Supplemental Information

Table of Contents

Item	Contents	Page Number
1	Table of contents	S1-S2
2	General procedures for synthesis	S3-S4
3	Compound characterization data	S4-S13
4	¹ H NMR for 2a	S14
5	¹ H NMR for 2b	S15
6	¹ H NMR for 2c	S16
7	¹ H NMR for 2d	S17
8	¹ H NMR for 2e	S18
9	¹ H NMR for 2f	S19
10	¹ H NMR for 2g	S20
11	¹ H NMR for 2h	S21
12	¹ H NMR for 5a	S22
13	¹ H NMR for 5b	S23
14	¹ H NMR for 5 c	S24
15	¹ H NMR for 5d	S25
16	¹ H NMR for 5e	S26
17	¹ H NMR for 5 f	S27
18	¹ H NMR for 5g	S28
19	¹ H NMR for 5h	S29
20	¹ H NMR for 6a	S30
21	¹ H NMR for 6b	S31
22	¹ H NMR for 6c	S32
23	¹ H NMR for 6d	S33
24	¹ H NMR for 6e	S34
25	¹ H NMR for 6f	S35

26	¹ H NMR for 6g	S36
27	¹ H NMR for 6h	S37
28	¹ H NMR for 9	S38
29	Fluorescence data for 6e with 9MC	S39
30	Fluorescence data for 6e with Pyrene	S40
31	Fluorescence data for 2e with TMB	S41
32	UV-Vis spectra for 2e, 5e, and 6e	S42
33	UV-Vis spectra for 6e and TMB	S42
34	Transient absorption spectra for 2e	S43-S44

Picolyl esters 2a-h

Method 1. Esters **2a-d** and **2h** were prepared using this procedure. ³³ 4- Pyridyl carbinol (3.45g, 31.6 mmol) is dissolved in 40 ml of benzene and triethylamine (7.97 ml, 56.8 mmol) is added. A solution of the corresponding acyl chloride (50.5 mmol) in 15 ml of benzene is added dropwise. The reaction mixture is stirred at room temperature for 16 h. 30 ml of H_2O is added and the organic layer is separated, dried over MgSO₄, and concentrated in vacuo.

Method 2. Esters **2e**, **2f**, and **2g** were prepared using this procedure. ²⁸ N, N'-Dicyclohexylcarbodiimide (DCC) (3.40g, 16.4 mmol) is added to a solution of the carboxylic acid (16.4 mmol) and 4- pyridyl carbinol (1.62g, 14.8 mmol) in 50 ml of dichloromethane. The reaction mixture is stirred at room temperature for about 24 h, and checked by TLC for disappearance of starting material. The urea precipitate is filtered off and the filtrate is washed with NaHCO₃ (2 x 25 ml) and H₂O (2 x 10 ml). The organic layers are collected and dried over MgSO₄ and the solvent is evaporated.

Methylated picolinium esters 5a-h

0.02 mol of the corresponding picolyl ester was dissolved in 15 ml of CH_3OH , and methyl iodide (4.26 g, 0.03 mol) was added slowly. The reaction mixture was refluxed at 75 °C for 8 h. The solvent was removed under reduced pressure and the residue was recrystallized from hot methanol or ethanol.

Picolinium esters 6a-h by counter -ion exchange

The picolyl methiodide (5 mmol) is dissolved in the minimum amount of acetonitrile. A solution of silver perchlorate (1.04 g, 5 mmol) in acetonitrile is added and the reaction mixture is stirred overnight at room temperature. The yellow AgI precipitate is filtered off and the filtrate is concentrated in vacuo and recrystallized from hot ethanol.

Compound characterization data:

Picolyl Acetate (2a).

Compound **2a** was prepared by the above general procedure, method 1, from acetyl chloride. The product is a dark brown liquid (4.64 g, 94 %). IR (CCl₄) 3036 (m), 2935 (s), 1735 (s), 1603 (m); LRMS (FAB) 152 ((M+H) $^+$, 6), 151 (41), 109 (100), 92 (26), 80 (29), 65 (21). ¹H NMR data was consistent with the data previously reported by Abele et al. ³³

Picolyl Benzoate (2b).

Compound **2b** is prepared using the general method 1 described above, using benzoyl chloride. The product was purified by flash column chromatography (EtOAc: hexanes, 60:40) and obtained as a dark-brown liquid (4.01 g, 60%). TLC $R_f = 0.30$ (EtOAc: hexanes, 60:40); ¹H NMR (CD₃CN): δ 5.36 (s, 2H), 7.39 (d, *J*= 6.0, 2H), 7.52 (t, *J*=7.6, 2H), 7.64 (d, *J*=7.2, 1H), 8.08-8.06 (m, 2H), 8.57-8.56 (m, 2H); ¹³C (CD₃CN): δ 65.4, 122.8, 129.6, 130.4, 130.7, 134.3, 146.3, 150.9, 166.7; LRMS (FAB) 214 ((M+H)⁺, 100),

154 (94), 136 (71), 105 (40), 77 (25); HRMS (FAB) calcd for $C_{13}H_{12}NO_2$ 214.0868 (M+H)⁺, found 214.0871.

Picolyl Phenylacetate (2c).

Compound **2c** is prepared using the general method 1 described above using phenylacetyl chloride. The product is a thick dark brown liquid (6.33 g, 87%). IR (CCl₄) 3036 (m), 2942 (s), 1747 (s), 1603 (m); ¹H NMR (CD₃CN): δ 3.74 (s, 2H), 5.13 (s, 2H), 7.34-7.23 (m, 7H), 8.52-8.50 (m, 2H); ¹³C NMR (CD₃CN): δ 41.4, 65.1, 122.7, 128.0, 129.4, 130.3, 135.2, 146.5, 150.5, 171.9; MS (EI) 227 (60), 91 (100), 41 (35); HRMS (FAB) calcd for C₁₄H₁₃NO₂ 227.0946 (M)⁺, found 227.0943.

Picolyl Trimethylacetate (2d)

Compound **2d** is prepared using the general method 1 described above using trimethylacetyl chloride. The product is a dark brown liquid, which was distilled to give the pure ester (5.06g, 82 %). ¹H NMR (CD₃CN): δ 1.22 (s, 9H), 5.10 (s, 2H), 7.29-7.27 (m, 2H), 8.54 (d, *J*=6.0, 2H); ¹³C NMR (CD₃CN): δ 26.5, 39.4, 64.8, 122.4, 146.9, 150.6, 178.5; LRMS (FAB) 194 ((M+H)⁺, 100), 57 (30); DCI 193 (36), 92 (22), 85 (20), 57 (100); HRMS (FAB) calcd for C₁₁H₁₅NO₂ 193.1103 (M)⁺, found 193.1101.

Picolyl Diphenylacetate (2e)

Compound **2e** is prepared using the general method 2 described above using diphenylacetic acid. The product is a brown semisolid, which upon recrystallization from hot ethanol yielded a white solid (7.84g, 83%). ¹H NMR (CD₃CN): δ 5.18 (s, 2H), 5.22

(s, 1H), 7.16 (d, J=5.2, 2H), 7.36-7.28 (m, 10H), 8.48 (d, J=5.6, 2H); ¹³C NMR (CD₃CN) δ 51.2, 57.3, 65.6, 122.6, 128.2, 129.5, 139.8, 145.9, 150.7, 172.9; LRMS (FAB) 304 ((M+H)⁺, 100), 154 (40), 136 (31); HRMS (FAB) calcd for C₂₀H₁₈NO₂ 304.1338 (M+H)⁺, found 304.1349.

Picolyl p-Tolylacetate (2f)

Compound **2f** is prepared using the general method 2 described above using *p*-tolylacetic acid. The product is a light brown semisolid (5.24g, 73%). ¹H NMR (CD₃CN): δ 2.30 (s, 3H), 3.68 (s, 2H), 5.11 (s, 2H), 7.23-7.11 (m, 6H), 8.52-8.51 (m, 2H); ¹³C NMR (CD₃CN) δ 21.0, 40.1, 65.1, 122.9, 130.0, 130.2, 132.1, 137.6, 146.3, 150.7, 172.2; LRMS (FAB) 242 ((M+H)⁺, 100); HRMS (FAB) calcd for C₁₅H₁₆NO₂ 242.1181 (M+H)⁺, found 242.1185.

Picolyl Bromophenylacetate (2g)

Compound **2g** is prepared using the general method 2 described above using 4bromophenylacetic acid. The product is a brown liquid (3.25g, 71%). ¹H NMR (CD₃CN): δ 3.72 (s, 2H), 5.13 (s, 2H), 7.21-7.24 (m, 4H), 7.48-7.50 (m, 2H), 8.52-8.53 (m, 2H); ¹³C NMR (CD₃CN): δ 40.1, 65.3, 121.4, 122.6, 132.3, 132.4, 134.5, 146.1, 150.8, 171.6; LRMS (FAB) 306 ((M+H)⁺, 100); DEI 305 (60), 169 (100), 92 (40); HRMS (FAB) calcd for C₁₄H₁₃NO₂Br 306.0130 (M)⁺, found 306.0135, calcd for C₁₄H₁₃NO₂Br 308.0109 (M)⁺, found 308.0117.

Picolyl Cinnamate (2h).

Compound **2h** is prepared using the general method 1 described above using cinnamoyl chloride. The product is a thick brown liquid (7.48 g, 98%). IR (CCl₄) 3062 (m), 3027 (m), 2951 (s), 1712 (s), 1635 (m), 1603 (m); ¹H NMR (CD₃CN): δ 5.25 (s, 2H), 6.61 (d, *J*=16, 1H), 7.35-7.43 (m, 5H), 7.63-7.65 (m, 2H), 7.76 (d, *J*=16, 1H), 8.56-8.57 (m, 2H); ¹³C NMR (CD₃CN): δ 52.2, 64.9, 122.8, 129.1, 129.9, 131.5, 135.1, 146.3, 147.1, 150.2, 167.0; LRMS (FAB) 240 ((M+H)⁺, 100), 131(37); HRMS (FAB) calcd for C₁₅H₁₄NO₂ 240.1025 (M+H)⁺, found 240.1035.

N-Methyl Picolinium Acetate Iodide (5a).

Compound **5a** was prepared by the same method as above. The product was a brown solid (4.81 g, 91%). Recrystallization from hot methanol yielded pale orange crystals. Mp 140-142 °C; IR (nujol) 2965 (s), 2905 (m), 2851 (m), 1743 (s), 1638 (m), 1464 (s); ¹H NMR (CD₃CN) δ 2.16 (s, 3H), 4.28 (s, 3H), 5.34 (s, 2H), 7.93 (d, *J*=6.0, 2H), 8.62 (d, *J*=6.8, 2H); ¹³C NMR (CD₃CN) δ 20.7, 48.8, 63.8, 125.8, 146.0, 157.4, 171.0; LRMS (FAB) 166 (12), 122(100); HRMS (FAB) calcd for C₉H₁₂NO₂ 166.0868, found 166.0872.

N-Methyl Picolinium Benzoate Iodide (5b).

Compound **5b** was prepared by the same general methylation procedure as above, and is a dark brown liquid (2.98 g, 84%). ¹H NMR (CD₃CN) δ 4.28 (s, 3H), 5.60 (s, 2H), 7.56 (t, *J*= 7.6, 2H), 7.71-7.68 (m, 1H), 8.03 (d, *J*=6.0, 2H), 8.13-8.11 (m, 2H), 8.62 (d, *J*=6.8, 2H); ¹³C NMR (CD₃CN) δ 48.4, 64.5, 126.2, 129.5, 129.9, 130.2, 134.8, 146.0, 157.2, 166.3; LRMS (FAB) 228 ((M)⁺, 17), 133 (28), 89 (50), 45 (50); HRMS (FAB) calcd for C₁₄H₁₄NO₂ 228.1025, found 228.1027.

N-Methyl Picolinium Phenylacetate Iodide (5c).

Compound **5c** was prepared by the same general methylation procedure as above, and is a dark brown liquid (7.03 g, 95%). ¹H NMR (CD₃CN) δ 3.83 (s, 2H), 4.28 (s, 3H), 5.37 (d, 2H), 7.36-7.30 (m, 5H), 7.88 (d, *J*=5.2, 2H), 8.62 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 40.9, 48.8, 64.1, 125.7, 128.0, 129.3, 130.3, 134.7, 146.0, 157.1, 171.8; LRMS (FAB) 242 (20), 133 (24), 89 (30), 45 (30); HRMS (FAB) calcd for C₁₆H₁₆NO₂ 242.1181, found 242.1169.

N-Methyl Picolinium Trimethylacetate Iodide (5d).

Compound **5d** was methylated by the above general methylation procedure, and is a thick dark brown liquid (4.30g, 88%). ¹H NMR (CD₃CN) δ 1.26 (s, 9H), 4.27 (s, 3H), 5.33 (s, 2H), 7.90 (d, *J*=6.0, 2H), 8.60 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 30.8, 39.4, 48.8, 64.0, 125.9, 146.0, 157.8, 178.2; LRMS (FAB) 208 ((M)⁺, 40), 166 (23), 122 (70); HRMS (FAB) calcd for C₁₂H₁₈NO₂ 208.1338, found 208.1331.

N-Methyl Picolinium Diphenylacetate Iodide (5e).

Compound **5e** was prepared by the same general methylation procedure as above, and is a dark yellow solid, which upon recrystallization from hot methanol yielded yellow crystals (3.17g, 74%). Mp 130-134 °C; ¹H NMR (CD₃CN) δ 4.23 (s, 3H), 5.32 (s, 1H), 5.42 (s, 2H), 7.37-7.29 (m, 10H), 7.77 (d, *J*=6.4, 2H), 8.54 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 48.9, 57.0, 64.6, 126.0, 128.4, 129.5, 129.6, 139.4, 146.0, 157.0, 172.6; LRMS (FAB) 318 ((M)⁺, 100), 107 (17); HRMS (FAB) calcd for C₂₁H₂₀NO₂ 318.1494, found 318.1503.

N-Methyl Picolinium *p*-Tolylacetate Iodide (5f).

Compound **5f** was prepared by the above general methylation procedure, and is a dark orange semisolid (7.66g, 100%). ¹H NMR (CD₃CN) δ 2.31 (s, 3H), 3.77 (s, 2H), 4.28 (s, 3H), 5.36 (s, 2H), 7.15-7.21 (m, 4H), 7.87 (d, *J*=6.0, 2H), 8.63 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 20.9, 40.6, 48.9, 64.2, 125.8, 130.0, 130.2, 131.7, 137.7, 146.0, 157.2, 172.0; LRMS (FAB) 256 ((M)⁺, 100); HRMS (FAB) calcd for C₁₆H₁₈NO₂ 256.1338 (M)⁺, found 256.1340.

N-Methyl Picolinium Bromophenylacetate Iodide (5g).

Compound **5g** was prepared by the general methylation procedure above, and is a dark brown solid after recrystallization from hot methanol (2.78g, 89%). Mp 110-114 °C; ¹H NMR (CD₃CN) δ 3.80 (s, 2H), 4.25 (s, 3H), 5.36 (s, 2H), 7.25 (d, *J*=8.4, 2H), 7.52 (d, *J*=8.4, 2H), 7.87 (d, *J*=5.6, 2H), 8.57 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 40.3, 48.9, 64.3, 121.5, 125.9, 132.4, 132.5, 134.2, 146.0, 157.2, 171.4; LRMS (FAB) 320 ((M)⁺, 55), 122 (25), 108 (100), 94 (20); HRMS (FAB) calcd for C₁₅H₁₅NO₂Br 320.0286 (M)⁺, found 320.0302, calcd for C₁₅H₁₅NO₂Br 322.0266 (M)⁺, found 322.0271.

N-Methyl Picolinium Cinnamate Iodide (5h).

Compound **5c** was obtained as pale yellow crystals after recystallization from hot methanol (3.06 g, 73%). Mp 104-106 °C; IR (nujol) 2955 (s), 2916 (m), 1712 (s), 1631 (s), 1465 (m); ¹H NMR (CD₃CN) δ 4.26 (s, 3H), 5.48 (s, 2H), 6.67 (d, *J*=16, 1H), 7.45-7.46 (m, 3H), 7.67-7.68 (m, 2H), 7.83 (d, *J*=16, 1H), 7.98 (d, *J*=6.0, 2H), 8.58 (d, *J*=6.0, 2H); ¹³C NMR (CD₃CN) δ 48.8, 64.0, 117.6, 125.9, 129.2, 129.9, 131.7, 134.9, 146.0,

146.9, 157.9, 166.6; LRMS (FAB) 254 (6), 177 (9), 133 (11), 89 (11), 45 (11); HRMS (FAB) calcd for C₁₆H₁₆NO₂ 254.1181, found 254.1183.

N-Methyl Picolinium Acetate Perchlorate (6a).

Compound **6a** was obtained as a pale yellow solid (1.09 g, 82%). Shiny, pale creamcolored crystals were formed upon recrystallization from hot ethanol. Mp 128-132 °C; IR (nujol) 3067 (m), 2959 (m), 1747 (s), 1646 (m); ¹H NMR (CD₃CN) δ 2.16 (s, 3H), 4.26 (s, 3H), 5.33 (s, 2H), 7.92 (d, *J*=5.6, 2H), 8.58 (d, *J*=6.0, 2H); ¹³C NMR (CD₃CN) δ 20.8, 48.7, 63.9, 125.9, 146.1, 157.6, 171.0; LRMS (FAB) 166((M)⁺, 100); HRMS (FAB) calcd for C₉H₁₂NO₂ 166.0868 (M)⁺, found 166.0876.

N-Methyl Picolinium Benzoate Perchlorate (6b).

Compound **6b** was obtained as pale cream-colored crystals (0.33 g, 51 %). Mp 146-150 °C; IR (nujol) 3071 (m), 2939 (m), 2897 (m), 1716 (s), 1646 (m), 1460 (s); ¹H NMR (CD₃CN) δ 4.27 (s, 3H), 5.60 (s, 2H), 7.56 (t, *J*=7.6, 2H), 7.69 (d, *J*=7.2, 1H), 8.02 (d, *J*=6.0, 2H), 8.13-8.11 (m, 2H), 8.58 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 48.7, 64.5, 126.2, 129.6, 129.9, 130.4, 134.7, 146.0, 157.3, 166.3; LRMS (FAB) 228 ((M)⁺, 100), 122 (10), 108 (25); HRMS (FAB) calcd for C₁₄H₁₄NO₂ 228.1025, found 228.1022.

N-Methyl Picolinium Phenylacetate Perchlorate (6c).

Compound **6c** was obtained as a thick brown liquid. About 20 ml of CH₃OH was added and the solution was stirred vigorously. A thick precipitate was formed. Filtration and drying of the precipitate yielded a cream-colored solid (2.27 g, 80 %). Mp 98-100 °C; IR (nujol) 3060 (m), 2924 (m), 1735 (s), 1646 (m), 1095 (s); ¹H NMR (CD₃CN) δ 3.82 (s, 2H), 4.24 (s, 3H), 5.36 (s, 2H), 7.36-7.33 (m, 5H), 7.85 (d, *J*=5.6, 2H), 8.53 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 41.1, 48.8, 64.2, 125.9, 128.1, 129.4, 130.4, 134.8, 146.0, 157.4, 171.8; MS (EI) 241 ((M-1)⁺, 20), 136 (30), 122 (88), 91 (100); LRMS (FAB) 242 ((M+H)⁺, 100), 152 (25), 108 (21), 45 (33); HRMS (FAB) calcd for C₁₅H₁₆NO₂ 242.1181, found 242.1181.

N-Methyl Trimethylacetate Perchlorate (6d).

Compound **6d** was obtained as a pale yellow solid after recrystallization from hot ethanol (2.72g, 88%). Mp 54-56 °C; ¹H NMR (CD₃CN) δ 1.26 (s, 9H), 4.25 (s, 3H), 5.32 (s, 2H), 7.89 (d, *J*=6.0, 2H), 8.54 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 27.2, 30.8, 39.4, 48.8, 64.0, 125.9, 146.0, 157.8, 178.2; LRMS (FAB) 208 ((M)⁺, 100), 107 (13), 93 (11); HRMS (FAB) calcd for C₁₂H₁₈NO₂ 208.1338, found 208.1339.

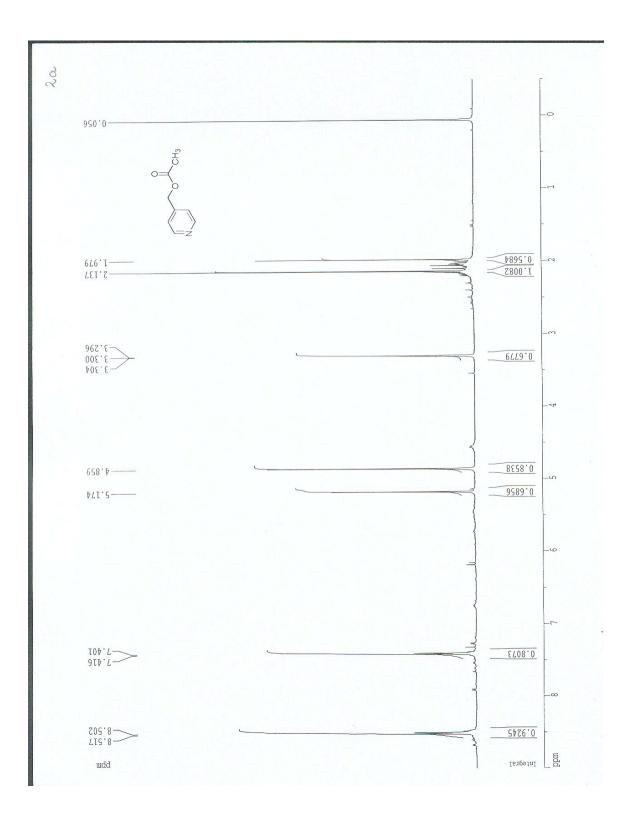
N-Methyl Picolinium Diphenylacetate Perchlorate (6e).

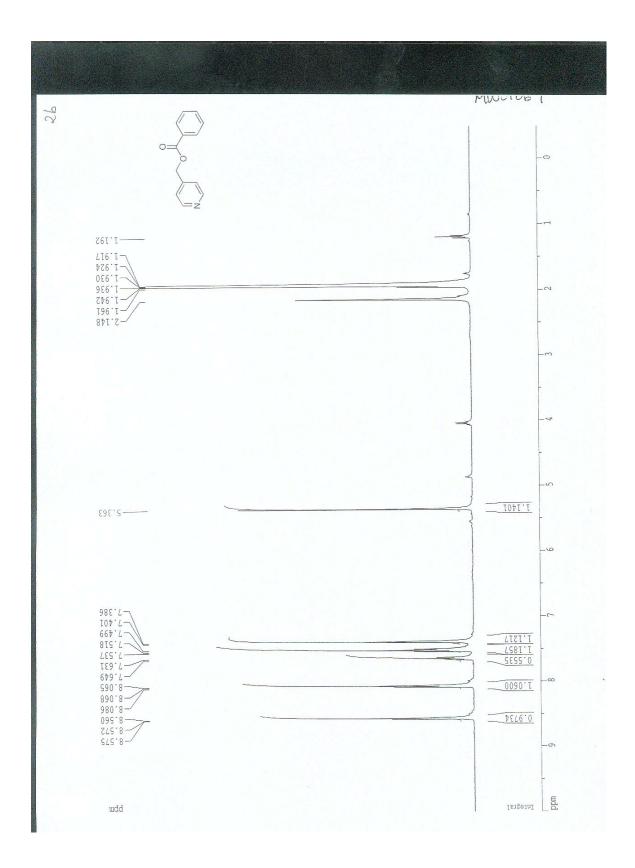
Compound **6e** was obtained as a white solid upon recyrstallization from hot ethanol (2.70g, 88%). ¹H NMR (CD₃CN) δ 4.23 (s, 3H), 5.31 (s, 1H), 5.41 (s, 2H), 7.37-7.35 (m, 10H), 7.76 (d, *J*=6.4, 2H), 8.51 (d, *J*=6.8, 2H); ¹³C NMR (CD₃CN) δ 48.8, 57.0, 64.6, 126.0, 128.4, 129.5, 129.6, 139.4, 146.0, 157.0, 172.6; LRMS (FAB) 318 ((M)⁺, 100); HRMS (FAB) calcd for C₂₁H₂₀NO₂ 318.1494, found 318.1508.

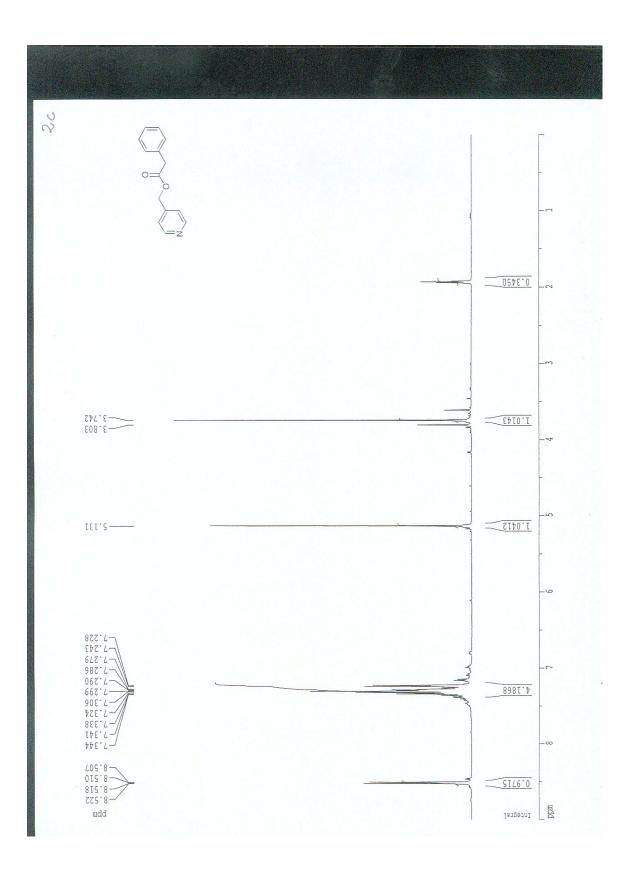
N-Methyl Picolinium *p*-Tolylacetate Perchlorate (6f).

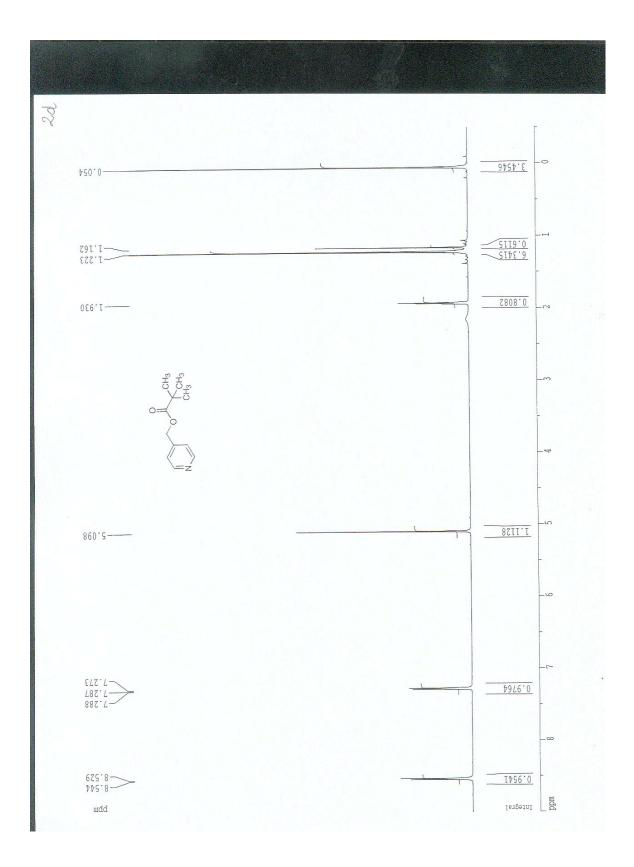
Compound **6f** was obtained as a yellow sticky semisolid (3.07g, 86%). ¹H NMR (CD₃CN) δ 2.31 (s, 3H), 3.77 (s, 2H), 4.25 (s, 3H), 5.35 (s, 2H), 7.17-7.19 (m, 4H), 7.85 (d, *J*=6.0, 2H), 8.56 (d, *J*=6.8, 2H); ¹³C NMR (CD₃CN) δ 20.9, 40.6, 48.7, 64.1, 125.8, 130.0, 130.2, 131.7, 137.8, 145.9, 157.3, 172.0; LRMS (FAB) 256 ((M)⁺, 100), 122 (27), 107 (77); HRMS (FAB) calcd for C₁₆H₁₈NO₂ 256.1338 (M)⁺, found 256.1346.

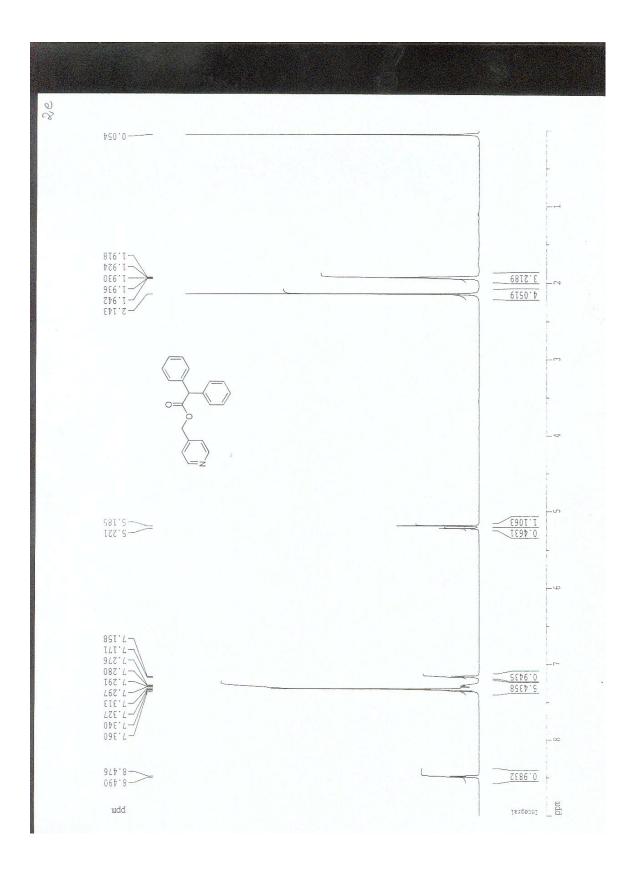
N-Methyl Bromophenylacetate Perchlorate (6g).

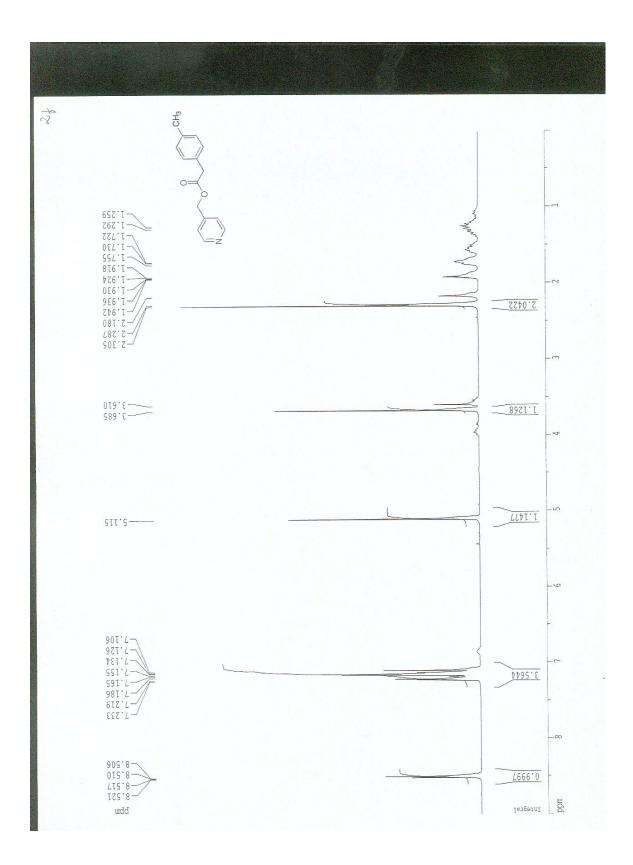

Compound **6g** was obtained as a pale yellow solid after recrystallization from hot ethanol (1.09g, 64%). Mp 74-78 °C; ¹H NMR (CD₃CN) δ 3.80 (s, 2H), 4.24 (s, 3H), 5.36 (s, 2H), 7.24-7.26 (m, 2H), 7.50-7.53 (m, 2H), 7.86 (d, *J*=6.0, 2H), 8.54 (d, *J*=6.8, 2H); ¹³C NMR (CD₃CN) δ 40.3, 48.8, 64.3, 121.5, 125.9, 132.4, 132.5, 134.2, 146.0, 157.2, 171.4; LRMS (FAB) 320 ((M)⁺, 100); HRMS (FAB) calcd for C₁₅H₁₅NO₂Br 320.0286 (M)⁺, found 320.0275, calcd for C₁₅H₁₅NO₂Br 322.0266 (M)⁺, found 322.0278.

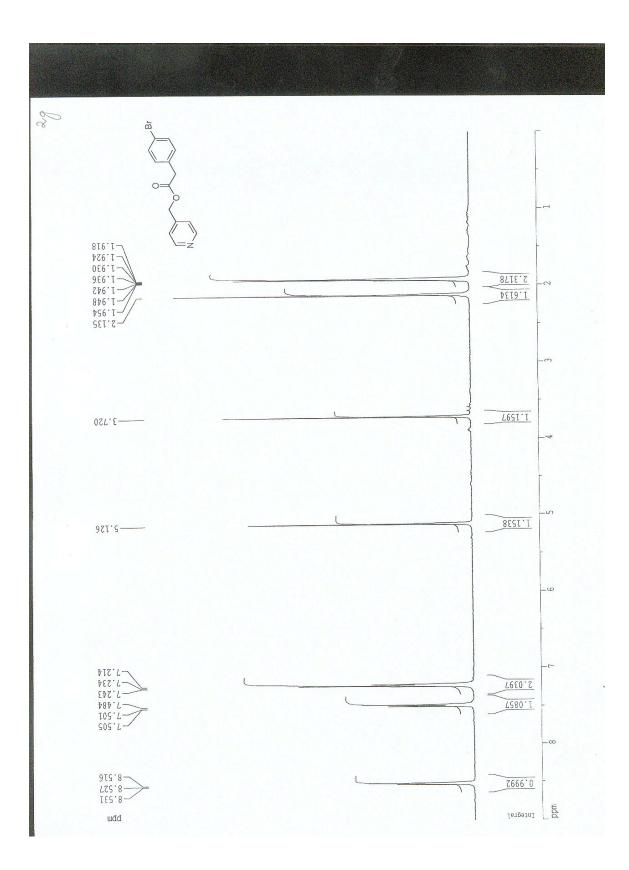

N-Methyl Picolinium Cinnamate Perchlorate (6h).

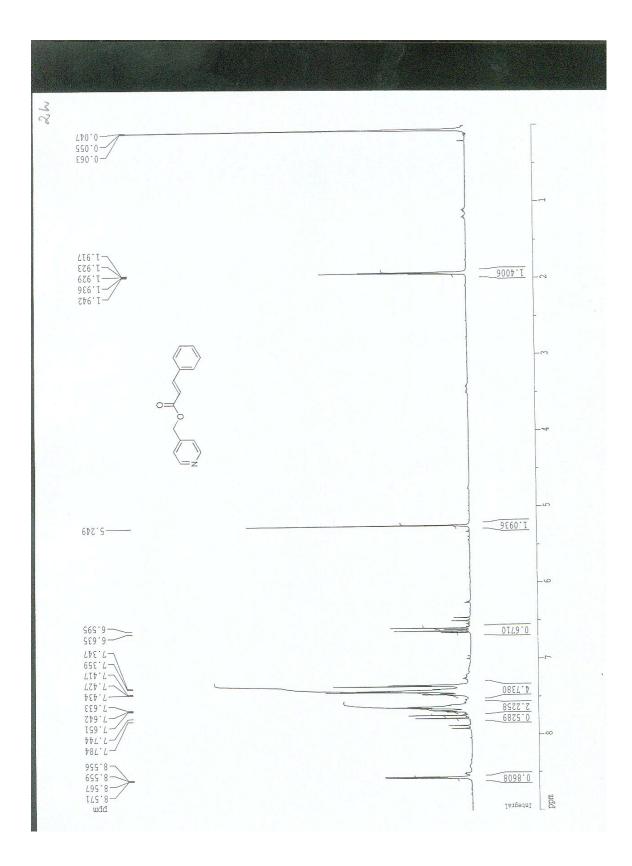

2.5 mmol of the ester was combined with silver perchlorate to afford pale cream-colored crystals (0.69 g, 78 %). Mp 132-134 °C; IR (nujol) 2963 (m), 2866 (m), 1708 (s), 1642 (m), 1460 (s); ¹H NMR (CD₃CN) δ 4.26 (s, 3H), 5.48 (s, 2H), 6.67 (d, *J*=16.4, 1H), 7.45-7.46 (m, 3H), 7.66-7.69 (m, 2H), 7.83 (d, *J*=16, 1H), 7.97 (d, *J*=6.0, 2H), 8.57 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 48.4, 63.6, 117.3, 125.7, 128.8, 129.6, 131.3, 134.6, 146.7, 147.7, 157.3, 166.2; LRMS (FAB) 254 ((M)⁺, 100); DCI 254 (5), 148 (20), 122 (88), 91(15), 77 (17); HRMS (FAB) calcd for C₁₆H₁₆NO₂ 254.1181, found 254.1192.

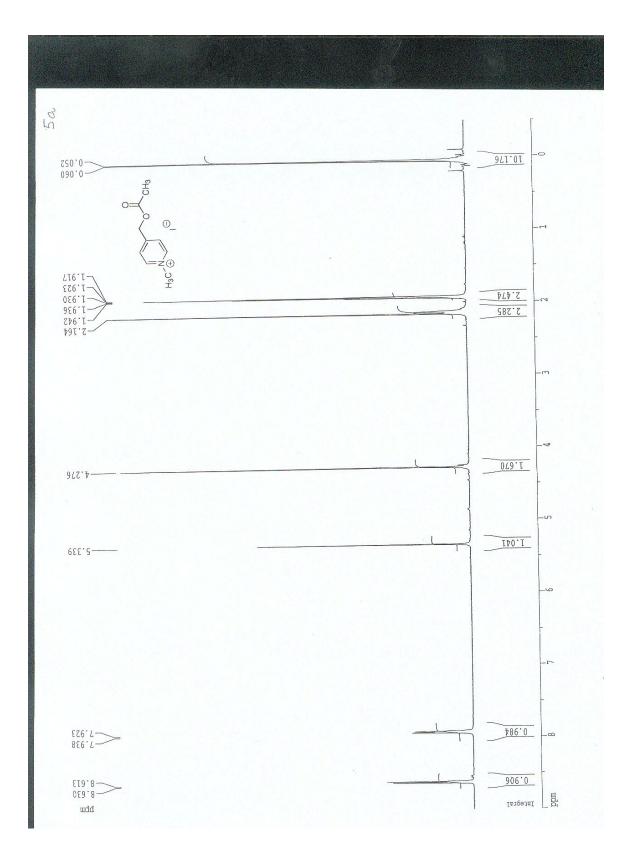

N-Methyl Picolinium Perchlorate (9).

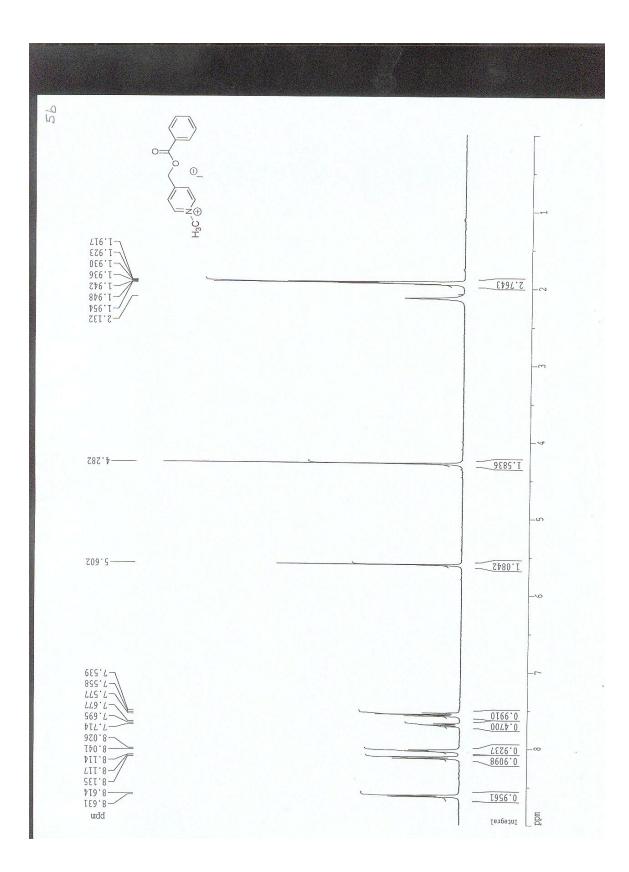

Compound **9** was prepared from N-methyl picolinium iodide by the counter-ion exchange procedure described above and obtained as white crystals (0.64 g, 61 %). Mp 132-134 °C; IR (nujol) 2957 (m), 2854 (m), 1646 (m), 1460 (s), 1095 (s); ¹H NMR (CD3CN) δ 2.60 (s, 3H), 4.20 (s, 3H), 7.78 (d, *J*=6.0, 2H), 8.42 (d, *J*=6.4, 2H); ¹³C NMR (CD₃CN) δ 21.9, 48.2, 129.2, 145.0, 160.3; LRMS (FAB) 108 ((M)⁺, 85), 45 (85); HRMS (FAB) calcd for C₇H₁₀N 108.0813, found 108.0809

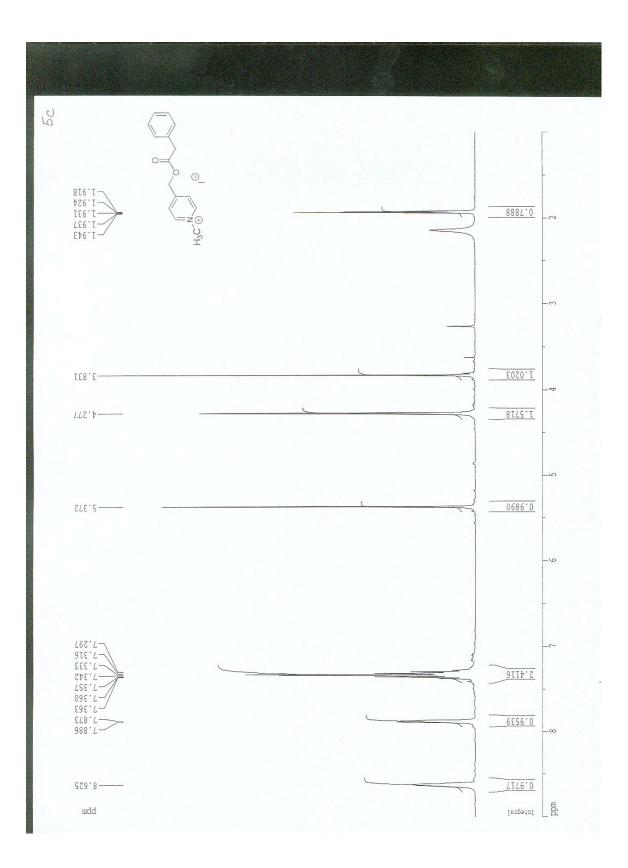


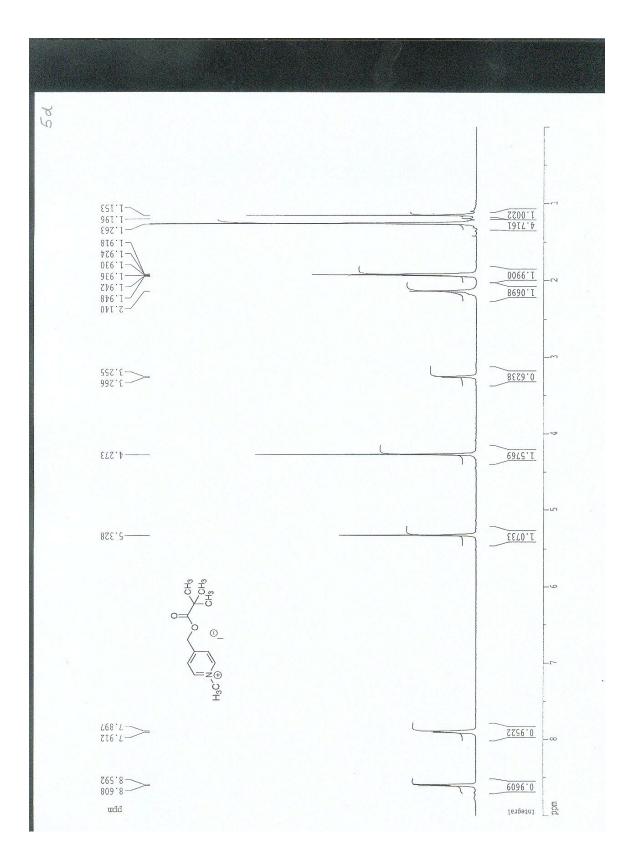


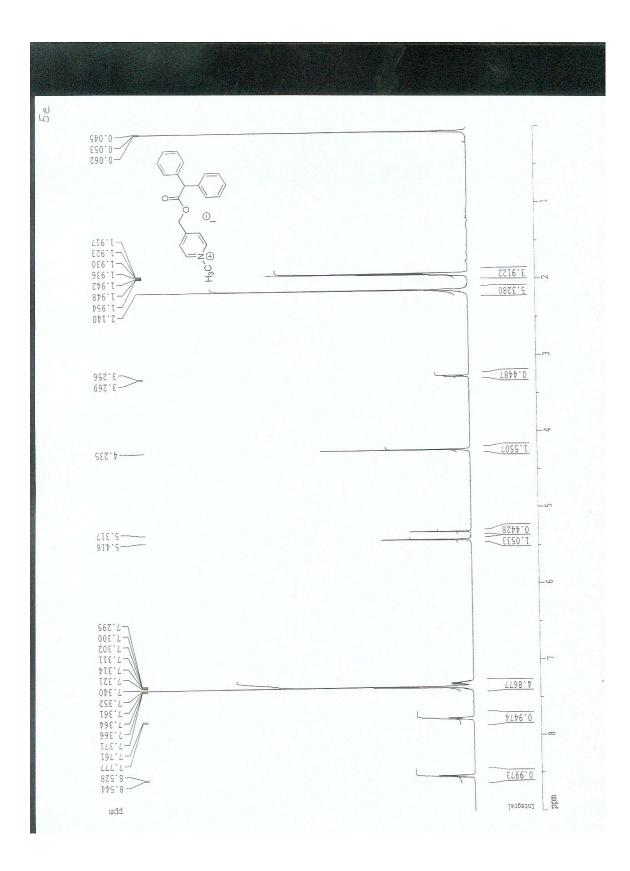


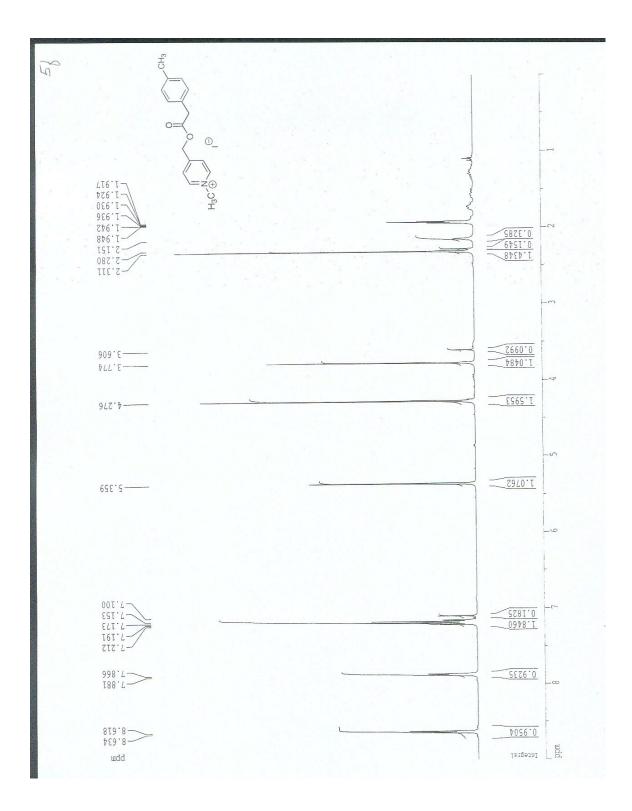


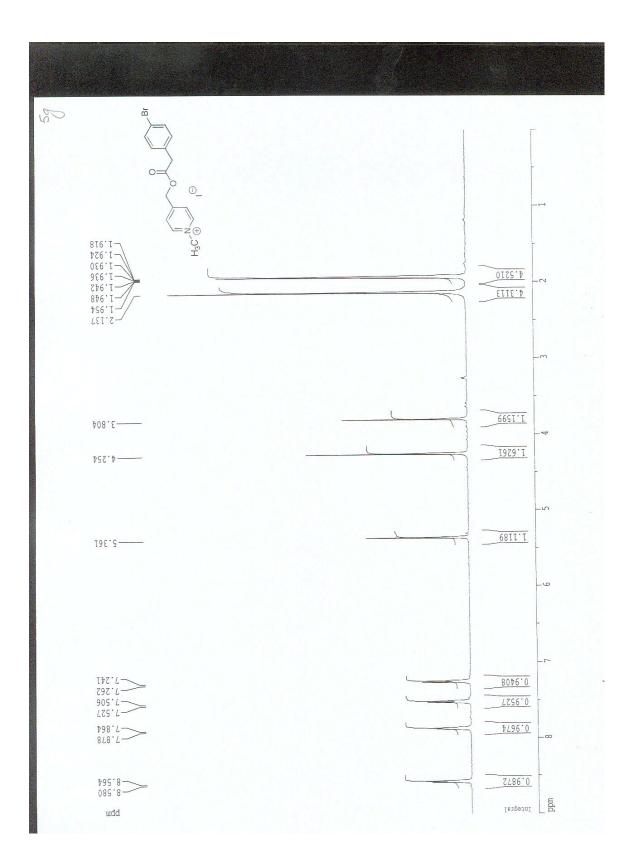


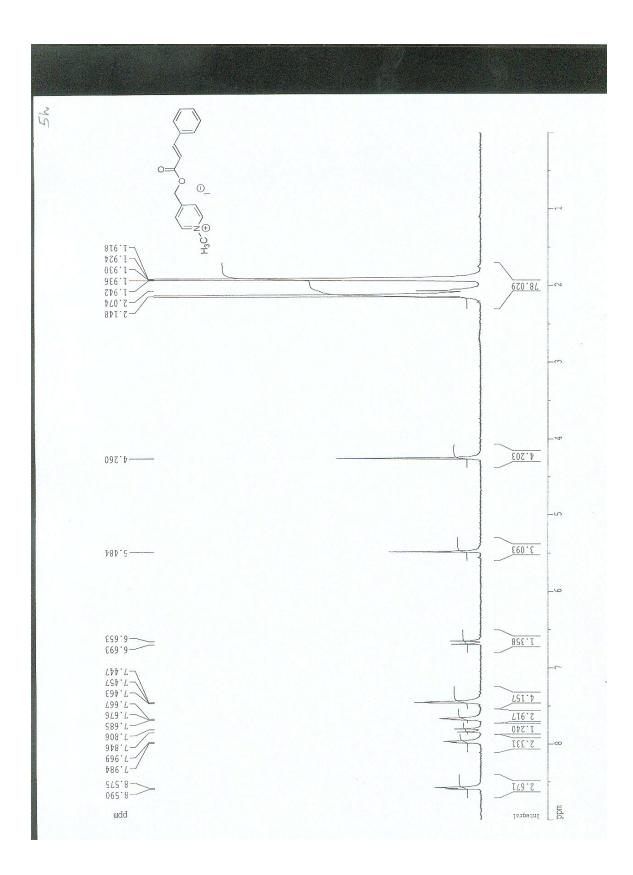


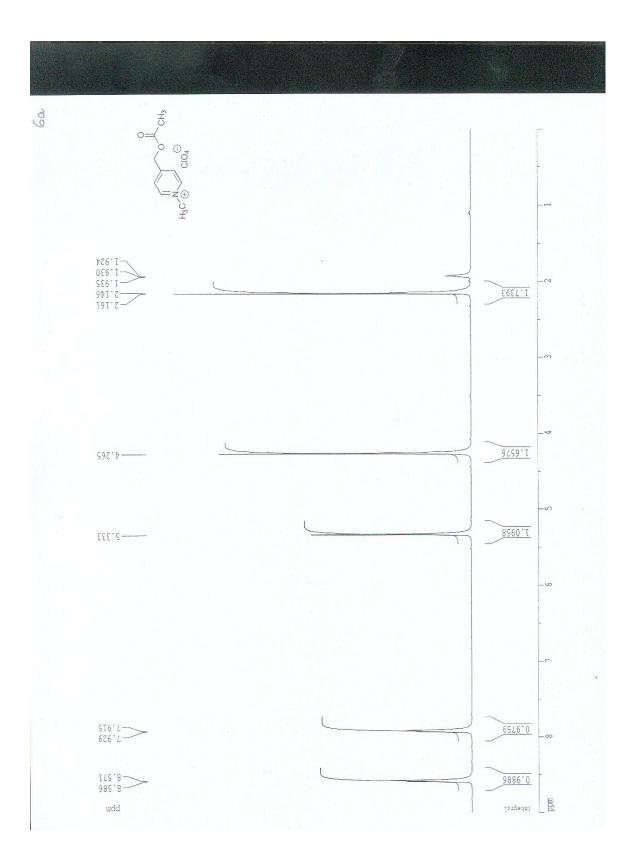


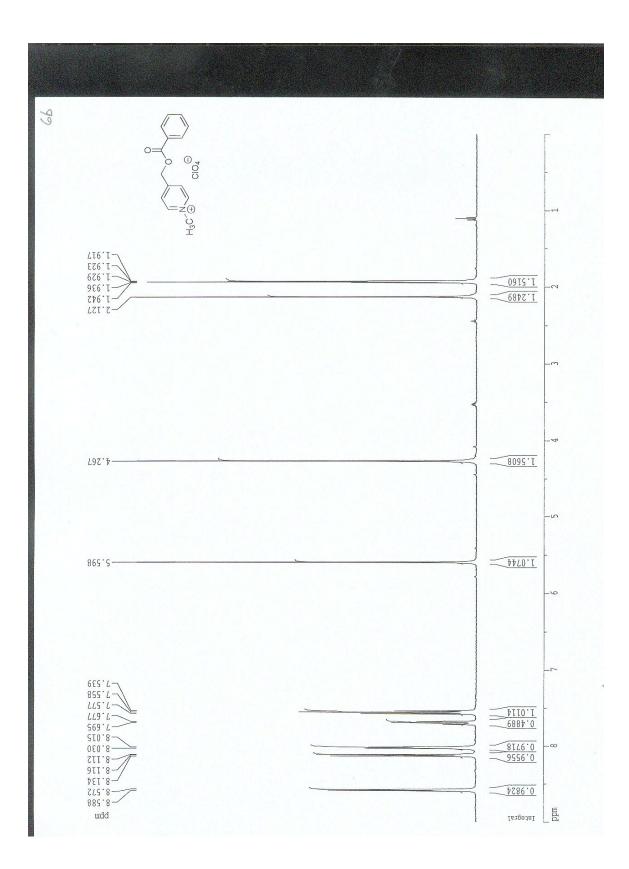


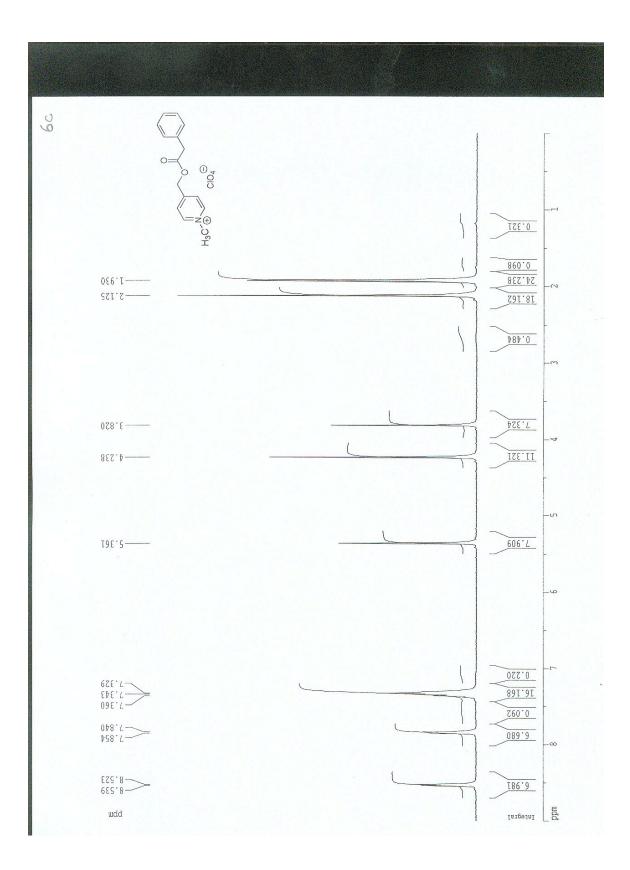


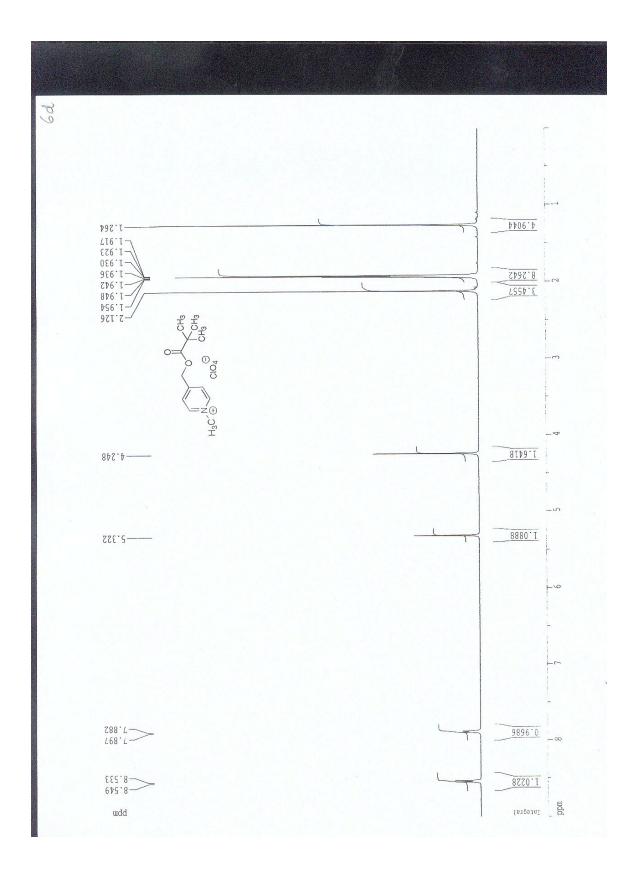


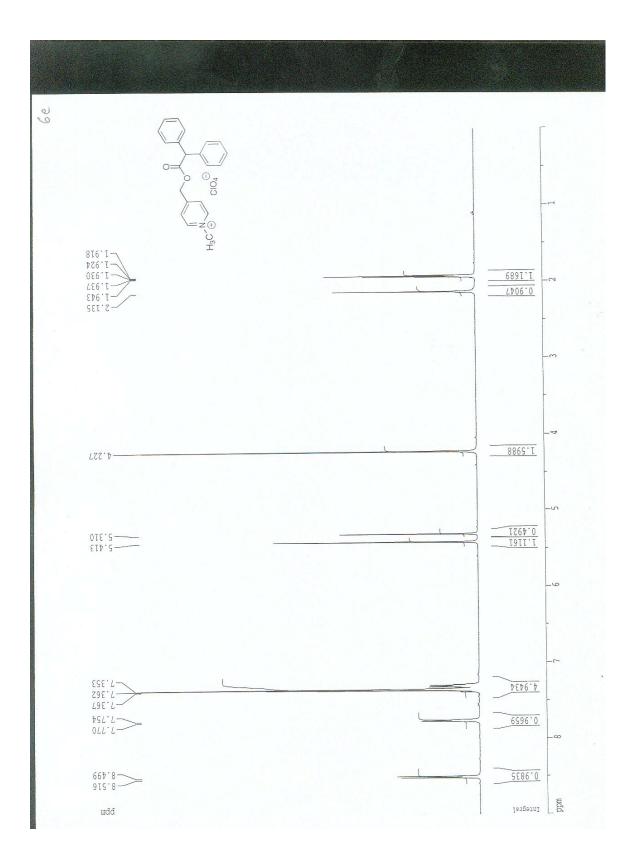


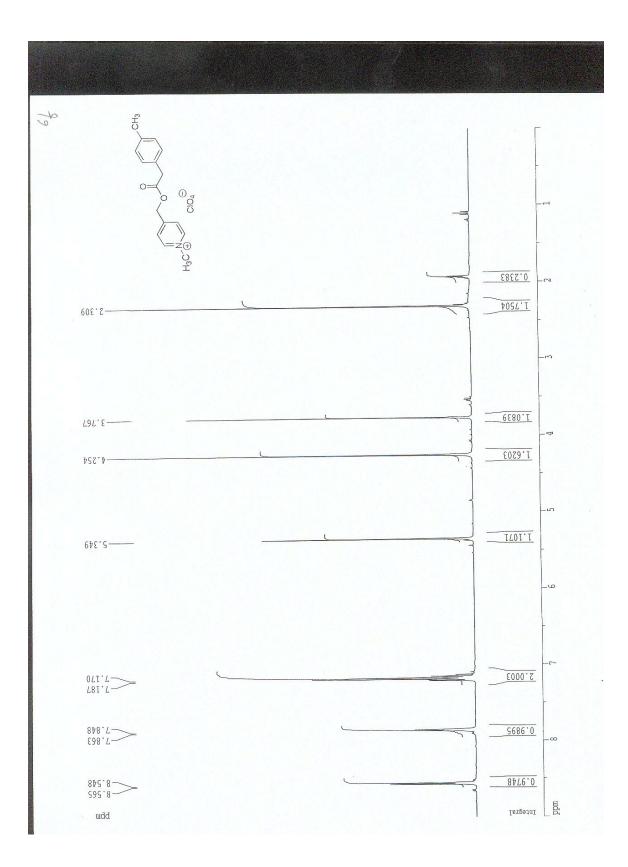


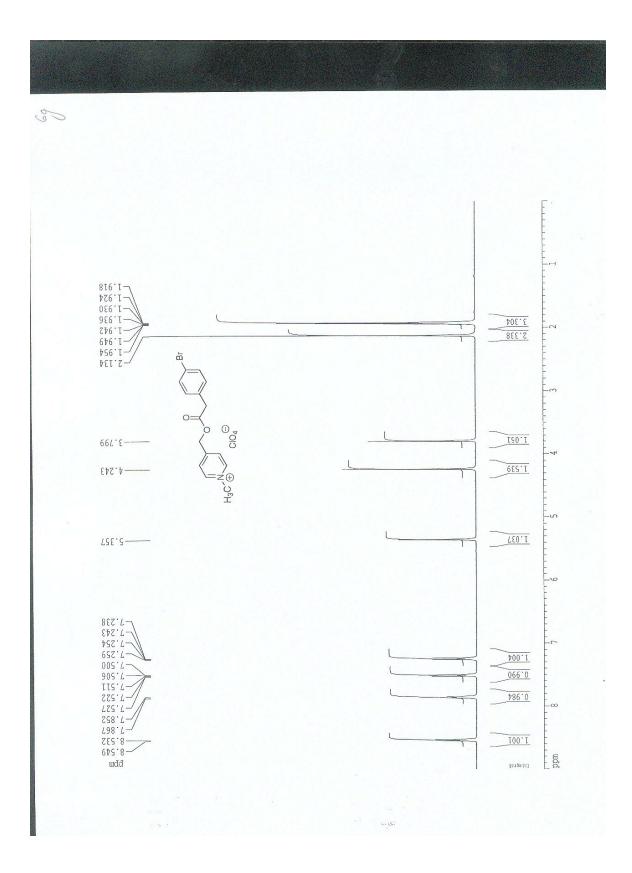


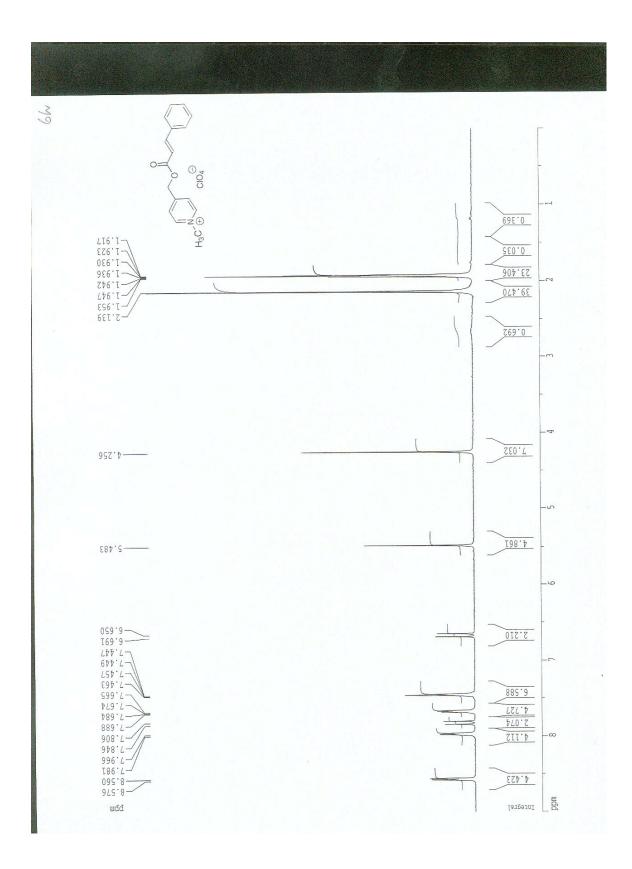


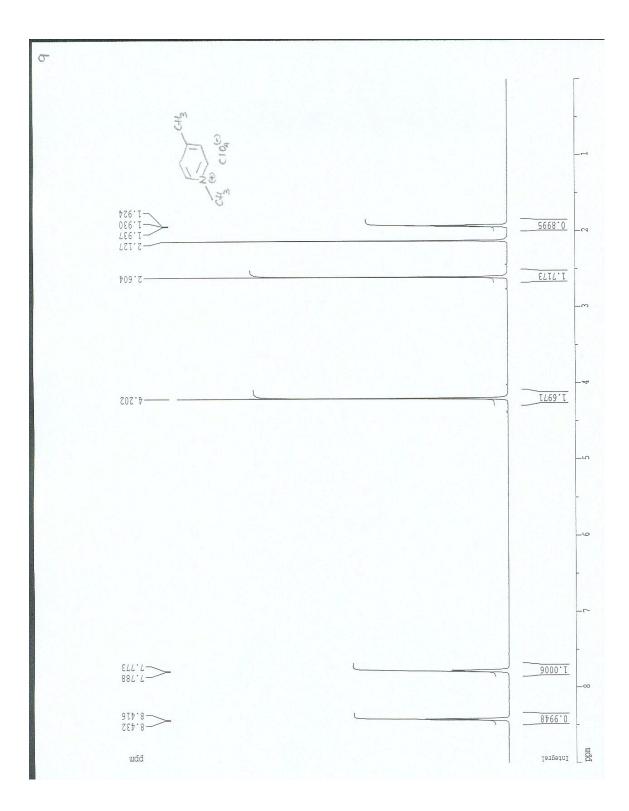


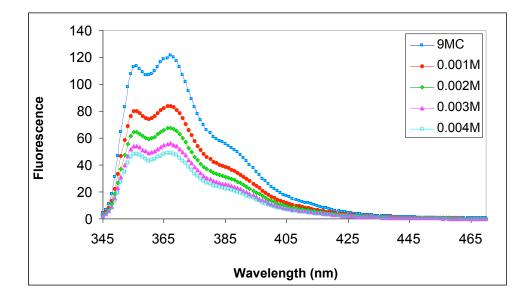


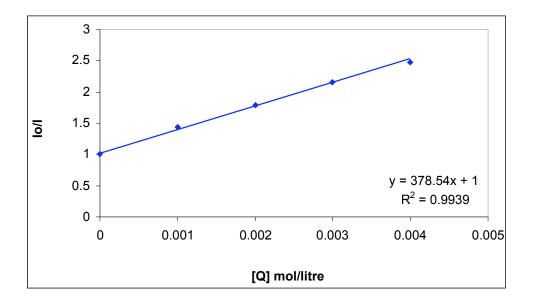




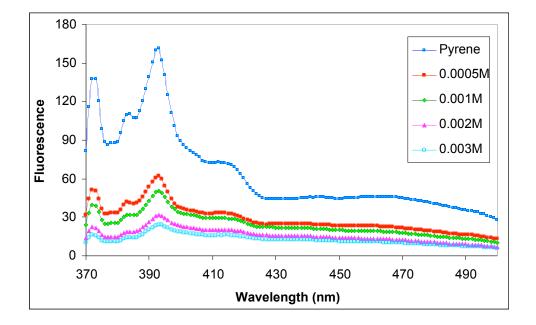






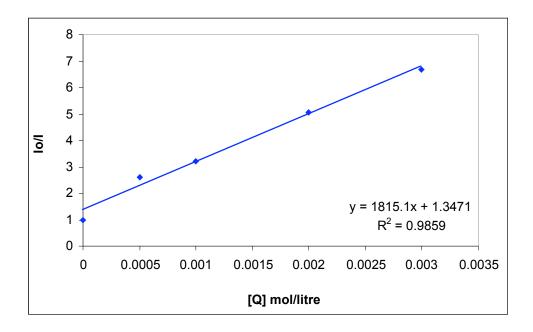


Fluorescence data for 6e with 9-MC

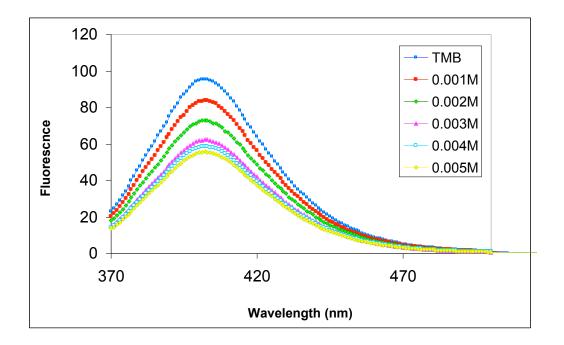


a. Fluorescence quenching of 9-MC by 6e

b. Stern-Volmer plot for fluorescence quenching of 9-MC by 6e

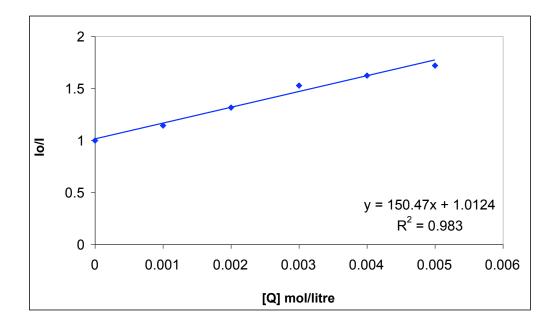


Fluorescence data for ester 6e with pyrene



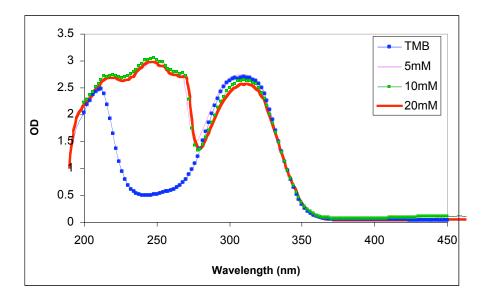
a. Fluorescence quenching of pyrene by 6e

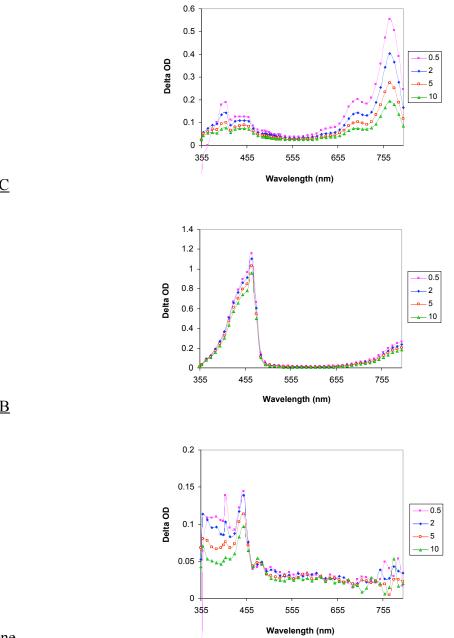
b. Stern-Volmer plot for fluorescence quenching of pyrene by 6e



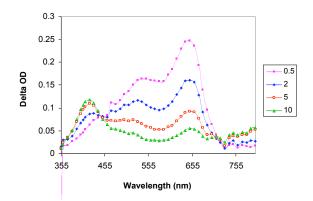
Fluorescence data for 2e with TMB

a. Fluorescence quenching of TMB by $\mathbf{2e}$


b. Stern-Volmer plot for fluorescence quenching of TMB by 2e


Uv-vis spectra of esters 2e, 5e and 6e (in MeOH)

UV spectra of TMB with different concentrations of ester 6e (in MeCN)


Transient absorption spectra of 6e with:

1. <u>9-MC</u>

2. <u>TMB</u>

3. Pyrene

4. <u>TPA</u>