Chiralcel OD); lit. ${ }^{2}+25.1$ ($c 1, \mathrm{CHCl}_{3}$); ee 78 \%.
(R)-2-Chloro-1-phenylethanol $\mathbf{6}^{2}$

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.90(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and $8.7, \mathrm{CHOH})$, $3.75\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.3.6, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.8.7, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.65(1 \mathrm{H}$, br, OH); $[\alpha]_{\mathrm{D}}-50.5$ (c 1, CHCl_{3}), ee 86% ($5 \% i$-PrOH in heptane, Chiralcel OD); lit. ${ }^{2}$ 53.4 (с 1, CHCl_{3}); ee 87%.

(R)-2-Bromo-1-phenylethanol 7^{4}

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.93$ ($1 \mathrm{H}, \mathrm{dd}, J 3.4$ and $8.8, \mathrm{CHOH}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.3.4, \mathrm{CH}_{2} \mathrm{Br}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.8.8, \mathrm{CH}_{2} \mathrm{Br}\right), 2.62(1 \mathrm{H}$, br, OH); $[\alpha]_{\mathrm{D}}-30.9$ (c 1, CHCl_{3}), ee $79 \% ~\left(\beta\right.$-cyclodextrin, $120{ }^{\circ} \mathrm{C}$ for 15 min); lit. ${ }^{4}$ 39.7 (c 8.4, CHCl_{3}); ee 97%.
(S)-1-(4-Chlorophenyl)-ethanol 8^{5}

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.88(1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{CHOH}), 1.83(1 \mathrm{H}$, brd, $\mathrm{OH}), 1.48\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}+25.9\left(c 1, \mathrm{CHCl}_{3}\right)$, ee 84% (β-cyclodextrin, 160 ${ }^{\circ} \mathrm{C}$ for 15 min); lit. ${ }^{5}-48.5\left(c 2.11, \mathrm{Et}_{2} \mathrm{O}\right)$; ee -98%.

(R)-2,2-Dibromo-1-(4-bromophenyl)-ethanol 9

$v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3396,1591,1485 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH}), 7.29$ ($2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Ar} H), 5.74(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{CHBr}), 5.01(1 \mathrm{H}, \mathrm{t}, J 4.1, \mathrm{CHOH}), 2.95(1 \mathrm{H}$, $\mathrm{d}, J 4.0, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.9,131.6,128.7,123.1,78.3,51.5$; Found C, 26.92; $\mathrm{H}, 1.96 ; \mathrm{Br}, 66.79 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{3} \mathrm{O}$ requires $\mathrm{C}, 26.78 ; \mathrm{H}, 1.97 ; \mathrm{Br}, 66.80 \% ;[\alpha]_{\mathrm{D}}-$ 13.0 (c 2, CHCl_{3}); ee 57% (β-cyclodextrin, $220{ }^{\circ} \mathrm{C}$ for 15 min); $\mathrm{m} / \mathrm{z} 362$ (4%), 360 (10), 358 (12), $355.8057\left(4, \mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{7}{ }^{79} \mathrm{Br}_{3} \mathrm{O}\right.$ requires 355.8047), 187 (90), 185 (100), 157 (16), 77 (54).
(S)-3,3-Dimethyl-butan-2-ol 106

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.40(2 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{CHOH}), 1.75(1 \mathrm{H}, \mathrm{brOH}), 1.04(2 \mathrm{H}, \mathrm{d}, J$ $\left.6.4, \mathrm{CH}_{3}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}+31.0\left(c 1, \mathrm{CHCl}_{3}\right)$, ee $60 \%\left(\beta\right.$-cyclodextrin $70{ }^{\circ} \mathrm{C}$ for 15 min); lit. ${ }^{6}-39.4$ (c $2.2, \mathrm{EtOH}$); ee -98.4%.

(S)-1-Bromo-3,3-dimethyl-butan-2-ol 11 ${ }^{7}$

$\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.64(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $1.0, \mathrm{CHOH}), 3.45(1 \mathrm{H}$, brd d, $J 10.0$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.30\left(1 \mathrm{H}, \mathrm{t}, J 10.0, \mathrm{CH}_{2} \mathrm{Br}\right), 2.23(1 \mathrm{H}, \mathrm{d}, J 3.1, \mathrm{OH}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 79.2, 38.5, 26.7, 25.9; $[\alpha]_{\mathrm{D}}-11.3\left(c 1, \mathrm{CHCl}_{3}\right)$, ee $28 \%(5 \% i-\mathrm{PrOH}$ in heptane, Chiralcel OD); Lit. +1.42 (no other data given), ee 4%.
(R)-2-Amino-1-phenyl-ethanol $13{ }^{8}$

$\mathrm{NaHCO}_{3}(425 \mathrm{mg}, 5.01 \mathrm{mmol})$ dissolved in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to aminoacetophenone hydrochloride ($286 \mathrm{mg}, 1.67 \mathrm{mmol}$) under anhydrous conditions with
stirring. After 2 h the ethanol was removed under vacuum and the orange solid redissolved in THF ($3 \mathrm{~cm}^{3}$) to give an orange solution with a white precipitate. The solution was transported via for the 'one-pot' asymmetric reduction procedure highlighted above. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.22(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7.7 and $3.9, \mathrm{CHOH}), 2.97\left(1 \mathrm{H}, \mathrm{dd}, J 12.7\right.$ and $\left.3.9, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.80(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 7.7, $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $2.17\left(3 \mathrm{H}\right.$, brs, $\left.\mathrm{OH}, \mathrm{NH}_{2}\right)$; $[\alpha]_{\mathrm{D}}-31.3$ (c 1, EtOH), ee $45 \%(\beta-$ cyclodextrin $220{ }^{\circ} \mathrm{C}$ for 20 min); lit. ${ }^{8}-39.1$ (c 1.3, EtOH); ee $98-99 \%$.

\mathbf{N}-(2-Oxo-2-phenyl-ethyl)-benzamide 14^{9}

$\mathrm{NaHCO}_{3}(0.198 \mathrm{mg}, 2.36 \mathrm{mmol})$ was added to a solution of amino-acetophenone hydrochloride ($0.135 \mathrm{mg}, 0.79 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) with stirring. Pyridine $(0.21$ $\mathrm{cm}^{3}, 1.58 \mathrm{mmol}$) and benzoylchloride ($0.098 \mathrm{mg}, 0.1 \mathrm{~cm}^{3}, 0.79 \mathrm{mmol}$) were added to the solution and stirred overnight. Water $\left(30 \mathrm{~cm}^{3}\right)$ was added and the solvent removed under reduced pressure to leave a suspension of the product in aqueous phase. The product was extracted into dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, the organic phase washed with water $\left(30 \mathrm{~cm}^{3}\right)$ and dried over MgSO_{4}. Removal of the solvent produced the product as a white solid of sufficient purity to be used in the next step; mp $123{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{10} 123-125{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.81(2 \mathrm{H}, \mathrm{d}, J$ 7.3, ArH$), 7.60-7.33(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{NH}), 4.88\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.3, \mathrm{CH}_{2}\right)$.

(R)- N -(2-Hydroxy-2-phenyl-ethyl)-benzamide 15^{11}

Prepared using the 'one-pot' reduction procedure detailed above. mp 151-152 ${ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{11} 143-145{ }^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{ArCH}), 7.49-7.21$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 6.52(1 \mathrm{H}$, brd, NH$), 4.92(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $3.4, \mathrm{CHOH}), 3.87(1 \mathrm{H}$, ddd, $J 14.0,7.5$ and $3.4, \mathrm{CH}_{2} \mathrm{NH}$), 3.48 (ddd, $J 14.0,7.5$ and $5.0, \mathrm{CH}_{2} \mathrm{NH}$), $3.27(1 \mathrm{H}$, brd, OH) ; $[\alpha]_{\mathrm{D}}-2.91$ (c 1, MeOH), ee 42% by HPLC (5% IPA in heptane); (Despite full charcterisation, no specific rotation is included in the literature).

(2-Oxo-2-phenyl-ethyl)-carbamic acid tert-butyl ester $\mathbf{1 6}^{12}$

$\mathrm{NaHCO}_{3}(1.47 \mathrm{~g}, 17.5 \mathrm{mmol})$ was added to a solution of amino-acetophenone hydrochloride ($1.0 \mathrm{~g}, 5.8 \mathrm{mmol}$) in $\operatorname{EtOH}\left(50 \mathrm{~cm}^{3}\right)$. Di-t-butyl dicarbonate ($1.33 \mathrm{~g}, 6.1$ mmol) was added to this solution at $0^{\circ} \mathrm{C}$ and the solution allowed to warm to room temperature and stir for 48 h . The mixture was filtered through Celite and the ethanol removed under reduced pressure. The resulting solid was re-dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (30 cm^{3}), filtered again through Celite and the solvent removed under reduced pressure to leave a white solid which was pure enough to be used in the next step as obtained; mp $56^{\circ} \mathrm{C}$ (lit. ${ }^{12} 55-58{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.56(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 4.66\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.5, \mathrm{CH}_{2}\right), 1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
(R)-(2-Hydroxy-2-phenyl-ethyl)-carbamic acid tert-butyl ester $\mathbf{1 7}^{13}$

Asymmetric reduction was carried out by the previously described one-pot general procedure giving the desired product in 99%; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.22(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 5.00(1 \mathrm{H}, \mathrm{br}, \mathrm{N} H), 4.81(1 \mathrm{H}, \mathrm{br}, \mathrm{CHOH}), 3.45\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 3.30-3.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{OH} \& \mathrm{CH}_{2}$), $1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;[\alpha]_{\mathrm{D}}-2.05(c \mathrm{c}, \mathrm{EtOH})$, ee 90% by HPLC (5% i - PrOH in heptane); lit. ${ }^{13}-2.62$ ($c 4, \mathrm{EtOH}$), ee 97%.

References

1 Brown, H. C.; Cole, T. E. Organometallics 1985, 4, 816-821.
2 Jones, S; Atherton, J. C. C. Tetrahedron: Asymmetry 2000, 11, 4543-4548.
3 Vigueron, J. P.; Jacquet, I. Tetrahedron 1976, 32, 939-944.
4 de Carvalho, M.; Okamoto, M. T.; Moran, P. J. S.; Rodrigues, J. A. R.
Tetrahedron 1991, 47, 2073-2080.
5 Hayashi, T.; Hirate, S.; Kitayama, K.; Tsuji, H.; Torii, A.; Uozumi, Y. J. Org.
Chem. 2001, 66, 1441-1449.
6 Imai, T.; Tamura, T.; Yamamuro, A. J. Am. Chem. Soc. 1986, 108, 7402-7404.
7 Takeichi, T.; Takakura, T.; Ishimori, M.; Tsuruta, T. Bull. Chem. Soc. Jpn.
1988, 61, 603-605.
8 Watanabe, M.; Murata, K.; Ikariya, T. J. Org. Chem. 2002, 67, 1712-1715.
9 Yoon, U. C.; Cho, S. J. J. Org. Chem. 1995, 60, 2353-2360.
10 Mandel, S. M.; Krause Bauer, J. A.; Gudmundsdottir, A. D. Org. Lett. 2001, 3, 523-526.

Cardus, G. J.; Carnell, A. J.; Trauthwein, H.; Riermeir, T. Tetrahedron: Asymm. 2004, 15, 239-243.
Kawamoto, A. M.; Wills, M. J. Chem. Soc., Perkin Trans. 1 2001, 1916-1928.
Benedetti, F.; Norbedo, S. Tetrahedron Lett. 2000, 41, 10071-10074.

