Supporting Information

Supporting Information 1
Compound characterization 3
2-Methoxy-2-phenylethoxy-5,5-dimethyl- Δ^{3}-1,3,4-oxadiazoline 15b 3
4,4-Dimethoxy-cyclopent-1-ene-1,2-dicarboxylic acid dimethyl ester 18a 3
4-Methoxy-4-phenylethoxy-cyclopent-1-ene-1,2-dicarboxylic acid dimethyl ester 18b 4
2,2-Dimethoxycyclopent-4-ene-1,3-dicarboxylic acid dimethyl ester 20a 4
2,2-Dimethoxy-3-methylcyclopent-4-ene-1-carboxylic acid, methyl ester 20b 5
2-Carboxy-1-methoxy-4-oxo-4,6-dihydro-3H-indene, methyl ester (22). 5
($E E$)-Oxadiazoline 24a. 6
(2Z-4E)-Oxadiazoline 24a 6
($E E$)-Oxadiazoline 24b 7
($E E$)-Oxadiazoline 24c 7
Cycloadduct (\pm)-26a 8
Cycloadducts (\pm)-25b and (\pm)-26b 9
Cycloadduct (\pm)-25c or (\pm)-26c 9
Diene 27 10
Adduct (\pm)-28 11
Enone 29 11
Adduct (\pm)-30. 12
Proof of structures of 25b, 26a, and 26b 13
Reduction of adduct 26a. 13
Reduction of adducts 25b and 26b 13
Reduction of adducts $\mathbf{2 5 c}$ or $\mathbf{2 6 c}$ 14
p-nitrobenzoate of the alcohol derived from 26a 15
p-nitrobenzoate of the alcohol derived from 25b 16
p-nitrobenzoate of the alcohol derived from 26b 16
Syntheses of dienes 23a-c and 27 and enone 29 and compound characterization for that sequence 18
E-E-7-(tert-Butyl-dimethyl-silanyloxy)-hepta-2,4-dienoic acid methyl ester 32a 18
Z-E-7-(tert-Butyl-dimethyl-silanyloxy)-hepta-2,4-dienoic acid methyl ester 32a 19
E-E-8-(tert-Butyl-dimethyl-silanyloxy)-octa-2,4-dienoic acid methyl ester 32b 19
E-E-9-(tert-Butyl-dimethyl-silanyloxy)-nona-2,4-dienoic acid methyl ester 32c 20
E-(tert-Butyl-dimethyl-silanyloxy)-4-tributylstannanyl-but-3-ene 33 21
Z-Methyl-3-iodoacrylate 34 21
E-E-7-Hydroxy-hepta-2,4-dienoic acid methyl ester 23a 21
Z-E-7-Hydroxy-hepta-2,4-dienoic acid methyl ester (ZE)-23a 22
$E-E-8$-Hydroxy-octa-2,4-dienoic acid methyl ester 23b 22
E-E-9-Hydroxy-nona-2,4-dienoic acid methyl ester 23c 23
Sulfolene 36 23
Diene 37a 24
Diene 37b 25
7-(tert-Butyldimethylsilyloxy)-3-hepten-2-one 38 25
7-Hydroxy-3-hepten-2-one 39 26
${ }^{1}$ H NMR spectra 27
${ }^{1}$ H NMR of 15b 27
${ }^{1}$ H NMR of 18a 28
${ }^{1}$ H NMR of 18b 29
${ }^{1}$ H NMR of 20a 30
${ }^{1}$ H NMR of 20b 31
${ }^{1}$ H NMR of 22 32
${ }^{1}$ H NMR of 23a 33
${ }^{1} \mathrm{H}$ NMR of $Z E-23 a$ 34
${ }^{1}$ H NMR of 23b 35
${ }^{1}$ H NMR of 23c 36
${ }^{1} \mathrm{H}$ NMR of 24a 37
${ }^{1} \mathrm{H}$ NMR of $E Z-24 \mathrm{a}$ 38
${ }^{1}$ H NMR of 24b 39
${ }^{1}$ H NMR of 24c 40
${ }^{1}$ H NMR of 26a 41
${ }^{13} \mathrm{C}$ NMR of 26 a 42
${ }^{1}$ H NMR of 25b 43
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 5 b}$ 44
${ }^{1}$ H NMR of 26b 45
${ }^{1}$ H NMR of 25c or 26c 46
${ }^{1} \mathrm{H}$ NMR of reduction product from 26a 47
${ }^{1} \mathrm{H}$ NMR of p-nitrobenzoate from the reduction of 26a 48
${ }^{1}$ H NMR of reduction of adduct $\mathbf{2 5 b}$ 49
${ }^{1} \mathrm{H}$ NMR of p-nitrobenzoate from the reduction of $\mathbf{2 5 b}$ 50
${ }^{1} \mathrm{H}$ NMR of reduction of adduct $\mathbf{2 6 b}$ 51
${ }^{1} \mathrm{H}$ NMR of p-nitrobenzoate from the reduction of $\mathbf{2 6 b}$ 52
${ }^{1}$ H NMR of reduction of adduct $\mathbf{2 5 c}$ or $\mathbf{2 6 c}$ 53
${ }^{1}$ H NMR of oxadiazoline 27 54
${ }^{1}$ H NMR of adduct 28 55
${ }^{1} \mathrm{H}$ NMR of oxadiazoline 29 56
${ }^{1}$ H NMR of adduct 30 57
${ }^{13} \mathrm{C}$ NMR of adduct 30 58
${ }^{1} \mathrm{H}$ NMR of diene 32a 59
${ }^{1} \mathrm{H}$ NMR of diene $E Z-32 \mathrm{a}$ 60
${ }^{1} \mathrm{H}$ NMR of diene 32b 61
${ }^{1}$ H NMR of diene 32c 62
${ }^{1}$ H NMR of sulfolene 36 63
${ }^{1} \mathrm{H}$ NMR of diene 37 a 64
${ }^{1}$ H NMR of enone 38 65
${ }^{1}$ H NMR of enone 39 66
ORTEP diagrams 67
ORTEP of benzoate ester 25b 67
ORTEP of benzoate ester 26a 68
ORTEP of benzoate ester 26b 69

Compound characterization

2-Methoxy-2-phenylethoxy-5,5-dimethyl- Δ^{3}-1,3,4-oxadiazoline 15b

To a solution of phenethyl alcohol ($240 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added under nitrogen 2-acetoxy-2-methoxy-5,5-dimethyl- Δ^{3}-1,3,4-oxadiazoline ($452 \mathrm{mg}, 2.40$ mmol) and camphorsulfonic acid ($23 \mathrm{mg}, 0.1 \mathrm{mmol}$). After 1 h of heating to reflux, the solvent was removed under vacuum and the crude product was purified by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether $95: 5$ to give $415 \mathrm{mg}(83 \%)$ of $\mathbf{1 5 b}$ as a colorless oil . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) 2.94(\mathrm{t}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.84-4.03(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 24.0 (q), 36.0 (t), 51.8 (q), 65.4 (t), 119.1 (s$), 126.4$ (d), 128.4 (d), 129.0 (d), 138.2 (s).

4,4-Dimethoxy-cyclopent-1-ene-1,2-dicarboxylic acid dimethyl ester 18a

To the solution of dimethyl 1,3-butadiene-2,3-dicarboxylate ${ }^{1}$ ($0.5 \mathrm{mmol}, 85 \mathrm{mg}$) in dry chlorobenzene (3 mL) was added 2,2-dimethoxy-5,5-dimethyl- Δ^{3}-1,3,4-oxadiazoline 15a (3 eq. 240 mg) and the solution was refluxed under argon for 5 h . After concentrating under vacuum the crude was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ether 95:5 to give 81.1 mg of $\mathbf{1 8 a}$ as a colorless oil (67%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.88(\mathrm{~s}$, $4 \mathrm{H}), 3.21(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.8(\mathrm{t}), 49.3(\mathrm{q}), 52.1(\mathrm{q})$, 108.8 (s), 136.3 (s), 165.1 (s); IR (neat, cm^{-1}): 2956, 2836, 1727, 1651; LRMS (m/z (relative intensity)): 244, 212, 153; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}: 244.0947$, found : 244.0951.

[^0]4-Methoxy-4-phenylethoxy-cyclopent-1-ene-1,2-dicarboxylic acid dimethyl ester 18b

To a solution of dimethyl 1,3-butadiene-2,3-dicarboxylate ($85 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dry chlorobenzene (3 mL) was added 2-methoxy-2-phenylethoxy-5,5-dimethyl- Δ^{3}-1,3,4oxadiazoline 15b ($313 \mathrm{mg}, 1.13 \mathrm{mmol}$) and the solution was refluxed under argon for 3.5 h. After concentrating under vacuum the product was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether $95: 5$ to give $101.4 \mathrm{mg}(60 \%)$ of $\mathbf{1 8 b}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.86(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 7.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.3$ (t$), 43.1$ (t$), 49.2$ (q), 52.1 (q), 63.0 (t), 108.6 (s), 126.2 (d), 128.3 (d), 129.0 (d), 136.3 (s$), 138.9$ (s), 165.1 (s); IR (neat, cm^{-1}): 3025, 2952, 1719, 1651; LRMS (m/z (relative intensity)): 334, 303, 213, 181; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}: 334.1416$, found : 334.1411.

2,2-Dimethoxycyclopent-4-ene-1,3-dicarboxylic acid dimethyl ester 20a

To the solution of (E, E)-hexa-2,4-dienedioic acid dimethyl ester ($85 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dry chlorobenzene (2 mL) was added over 3 h a solution of 2-dimethoxy-5,5-dimethyl- Δ^{3} -1,3,4-oxadiazoline 15a ($400 \mathrm{mg}, 2.5 \mathrm{mmol}$) in chlorobenzene (3 mL). At the end of the addition the solution was heated to reflux for 30 min . After concentrating under vacuum, the crude was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ether $95: 5$ to give 47 mg (38\%) of 20a as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$,
$3.67(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H})$; LRMS (m/z (relative intensity)): 244, 212, 185, 169; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}$: 244.0947, found: 244.0941.

2,2-Dimethoxy-3-methylcyclopent-4-ene-1-carboxylic acid, methyl ester 20b

The reaction was performed as per cyclopentene 20a starting with methyl 2,4hexadienoate ($126 \mathrm{mg}, 1.0 \mathrm{mmol}$) The crude was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether $95: 5$ to give $55 \mathrm{mg}(28 \%)$ of $\mathbf{2 0 b}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}), 2.74-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H})$.

2-Carboxy-1-methoxy-4-oxo-4,6-dihydro-3H-indene, methyl ester (22).

To a solution of methyl 3-(1-oxo-2-cyclohexen-2-yl)acrylate (21) (90 mg, 0.5 mmol) in dry toluene (3 mL) under argon was added the 2,2-dimethoxy-5,5-dimethyl- Δ^{3}-1,3,4oxadiazoline $15 \mathrm{a}(160 \mathrm{mg}, 1.0 \mathrm{mmol})$. After 6 h of heating to reflux the crude product was concentrated under vacuum and purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether 95:5 to give $32 \mathrm{mg}(30 \%)$ of 22 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 2.09(\mathrm{qi}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.48(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~s}$, $3 H) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.1(\mathrm{t}), 23.4(\mathrm{t}), 35.7(\mathrm{t}), 38.1(\mathrm{t}), 51.4(\mathrm{q}), 61.6(\mathrm{q})$,
112.3 (s), 130.5 (s), 139.8 (s), 158.8 (s), 162.4 (s), 195.3 (s); LRMS (m/z (relative intensity)): 222, 190, 163, 135; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}: 222.0892$, found: 222.0898.

Compounds 23a-c : see after compound $\mathbf{3 4}$.
(EE)-Oxadiazoline 24a.

The reaction was performed according to the preparation of 24b starting from 23a (5.6 mmol). The product was purified by flash chromatography by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ether 98:2 to give 1.39 g of $\mathbf{2 4 a}$ as a colorless oil (86%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.51(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.89(\mathrm{~m}, 2 \mathrm{H}), 5.80$ $(\mathrm{d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.09(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=15.1,10.4 \mathrm{~Hz}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.4,10.4 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.9$ (q), 24.1 (q), 33.0 (t), 51.4 (q), 51.8 (q), 63.3 (t), 119.1 (s), 119.7 (d), 130.2 (d), 136.8 ($s), 139.4$ (d), 144.5 (d), 167.3 (s$)$; IR (neat, cm^{-1}): 1713, 1643, 1615; LRMS (C.I. $\mathrm{NH}_{3}, \mathrm{~m} / \mathrm{z}$): 302, 253, 232; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{MNH}_{4}{ }^{+}\right): 302.1716$, found: 302.1710 .

(2Z-4E)-Oxadiazoline 24a

The reaction was performed according to the preparation of $\mathbf{2 4 b}$ starting from the corresponding alcohol ($434 \mathrm{mg}, 2.7 \mathrm{mmol}$) to give $Z E-24 \mathrm{a}$ ($571 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.91(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 6.05(\mathrm{dt}, 1 \mathrm{H}, J=15.4,7.7 \mathrm{~Hz})$, $6.53(\mathrm{t}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=15.4,11.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 23.9 (q), 24.1 (q), 33.1 (d), 51.1 (q), 51.9 (q), 63.6 (t), 116.0 (d), 119.2 (s), 128.8 (d), 140.4 (d), 144.8 (d), 166.7 (s); IR (neat, cm^{-1}): 2994, 2952, 2900, 1719, 1644, 1605;

LRMS (m/z (relative intensity)): 302, 285, 232, 215; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}$ $\left(\mathrm{MNH}_{4}{ }^{+}\right): 302.1716$, found: 302.1721 .

(EE)-Oxadiazoline 24b

To a solution of alcohol 23b ($340 \mathrm{mg}, 2.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added under nitrogen the 2-acetoxy-2-methoxy-5,5-dimethyl- Δ^{3}-1,3,4-oxadiazoline $\mathbf{1 5 c}$ ($753 \mathrm{mg}, 4.0$ mmol) and a catalytic amount of camphorsulfonic acid ($23 \mathrm{mg}, 0.1 \mathrm{mmol}$). After 45 min of heating to reflux, the solvent was removed under vacuum and the crude product dissolved in a mixture of dry $\mathrm{THF} / \mathrm{MeOH}(5: 10 \mathrm{~mL})$ under nitrogen. To this solution was added sodium methoxide $(1.08 \mathrm{~g}, 20.0 \mathrm{mmol})$ to remove the excess of oxadiazoline and its acyclic isomer. After stirring 30 min at r.t., 70 mL of ether was added and the reaction was hydrolyzed with a solution of 20% citric acid. The aqueous layer was then extracted with diethyl ether and the combined organic layers were washed with NaHCO_{3}, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrating under vacuum, the crude product was purified by flash chromatography using hexanes/ether $50: 50$ as solvent to give the corresponding oxadiazoline 24b as a colorless oil ($534 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.53$ $(\mathrm{s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{qi}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.27(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $3.65-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.16(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J$ $=13.2,10.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.9(\mathrm{q}), 24.1(\mathrm{q}), 28.5(\mathrm{t}), 29.3(\mathrm{t}), 51.4$ (q), 51.8 (q), 63.7 (t), 119.0 (s$), 119.1$ (d), 129.0 (d), 143.1 (d), 144.9 (d), 167.5 (s$)$; IR (neat, cm^{-1}): 2990, 2947, 2843, 1718, 1642, 1614; LRMS (m/z (relative intensity)): 267, 212, 197; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}-\mathrm{OCH}_{3}\right)$: 267.1345, found: 267.1349.

(EE)-Oxadiazoline 24c

The reaction was performed according to the preparation of $\mathbf{2 4 b}$ starting from $\mathbf{2 3 c}$ (553 $\mathrm{mg}, 3.0 \mathrm{mmol}$). The product was purified by flash chromatography by using hexanes/ether 60:40 to give 920 mg of $\mathbf{2 4 c}$ (98%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.48-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{q}, 2 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz})$, $6.12(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=15.9,9.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.9$ (q), 24.1 (q), 25.0 (t), 28.8 (t$), 32.4$ (t), 51.3 (q), 51.7 (q), 64.3 (t), 118.9 (d), 128.6 (d), 137.0 (s), 139.6 (s), 144.0 (d), 145.1 (d), 167.6 (s); IR (neat, cm^{-1}): 1717, 1645, 1613; LRMS (m/z (relative intensity)): 312, 281, 272, 253; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}: 312.1685$, found: 312.1696 .

Cycloadduct (\pm)-26a

The reaction was performed according to the preparation of $\mathbf{2 5 b} / \mathbf{2 6 b}$ starting from from 24a ($568 \mathrm{mg}, 2.0 \mathrm{mmol}$). The crude adduct was purified by flash chromatography by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether 95:5 to give 26a ($340 \mathrm{mg}, 86 \%$) as the major product. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{q}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.05(\mathrm{dt}, 1 \mathrm{H}, J=8.3,4.4 \mathrm{~Hz}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}$, H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.9(\mathrm{t}), 50.8(\mathrm{q}), 51.9(\mathrm{q}), 52.1(\mathrm{~d}), 58.9(\mathrm{~d}), 68.2(\mathrm{t})$, 118.2 (q), 127.7 (d), 136.3 (d), 171.1 (s); IR (neat, cm^{-1}): 3057, 2950, 2888, 1738, 1614; LRMS (m/z (relative intensity)): 198, 183, 139; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}: 198.0892$, found: 198.0897.

Cycloadducts (\pm)-25b and (\pm)-26b

25b

26b

Oxadiazoline 24b ($298 \mathrm{mg}, 1.0 \mathrm{mmol}$) in clean glassware was dissolved in dry toluene $(10 \mathrm{~mL})$ under argon and refluxed overnight. After evaporationg the solvent the crude product was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether $98: 2$ as solvent to give 184 mg of $\mathbf{2 5 b}$ and $\mathbf{2 6 b}(60 \%)$ as well as 25% of carbonate as a colorless oils. The isomers $\mathbf{2 5 b}$ and 26b were separated using preparative TLC to obtain pure samples. 25b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.42-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.5$ (t), 22.6 (t), 48.8 (d), 50.3 (q), 51.9 (q), 58.8 (d), 59.8 (t , 108.6 (s$)$, 127.1 (d), 135.2 (d), 171.6 (s); IR (neat, cm^{-1}): 1740, 1643; LRMS (m/z (relative intensity)): 212, 197, 180, 165, 152; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}: 212.1048$, found: 212.1054. 26b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H})$, $3.06(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~m}, \mathrm{H})$; LRMS (m/z (relative intensity)): 212, 197, 180, 165, 152; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}: 212.1048$, found: 212.1053

Cycloadduct (\pm)-25c or (\pm)-26c

The reaction was performed according to the preparation of $\mathbf{2 5 b} / \mathbf{2 6 b}$ from $\mathbf{2 4 c}$ (468 mg , 1.5 mmol). The product was inseparable from the corresponding carbonate ($339 \mathrm{mg}, 70$ \% product, 30% carbonate by NMR) and the crude was used for the next step (see
reduction of $\mathbf{2 5 c}$ or $\mathbf{2 6 c}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30-1.86(\mathrm{~m}, 6 \mathrm{H}), 2.62(\mathrm{~m}$, $1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.51(\mathrm{~m}, \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H})$; LRMS (m/z (relative intensity)): 226, 211, 194, 184; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}: 226.1205$, found: 226.1210.

Diene 27

The crude product $\mathbf{3 7 b}(98 \mathrm{mg}, 0.58 \mathrm{mmole})$ and oxadiazoline $\mathbf{1 5 c}(239 \mathrm{mg}, 1.3 \mathrm{mmole})$ were dissolved in methylene chloride (2.3 mL) and 10 -camphorsulfonic acid (15 mg , 0.065 mmol) was added. The reaction mixture was heated to reflux and stirred for 1 h . The solvent was removed under vacuum and THF (2 mL), MeOH (2 mL) and sodium methoxyde ($40 \mathrm{mg}, 0.74 \mathrm{mmol}$) were added successively. The reaction mixture was stirred at room temperature for 30 min and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted three times with diethyl ether. The organic layers were combined, washed once with brine, dried over anhydrous magnesium sulfate and concentrated under vacuum to give a yellow oil. The crude product was purified by flash chromatography on a silica gel column eluting with ethyl acetate / hexanes ($10 \% \rightarrow 20 \%$) to give 27 as a colorless oil ($88 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 6.32(\mathrm{dd}, 1 \mathrm{H}$, $J=17,6,11.0 \mathrm{~Hz}), 5.96(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.10(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.0 \mathrm{~Hz}), 3.80-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) 2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6(\mathrm{~s}), 138.9$ (d), 137.0 (s$), 134.5(\mathrm{~d}), 133.7(\mathrm{~s}), 119.0(\mathrm{~s}), 115.1(\mathrm{t}), 64.0(\mathrm{t}), 51.9(\mathrm{q}), 51.6(\mathrm{q}), 29.0(\mathrm{t}), 26.3(\mathrm{t})$, 24.1 (q), 24.0 (q). IR (neat, cm^{-1}) 3068, 1726, 1584, 1469. LRMS (m / z, relative intensity) $316\left(\mathrm{MNH}_{4}{ }^{+}, 10\right), 246(100), 229(97), 213(75)$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{3}\left(\mathrm{MNH}_{4}{ }^{+}\right)$: 316.1872, found : 316.1881.

Adduct (\pm)-28

Diene 27 ($80.0 \mathrm{mg}, 0.27 \mathrm{mmol}$) was dissolved in toluene (5 mL). The reaction mixture was heated to reflux and stirred for 12 h . The solvent was removed under vacuum to give a yellow oil. The crude product was purified by flash chromatography on a silica gel column eluting with ethyl acetate / hexanes (10\%) to give 54 mg of 28 and a carbonate, both as colorless oils in 80% and 16%, respectively. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.79-$ $6.76(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.69-1.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, toluene- d_{8}) : $\delta 165.2(\mathrm{~s}), 141.6(\mathrm{~d}), 137.3(\mathrm{~s})$, $108.3(\mathrm{~s}), 60.7(\mathrm{t}), 51.3(\mathrm{q}), 50.2(\mathrm{q}), 48.2(\mathrm{~d}), 42.5(\mathrm{t}), 22.1(\mathrm{t}), 21.8(\mathrm{t})$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 3054, 1717, 1249. LRMS (m / z, relative intensity) $212\left(\mathrm{M}^{+}, 75\right.$), 180 (100), 152 (88), 121 (83). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}: 212.1048$, found : 212.1052.

Enone 29

Under argon, 7-hydroxy-3-hepten-2-one ($0.559 \mathrm{~g}, 4.36 \mathrm{mmol}$), was dissolved in anhydrous dichloromethane (25 mL). Then, oxadiazoline 15c ($1.749 \mathrm{~g}, 9.30 \mathrm{mmol}$) and camphorsulfonic acid ($50 \mathrm{mg}, 0.218 \mathrm{mmol}$) were added to the solution. The reaction mixture was heated to reflux and stirred for 30 min . Then, it was cooled down to r.t. The solvent was removed by evaporation under reduced pressure to give a yellowish oil. The crude product was purified by flash chromatography on a silica gel column eluting with 2.5% diethyl ether/ hexanes to 4% diethyl ether / hexanes to give 29 as a colorless oil ($378.0 \mathrm{mg}, 34 \%$ for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.75$ (dt, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}$,
$6.6 \mathrm{~Hz}), 6.03(\mathrm{~d}, 1 \mathrm{H}, ~, J=15.9 \mathrm{~Hz}), 3.77-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, $2.27(\mathrm{q}, 2 \mathrm{H}, ~, J=6.6 . \mathrm{Hz}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (quintet, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.3$ (s), 146.9 (d), 136.9 (s), 131.6 (d), 119.0 (s), $63.7(\mathrm{t}), 51.8(\mathrm{q}), 28.8(\mathrm{t}), 27.9(\mathrm{t}), 26.8(\mathrm{q}), 24.1(\mathrm{q}), 23.9(\mathrm{q})$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 1675$, 1255, 1144. LRMS (m / z, relative intensity): $228\left(\left(\mathrm{M}^{+}-\mathrm{N}_{2}\right), 1\right), 225\left(\left(\mathrm{M}^{+}-\mathrm{OMe}\right), 3\right), 170$ (5), 142 (26), 127 (48), 110 (93), 84 (100). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$: 225.1239 , found: 225.1245 .

$\underline{\text { Adduct (} \pm \text {)-30 }}$

In a dry 50 mL r.b.-flask (pre-washed with 1 N HCl , distilled $\mathrm{H}_{2} \mathrm{O}$, and acetone) under an argon atmosphere, was placed 7-(2-methoxy-5,5-dimethyl-2,5-dihydro-[1,3,4]oxadiazol-2-yloxy)-hept-3-en-2-one ($386 \mathrm{mg}, 1.51 \mathrm{mmol}$) in anhydrous toluene (15 mL). The solution was heated to reflux and stirred overnight. Then, it was cooled to r.t. The toluene was evaporated under reduced pressure and the crude product was purified by flash chromatography on a silica gel column eluting with $\mathrm{NEt}_{3} /$ EtOAc / Hexane (1:20:79) to give the ortho ester $\mathbf{3 0}$ as a colorless oil ($212 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $4.35(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6(\mathrm{~s})$, $121.5(\mathrm{~s}), 100.3(\mathrm{~d}), 61.8(\mathrm{t}), 49.2(\mathrm{~d}), 44.3(\mathrm{q}), 23.7(\mathrm{t}), 19.3(\mathrm{t}), 13.8(\mathrm{q})$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 3093, 2947, 2875, 2739, 1675, 1438, 1255. LRMS (m / z, relative intensity): $170\left(\mathrm{M}^{+}\right.$, 77), $139\left((\mathrm{M}-\mathrm{OMe})^{+}, 36\right), 110$ (100), 94 (67), 82 (53). HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$: 170.0943, found: 170.0947.

Proof of structures of 25b, 26a, and 26b.

Reduction of adduct 26a.

The reaction was performed according to the reduction of $\mathbf{2 5 b} / \mathbf{2 6 b}$ starting from 26a (340 $\mathrm{mg}, 1.72 \mathrm{mmol}$) to give the alcohol ($296 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.79(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{bs}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.51$ $(\mathrm{dd}, 1 \mathrm{H}, J=11.5,7.1 \mathrm{~Hz}), 3.57(\mathrm{dd}, 1 \mathrm{H}, J=11.5,3.8 \mathrm{~Hz}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dt}, 1 \mathrm{H}, J=$ 7.1, 2.2 Hz), $5.58(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 29.6,50.5,51.1,56.4,62.7$, 68.2, 118.9, 130.6, 133.0; IR (neat, cm^{-1}): 3436, 3051, 2946, 2876; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$: 170.0943, found: 170.0947.

Reduction of adducts $\mathbf{2 5 b}$ and $\mathbf{2 6 b}$.

Major

Minor

The crude reaction of carbene cyclization (2.0 mmol) in dry ether (10 mL) was added dropwise to a solution of $\mathrm{LiAlH}_{4}(100 \mathrm{mg}, 2.5 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$. After 2 h of heating to reflux under argon, the reaction was hydrolysed at $0^{\circ} \mathrm{C}$ by the dropwise addition of water $(36 \mu \mathrm{~L})$. After 10 min , diethyl ether (5 mL) was added at r.t. followed by the addition of $15 \% \mathrm{NaOH}(70 \mu \mathrm{~L})$ and water $(70 \mu \mathrm{~L})$. The slurry was well stirred at r.t. for 30 min then filtered over celite and washed with AcOEt . After concentrating under vacuum the crude was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether $90: 10$ then

80:20 to give 167 mg of the major isomer and 51 mg of the minor isomer, both as colorless oils in a combined yield of 59%. Major: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.63$ $(\mathrm{m}, \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 20.6$ (t$), 23.2$ (t$), 49.6$ (q), 54.1 (d), 58.9 (d), 63.1 (t$), 109.4$ (s$), 129.6$ (d), 133.8 (d). Minor: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} \mathrm{ppm}\right): 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.80(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.72(\mathrm{~m}, 4 \mathrm{H}), 5.72(\mathrm{~d}, 1 \mathrm{H}), 5.88(\mathrm{~m}, \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 20.9 (t), 22.1 (t), 45.0 (q), 50.3 (d), 54.7 (d), 60.6 (t), 61.5 (t$), 107.0(\mathrm{~s}), 132.4$ (d), 134.1 (d).

Reduction of adducts 25 c or $\mathbf{2 6 c}$.

The reaction was performed according to the reduction of $\mathbf{2 5 b} \mathbf{/ 2 6 b}$ starting from $\mathbf{2 5 c}$ or 26c (one or the other since its stereochemistry is not defined) ($340 \mathrm{mg}, 1.72 \mathrm{mmol}$). Purification by flash chromatography gave the product as a colorless oil ($91 \mathrm{mg}, 46 \%$). The product was unstable under lightly acidic condition (silica or CDCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}$, $1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.89(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.1$ (t), 30.9 (t), 33.2 (t$), 48.1$ (q), $52.0(\mathrm{~d}), 58.8$ (d), 63.8 (t), 64.4 (t), 113.6 (s), 126.9 (d), 135.8 (d); IR (neat, cm^{-1}): 3464, 3047, 2926; LRMS (m / z (relative intensity)): 198, 167, 126; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}: 198.1256$, found: 198.1252.
p-nitrobenzoate of the alcohol derived from 26a

The alcohol obtained from the reduction of $\mathbf{2 6 a}(0.223 \mathrm{~g}, 1.31 \mathrm{mmol})$ was dissolved in anhydrous THF (17 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, triphenylphosphine $(0.415 \mathrm{~g}, 1.58 \mathrm{mmol})$ followed by p-nitrobenzoic acid ($0.293 \mathrm{~g}, 1.75 \mathrm{mmol}$) were added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes. Then, diethyl azodicarboxylate $(0.25 \mathrm{~mL}, 1.59 \mathrm{mmol})$ was added and the reaction mixture was stirred while warming to r.t. over a period of 50 min . The reaction mixture was then quenched with a solution of saturated $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}(50: 50)$. Diethyl ether was added and the phases were separated. The aqueous phase was extracted three times with diethyl ether and the combined organic layers were washed once with brine, dried over Anhydrous magnesium sulfate and concentrated under vacuum to give a yellowish solid. The crude product was purified by flash chromatography on a silica gel column eluting with hexane and diethyl ether (4:1) to give ester as a white solid ($0.377 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 8.28(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.18(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 4.53$ (dd, $1 \mathrm{H}, J=11.0$ and 5.5 Hz), $4.30(\mathrm{dd}, 1 \mathrm{H}, J=11.5$ and 6.3 Hz$), 4.07(\mathrm{td}, 1 \mathrm{H}, J=8.5$ and 4.0 Hz$), 3.85(\mathrm{q}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 1 \mathrm{H})$, 1.85-1.76 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.5$ (s), 150.4 (s), 135.8 (s), 134.1 (d), 130.6 (d), 130.4 (d), 123.5 (d), 117.2 (s), 61.8 (t$), 65.1$ (t), 52.0 (d), 51.8 (d), 50.8 (q), 29.2 (t). IR (neat, cm^{-1}) 3116, 3034, 3010, 2966, 2892, 2833, 1723, 1529, 1455, 1350, 1287, 1210, 1121. LRMS (m / z, relative intensity): 319 ($\mathrm{M}^{+}, 27$), 169 (2), 153 (100), 121 (16), 104 (25), 93 (33), 84 (22). HRMS calcdd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}: 319.1056$, found: 319.1059.

p-nitrobenzoate of the alcohol derived from 25b

The alcohol obtained from the reduction of $\mathbf{2 5 b}(137 \mathrm{mg}, 0.75 \mathrm{mmol})$ was dissolved in anhydrous THF (10 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, triphenylphosphine ($237 \mathrm{mg}, 0.90 \mathrm{mmol}$) followed by p-nitrobenzoic acid ($167 \mathrm{mg}, 1.0 \mathrm{mmol}$) were added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. Then, diethyl azodicarboxylate $(110 \mu \mathrm{~L}, 0.90 \mathrm{mmol})$ was added and the reaction mixture was stirred while warming to r.t. over a period of 50 min . The reaction mixture was then quenched with a solution of saturated $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ (50:50). Diethyl ether was added and the phases were separated. The aqueous phase was extracted three times with diethyl ether and the combined organic layers were washed once with brine, dried over Anhydrous magnesium sulfate and concentrated under vacuum to give a yellowish solid. The crude product was purified by flash chromatography on a silica gel column eluting with hexane and diethyl ether (4:1) to give the ester as a white solid ($163 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{ABq}, 4 \mathrm{H}), 5.71(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dd}, 1 \mathrm{H}, J=11.0$ and 5.5 Hz$), 4.28(\mathrm{dd}, 1 \mathrm{H}, J=$ 11.0 and 8.3 Hz$), 3.62-3.57(\mathrm{dd}, 2 \mathrm{H}, J=8.3$ and 4.4 Hz$), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.67$ (m, 1H), 1.83-1.43 (m, 4H).
p-nitrobenzoate of the alcohol derived from 26b

The alcohol obtained from the reduction of $\mathbf{2 6 b}(60 \mathrm{mg}, 0.33 \mathrm{mmol})$ was dissolved in anhydrous THF (5 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, triphenylphosphine
($105 \mathrm{mg}, 0.4 \mathrm{mmol}$) followed by p-nitrobenzoic acid ($84 \mathrm{mg}, 0.50 \mathrm{mmol}$) were added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes. Then, diethyl azodicarboxylate (50 $\mu \mathrm{L}, 0.40 \mathrm{mmol}$) was added and the reaction mixture was stirred while warming to r.t. over a period of 50 min . The reaction mixture was then quenched with a solution of saturated $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ (50:50). Diethyl ether was added and the phases were separated. The aqueous phase was extracted three times with diethyl ether and the combined organic layers were washed once with brine, dried over Anhydrous magnesium sulfate and concentrated under vacuum to give a yellowish solid. The crude product was purified by flash chromatography on a silica gel column eluting with hexane and diethyl ether (4:1) to give the ester as a white solid ($70 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{ABq}, 4 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=11.0$ and 5.0 $\mathrm{Hz}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=11.5$ and 7.1 Hz$), 3.62-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H})$, $2.82(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.5$ (s), 150.5 (s), 135.4 (s$), 135.4$ (d), 130.9 (d), 130.6 (d), 123.5 (d), $106.6(\mathrm{~s}), 64.3(\mathrm{t}), 61.0(\mathrm{t}), 51.2(\mathrm{~d}), 50.8(\mathrm{q}), 44.7(\mathrm{~d}), 21.8(\mathrm{t}), 20.7(\mathrm{t})$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 3116, 3034, 3010, 1723, 1529, 1455.

Syntheses of dienes 23a-c and 27 and enone 29 and compound characterization for that sequence

E-E-7-(tert-Butyl-dimethyl-silanyloxy)-hepta-2,4-dienoic acid methyl ester 32a

The reaction was performed according to the preparation of $\mathbf{3 2 b}$, starting from aldehyde 31a ($2.82 \mathrm{~g}, 15 \mathrm{mmol}$) to give the diene 32a ($2.13 \mathrm{~g}, 47 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.38(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.69(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.19(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=13.2,10.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4$ (q), 18.2 (s$), 25.8$ (q), 36.4 (t), 51.3 (q), $62.0(\mathrm{t}), 119.2$ (d), 126.9 (d), 140.9 (d), 144.9 (d), 167.5 (s); IR (neat, cm^{-1}): 2953, 2855, 1719, 1644, 1617; LRMS (m/z (relative intensity)): 255, 239, 213; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Si}_{1}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$: 213.0947, found : 213.0951 .

Z-E-7-(tert-Butyl-dimethyl-silanyloxy)-hepta-2,4-dienoic acid methyl ester 32a

To a solution of the vinyltin $33(950 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry DMF (10 mL) under argon were added methyl Z-3-iodoacrylate ($424 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $2 \mathrm{~mol} \%$ bis(benzonitrile)-dichloropalladium-(II) ($15 \mathrm{mg}, 0.04 \mathrm{mmol}$). After stirring 6 h at r.t., an aqueous solution of 10% citric acid $(20 \mathrm{~mL})$ and diethyl ether $(50 \mathrm{~mL})$ were added and the mixture stirred for 5 min . Then the organic layer was separated and the aqueous layer extracted with ether. The combined organic layers were washed with water, brine and dried for 20 min over anhydrous magnesium sulfate plus two large spatula full of activated charcoal. After filtering and concentrating under vacuum the crude product was purified by flash chromatography using hexanes/ether 95:5 then 90:10 to afford the product 34 as a colorless oil ($525 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $2.43(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.70(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$, $6.09(\mathrm{dt}, 1 \mathrm{H}, J=15.4,7.7 \mathrm{~Hz}), 6.55(\mathrm{t}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 7.39(\mathrm{dd}, 1 \mathrm{H}, J=16.5,12.7 \mathrm{~Hz})$. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4$ (q), 18.2 (s), 25.8 (q), 36.5 (t$), 50.9$ (q), 62.2 (t$), 15.5$ (d), 128.4 (d), 141.8 (d), 145.1 (d), 166.7 (s); IR (neat, cm^{-1}): 2958, 2932, 2858, 1719, 1642, 1603; LRMS (m/z (relative intensity)): 239, 213, 181; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Si}_{1}: 213.0947$, found: 213.0955 .

E-E-8-(tert-Butyl-dimethyl-silanyloxy)-octa-2,4-dienoic acid methyl ester 32b

A mixture of methyl 4-bromocrotonate $(4.48 \mathrm{~g}, 25 \mathrm{mmol})$ and triethyl phosphite (6 mL , 35 mmol) was refluxed neat for 1.5 h . The reaction was put under an argon flow to remove the bromoethane formed. The mixture was kept overnight under vacuum to remove the excess of triethyl phosphite and the resulting oil was used crude. The crude crotyl phosphate ($3.48 \mathrm{~g}, 14 \mathrm{mmol}$) in dry THF (70 mL) was cooled at $-78^{\circ} \mathrm{C}$ before the dropwise addition of LiHMDS [1M/THF] ($14 \mathrm{~mL}, 14 \mathrm{mmol}$). After 30 min at $-78{ }^{\circ} \mathrm{C}$ a solution of aldehyde 31b ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (15 mL) was added. After 2 h of stirring at r.t., the reaction was hydrolysed with an aqueous solution of 20% citric acid $(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with a solution of 20% citric acid, saturated NaHCO_{3}, and dried over anhydrous magnesium sulfate. After concentrating under vacuum the crude product was purified by flash chromatography on silica using hexanes/ether 80:20 as solvent to give compound 32b as a colorless oil (1.96 $\mathrm{g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{qi}, 2 \mathrm{H}, J=7.7$ $\mathrm{Hz}), 2.23(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.61(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=15.4$ $\mathrm{Hz}), 6.15(\mathrm{~m}, \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=15.4,9.9 \mathrm{~Hz})$.

E-E-9-(tert-Butyl-dimethyl-silanyloxy)-nona-2,4-dienoic acid methyl ester 32c

The reaction was performed according to the preparation of $\mathbf{3 2 b}$, starting from aldehyde 31c $(3.25 \mathrm{~g}, 15 \mathrm{mmol})$ to give 32c as a colorless oil $(1.57 \mathrm{~g}, 39 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.61(\mathrm{t}, 2 \mathrm{H}, J$ $=6.1 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.14(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=15.4$, 9.9 Hz). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.4$ (q), 18.3 (s$), 25.0(\mathrm{q}), 25.9(\mathrm{t}), 32.2$ (t$), 32.7$ (t), 51.3 (q), 62.8 (t), 118.7 (d), 128.4 (d), 144.5 (d), 145.2 (d), 167.6 (s$) ;$ IR (neat, cm^{-1}): 1721, 1642, 1615; LRMS (m/z (relative intensity)): 267, 241, 209; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}_{1}$: 298.1964 , found : 298.1969.

E-(tert-Butyl-dimethyl-silanyloxy)-4-tributylstannanyl-but-3-ene 33

To a solution of (t-butyl-dimethylsilanyloxy)-but-3-yne ($1.84 \mathrm{~g}, 10.0 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$, was added tributyltin hydride ($2.75 \mathrm{~mL}, 10.02 \mathrm{mmol}$) and a catalytic amount of AIBN (c.a. 5 mg) under argon. The mixture was refluxed for 2.5 h . After concentrating under vacuum the crude product was purified by flash chromatography on silica using hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 90: 10$ to give $1.78 \mathrm{~g}(37 \%)$ of the trans vinyl stannane $\mathbf{3 3}$ as the major product. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~m}, 15 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.31$ $(\mathrm{m}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 6 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.96(\mathrm{~m}, 2 \mathrm{H})$.

Z-Methyl-3-iodoacrylate 34

To a solution of methyl propiolate ($1.78 \mathrm{~mL}, 20 \mathrm{mmol}$), in acetic acid (10 mL) was added sodium iodide ($6 \mathrm{~g}, 40 \mathrm{mmol}$) and the mixture was heated at $70^{\circ} \mathrm{C}$ overnight. Ether was then added followed by the addition of $1 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous layer was separated then extracted with ether. The combined organic layers were washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$, dried over anhydrous magnesium sulfate and concentrated under vacuum to give the vinyl iodide ($4.56 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.78$ (s, $3 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$.

E-E-7-Hydroxy-hepta-2,4-dienoic acid methyl ester 23a

The reaction was performed according to the preparation of 23b, starting from 32a (1.57 $\mathrm{g}, 5.8 \mathrm{mmol}$). In this case the crude was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether 60:40 (847 mg, 96%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.44$ (qi, $2 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 3.73(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 6.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=14.9,11.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.1(\mathrm{t}), 51.5$ (q), 61.3 (t), 119.5 (d), 130.4 (d), 140.3 (d), 144.8 (d), 167.7 (s); IR (neat, cm^{-1}): 3406, 3022, 2951, 1706, 1641, 1617; LRMS (m/z (relative intensity)): 156, 126, 111; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}: 156.0786$, found : 156.0790.

Z-E-7-Hydroxy-hepta-2,4-dienoic acid methyl ester ($Z E$)-23a

The reaction was performed according to the preparation of 23b, starting from $\mathbf{3 4}$ (541 $\mathrm{mg}, 2 \mathrm{mmol}$). The crude was filtered through silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ether 60:40 to give ZE $23 \mathrm{a}(312 \mathrm{mg}, 100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.48(\mathrm{q}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}$), $3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{t}, \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.62(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 6.08(\mathrm{dt}, 1 \mathrm{H}, J=15.4,7.1 \mathrm{~Hz})$, $6.57(\mathrm{t}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.45\left(\mathrm{dd}, 1 \mathrm{H}, J=15.4,11.0 \mathrm{~Hz}\right.$); IR (neat, cm^{-1}): 3370, 2945, 2916, 1713, 1640, 1600; LRMS (m/z (relative intensity)): 156, 126, 111; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$: 156.0786, found: 156.0789.

E-E-8-Hydroxy-octa-2,4-dienoic acid methyl ester 23b.

The silyl ether 32b ($569 \mathrm{mg}, 2.0 \mathrm{mmol}$) in a mixture of $\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} /: 3 / 1 / 1$ ($30 / 10 / 10 \mathrm{~mL}$) was stirred for $\sim 4 \mathrm{~h}$ at r.t. when TLC showed no more starting material a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added carefully followed by a mixture of ether/ AcOEt :
($75 / 25 \mathrm{~mL}$). The aqueous layer was then separated and extracted with ether ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried over NaHCO_{3}. After concentrating under vacuum the crude (340 mg) was used in the next step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.66(\mathrm{qi}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$), $2.23(\mathrm{q}, 2 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 2.31(\mathrm{bs}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.12(\mathrm{~m}, 2 \mathrm{H})$, $7.21(\mathrm{dd}, 1 \mathrm{H}, J=15.4,9.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.2(\mathrm{t}), 31.5(\mathrm{t}), 51.4(\mathrm{q})$, 61.8 (t), 118.9 (d), 128.6 (d), 143.8 (d), 145.1 (d), 167.8 (); IR (neat, cm^{-1}): 3423, 2945, 2867, 1717, 1641, 1636; LRMS (m/z (relative intensity)): 170, 111, 93; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}: 170.0943$, found : 170.0948.

E-E-9-Hydroxy-nona-2,4-dienoic acid methyl ester 23c

The reaction was performed according to the preparation of 23b, starting from 32c (2.12 g, 7.1 mmol) to give 920 mg of crude material that was used as is in the next step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.54(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.65(\mathrm{t}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 6.15(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=15.4,9.9$ Hz). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.6(\mathrm{t}), 32.0(\mathrm{t}), 32.6(\mathrm{t}), 51.4(\mathrm{q}), 62.3(\mathrm{t}), 118.8(\mathrm{~d})$, 128.5 (d), 144.3 (d), 145.2 (d), 167.7 (s); IR (neat, cm^{-1}): 3407, 3026, 2934, 2865, 1715, 1646, 1619; LRMS (m/z (relative intensity)): 184, 152, 113; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: 184.1099, found : 184.1096.

Sulfolene 36

Methyl 3-sulfolene-3-carboxylate ($97.8 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in THF (5.5 mL) and HMPA ($202.8 \mu \mathrm{l}, 1.17 \mathrm{mmol}$). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a 2.0 M solution of n-BuLi in hexanes ($466.4 \mu \mathrm{l}, 1.17 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and 3-tert-butylsilyoxy-1-iodopropane (249.2 $\mathrm{mg}, 0.83 \mathrm{mmole})$ was added dropwise at $-78^{\circ} \mathrm{C}$ over 10 min . The reaction mixture was stirred over a period of 1 h at $-78{ }^{\circ} \mathrm{C}$ and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was stirred while warming to room temperature and diethyl ether was added. The phases were separated and the aqueous phase was extracted three times with diethyl ether. The organic layers were combined, washed once with brine, dried over anhydrous magnesium sulfate and concentrated under vacuum to give a brown oil. The crude product was purified by flash chromatography on a silica gel column eluting with ethyl acetate $(10 \% \rightarrow 50 \%)$ / hexanes to give 36 as a colorless oil ($160 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.03(\mathrm{t}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}$), $3.90-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.6$ (s), 134.5 (s$), 133.0$ (d), 64.3 (d), 62.2 (t), 56.1 (t), 52.3 (q), 29.1 (t), 25.8 (q), 18.2 (s), -5.4 (q). IR (neat, cm^{-1}) 3083, 1722, 1474. LRMS (m / z, relative intensity) $291\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 5\right)$, 227 (100), 119 (38). HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$: 291.0722, found : 291.0725.

Diene 37a

Sulfolene 36 ($151 \mathrm{mg}, 0.43 \mathrm{mmol}$) was dissolved in toluene $(4.3 \mathrm{~mL})$ and the reaction mixture was heated to reflux and stirred for 5 h . The solution was cooled to room temperature and the solvent was removed under vacuum to give a yellow oil. The crude product was purified by flash chromatography on a silica gel column eluting with ethyl acetate (10%) / hexanes to give $\mathbf{3 7 a}$ as a colorless oil ($102 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 6.33(\mathrm{dd}, 1 \mathrm{H}, J=17.6,11.0 \mathrm{~Hz}, 5.99(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J$ $=17.6 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.39-2.31$
$(\mathrm{m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $167.8(\mathrm{~s}), 139.8(\mathrm{~d}), 134.7(\mathrm{~d}), 133.3(\mathrm{~s}), 114.7(\mathrm{t}), 62.5(\mathrm{t}), 51.5(\mathrm{q}), 32.3(\mathrm{t}), 26.4(\mathrm{t})$, 25.9 (q), 18.3 (s), -5.4 (q). IR (neat, cm^{-1}) 3081, 1725, 1629, 1465. LRMS (m / z, relative intensity) $269\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 5\right), 253\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 10\right), 227$ (100), 195 (10). HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{SiO}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right): 269.1573$, found : 269.1567 .

Diene 37b

Diene 37a ($185 \mathrm{mg}, 0.65 \mathrm{mmol}$) was dissolved in THF (3 mL), water (1 mL) and acetic acid $(1 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum and diethyl ether was added. The reaction mixture was then quenched with saturated sodium carbonate. The phases were separated and the organic phase was washed twice with saturated sodium carbonate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under vacuum to give $\mathbf{3 7 b}$ as a colorless oil ($108 \mathrm{mg}, 97 \%$). The crude product was used directely in the next step.

7-(tert-Butyldimethylsilyloxy)-3-hepten-2-one 38

To a cold suspension of NaH (60% dispersion in mineral oil, $1.47 \mathrm{~g}, 36.7 \mathrm{mmol}$) in anhydrous THF (200 mL) was added diethyl(2-oxopropyl)phosphonate ($7.3 \mathrm{~mL}, 36.5$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, under an argon atmosphere. The homogenous solution was stirred 1 h at 0 ${ }^{\circ} \mathrm{C}$ and a solution of 4-(t-butyl-dimethylsilyloxy)butyraldehyde ($6.74 \mathrm{~g}, 33.3 \mathrm{mmol}$) in anhydrous THF (20 mL) was added dropwise via canula. The reaction was stirred 45 min at $0{ }^{\circ} \mathrm{C}$ and the mixture was allowed warm to r.t. Then, 70 mL of diethyl ether were
added and the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(134 \mathrm{~mL})$ and 2 drops of concentrated HCl . The phases were separated and the aqueous phase was extracted three times with diethyl ether ($\sim 75 \mathrm{~mL}$ each). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate and concentrated under vacuum to give a yellowish oil ($2.2461 \mathrm{~g}, 124 \%$). The crude product was purified by flash chromatography on a silica gel column eluting with EtOAc/ hexane (1:9) to give the enone $\mathbf{3 8}$ as a colorless oil ($6.6016 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 6.80(\mathrm{dt}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, $6.9 \mathrm{~Hz}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.61(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, 1.65 (quintet, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$. IR (neat, cm^{-1}) 2954, 2930, 2857, 1677, 1629, 1472, 1389, 1253, 1102, 837. LRMS (m / z, relative intensity): 227 $\left(\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 1\right), 185\left(\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}, 76\right), 141$ (31), 75 (100). HRMS calcdd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right): 185.0998$, found: 185.1002 .

7-Hydroxy-3-hepten-2-one 39

Enone 38 ($1.05 \mathrm{~g}, 4.36 \mathrm{mmol}$) was dissolved in 32 mL of a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}$ solution (1:1:2) and the solution was stirred 3.5 h at room temperature. The reaction was stopped when it was almost complete as with time, there was formation of a cyclized product. Diethyl ether ($\sim 200 \mathrm{~mL}$) and a saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution were added. The phases were separated, the organic layer was washed twice with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and once with saturated NaHCO_{3} aqueous solution. The combined organic layers were dried over anhydrous magnesium sulfate and concentrated under vacuum to give the alcool as a yellowish oil ($711 \mathrm{mg},>100 \%$). The crude product was used in the next transformation without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.81(\mathrm{dt}, 1 \mathrm{H}, J=15.6$ and $6.9 \mathrm{~Hz}), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.65(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, 1.71 (quintet, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$).

${ }^{1} \mathrm{H}$ NMR spectra

${ }^{13} \mathrm{C}$ NMR of 26a

HR3-20

HR2-94-A

KDG111-A CARBON

[^0]: ${ }^{1}$ David P. G. Hamon, Paul R. Spurr. Synthesis, 1981, 873-874.

