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Consider an ensemble of proteins, each containing one or more instances of a certain group
which can assume several forms (for example, histidine, where three protonation forms are
known). For each protein, all possible isomers are combinations of forms of each group. The
energy of an isomer can be expressed as the difference between its energy and the energy of
a reference isomer for the same protein. The expected statistical distribution of this energy
difference for the whole ensemble is shown in the case that the reference isomer is chosen at
random for each protein.

1 Energy distribution in one protein

1.1 energy as the sum of independent variates

In a protein with N independent groups, the total energy is the sum of all group energies, plus
the energy of the rest, Fy:

This may be taken as a definition of “independent group”; two groups whose energies are not
additive should be considered as one big group'. If the statistical distribution of each group’s
energy (due to variations such as the displacement of one hydrogen) is p;(X), the distribution
of total energy E is the convolution of all these distributions®. For example, if N = 2, and
assuming Ey = 0: .

P(E)= [ pu(X)pa(E - X)dX )
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1.2 limit of the distribution

Following the Central Limit Theorem, (cf. for example [1]), the distribution of energies in
one protein, P(X), tends (rather quickly with increasing number of groups, N) to a Gaussian

Note that in the accompanying paper, N indicates the total number of histidines, whether they are
independent or not

2The equivalence between the distribution of a sum of variates and the convolution of single variate
distributions is well known and illustrated e. g. in [1] (cap.16), both for continuous and discrete distributions.



whose centroid is the sum of the centroids of each group’s distribution (and variance is the sum
of variances). The following figure shows the distribution of energies due to isomerization of
histidines in a protein with 9 histidines (3ayk) and in one with 10 histidines (11x1) :
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1.3 distribution of energy differences

The distribution of energy differences with respect to the energy of the isomer reported in the
PDB, X = F — Eppp, is simply

P'(X) = P(E) = P(X + Eppp) (3)

2 Global distribution of energy differences

2.1 global distribution

We now consider a collection of L proteins (in the case discussed in the accompanying paper,
L = 409), where a reference isomer is defined for each protein; the distribution of energy
differences for each protein is P,(X + X?), where X0 is the reference isomer of protein n.

We define the global distribution of X as the sum of the L single-protein distributions,
giving each protein the same weight, %:

L
1
P(X; X%Xx0.) = ZZPn(XJrX}}) (4)

with ©
/ Py(X)dX =1 (5)
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The distribution for protein n may be written

— 1 X - By ©)

(where M,, is the number of isomers of protein n and E,; is the energy of its i-th isomer), and
the global distribution is

1 L 1 My,
:ZZEZ<§(X+X3—EM-) (7)

Noting that P,(X + X?) always includes the trivial term —(5 (X) corresponding to the case
(X)
= ®)

P, (X +X0) = A Z(SX—i-XO En) +

(where the symbol >’ means that the term E,; = X? is to be excluded from the sum), we may
write the global distribution (7) as

Mp

L L
1 1 , 0 1 1
P(X)_z%:ﬁnzija(xmn Ey;) +6(X E;E (9)
L
1 1
=p(X EZ M, (10)
with L
X)= 2 3 I D I8(X + X — Eng) (11)

When representing real distributions through histograms, the pulse in the origin (second
term in (10)) is unpractical (since the distribution is a density, the height of the pulse is inversely
proportional to the channel width); it is often more useful to represent p(X) than P(X), keeping
in mind, however, that the integral of p(X) is (1 — 7 >, 5 ) and not 1.

2.2 average global distribution

When X? is chosen at random, the quantity of interest is the average distribution with respect
to all possible choices of X?, which is the sum of single-protein averages:

= S P) (12)

The single-protein average P’(X) is obtained by multiplying the distribution with origin in
X? by the probability, P,(X?), that the origin will be placed in X?, and integrating over all
possible origins:

o= [ T PAXO)PL(X + XO)dX? (13)

o



This expression for P!(X) shows that the average distribution for a single protein is the

autocorrelation function of P,: B
P (X)=P,xP, (14)
It is well known that the distribution of the difference between two variates (in this case,

X = (X + X,,) — X,,) is the correlation between the two distributions.
The average global distribution (12) is thus

P(X) = % XL: P, x P, (15)

Recall that the autocorrelation is always an even function and has a maximum in X = 0.
For a proof see for example ref. [1] (chap. 3, appendix).

As an example, consider the simple case of one protein with only two isomers, and thus two
energies a € b:

Pu(X) = 5 [5(X —a) +6(X — b)] (16)
The single-protein average is
PU(X) = Pux Py = 36(X) + 16X + (a =) +5(X — (a— b)) (17)

which is simply a pulse in the origin plus two half-pulses at (a—b) and —(a—b). If all proteins in
the ensemble are two-isomer proteins, the global distribution is the sum of many such functions,
that is a pulse in 0 plus many small pulses scattered symmetrically around zero.

In the general case, P, is given by (6), and

M,

P, P, = % D O[X — (Bni — Eny)] (18)
P(X) = 137 305 D 00X = (B — By (19)

Here again we have a trivial term due to the cases i = j. One may single it out, similarly
to (9):

_ Ign 1 & 1gn 1
P(X)=Z;m;(wf—(Em—Enj)]‘*‘(s(X)z;E (20)

1gn 1
:p(X)+5(X)Z;E (21)
(note that p(X) is exactly the average, with respect to all possible choices of X9, of p(X) as

defined by (11), in the same way as P(X) in (19) is the average of (9))

In a collection of proteins whose energies E,; are known, the average distribution P(X)
can be calculated from (19). In the case reported in the accompanying paper, the following
average distribution is obtained (note the comparison with the “observed” distribution, that is
the distribution obtained when the reference isomer is the PDB one):
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The similarity between the two distributions is even more clear if comparison is made
between p(X) and p(X), that is, if distributions are “cleaned” from the trivial term in 0:
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2.3 models and approximations with analytical functions; distribution
of o

It may be useful to write an analytical expression for P(X) in model cases.

If the average distribution of each protein can be expressed by a function depending on only
one parameter o, (for example, a Gaussian of width o centered in zero), P(X;0,), the global
distribution will be:

P(X) = 1 3" P(X:00) (22)

or, if the number of distributions in the interval from o to (¢ + do) is p(o)do, and o ranges
from o, to oy, it will be the integral:

o1

P(X):/ p(o)P(X;0)do (23)
with

/0—1 plo)do =1 (24)

0

2.3.1 Models for P(X;0)

If, in the first approximation, a uniform distribution for o is assumed (p(0) = 1/(o1 — 00) if
o € [og,01], p(6) = 0 otherwise), an analytical expression of P(X) can be devised in some
model cases. For example:

1. if all proteins contain many groups, each single-protein distribution tends to a
Gaussian. The average distribution is this Gaussian’s autocorrelation, that is again a
Gaussian, centered in the origin and with the same variance. If the Gaussians’ variances
span the interval between oy e o1 uniformly, then

_ 1 g1 1 X2
P(X)= / ~ 27reaﬁp(—rﬂ)da (25)

(26)

where the function ei(X) is the so-called ezponential integral:
Eifx]
10 -




Basically, the distribution has a “lambda” or “witch’s hat” shape (cf. the negative part of
the function plot, noting that the difference between the two functions in the upper half
of the fraction in (26) is positive). The following is its value for oy = 10, 07 = 1400 (these
values refer to the observed distribution of o, see below):
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2. if all proteins have few groups, the single-protein distribution can be approximated
by a “rectangular” distribution (P(X;0) = 5 < |X| < o), whose autocorrelation is

“triangular” (P(X;0) = (20 — |X])/40? < |X| < 20); keeping the assumption p(c) =
1/(o1 — 0g) one obtains

—|X\ 109(?)
» X) L 40109 + 2(01—20) |X‘ < 200 ( 7)
= X o1 2
W7 S - b+ dloo) 1X] € (200,201
0 |X‘ > 204

which, surprisingly, is almost identical to the distribution obtained from Gaussians with
the



same values of o e oy:
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The comparison of the calculated function, for two choices of the o range, with the observed

“cleaned” distribution p(X) is reported in the following figure: (409 proteins, 267 of which
contain 1 to 2 histidines):
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2.3.2 dependence on ¢

The next approximation step is to consider a nonuniform distribution of ¢, and to feed the
right expression for p(o) in (23).

In the case illustrated in the accompanying paper, for example, (if o is the standard deviation
of the energy distribution of each protein) p(o) raises in the interval 10 to ~ 100, then decreases
constantly from 100 to 1400:
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Note that the high fraction of proteins with low ¢ explains why the models just illustrated

overestimate the distribution wings and underestimate the central peak.

A simple expression for P(X) can be written in the simple case presented in the previous
section: if all proteins have only two isomers, whose energies are spaced by o, the distribution
will result (substituting (17) with ¢ = a — b into (23))

P(X) = [o(=X) + p(X)] + 36(X) (28)

e~ =

Using the observed value for p(c) one obtains
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Here the central peak and the middle (100 —300 kJ/mol) energy range steal population from
the other regions, since continuous distributions have been replaced by three-pulse distributions
of eq. (17). However, this is again a good approximation to the real P(X).

3 Conclusions

In conclusion, the average global distribution of energy differences is the sum of
the correlation functions of each protein’s distribution. These are even functions
with a maximum in the origin that individually tend, with growing number of
independent groups (histidines), to a Gaussian shape. The global distribution, if
an equal weight is given to each protein, is still an even function with maximum
in zero, however it has no Gaussian, or bell, shape, but a cusped or “witch’s hat”
shape, and this feature may be enhanced by a high proportion of distributions with
low variance.
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