Synthesis of Analogue Structures of the para-Quinone Methide Moiety of Kendomycin

Supporting Information

Martin P. Green, Stefan Pichlmair, Maria M. B. Marques, Harry J. Martin, Oliver Diwald, Thomas Berger and Johann Mulzer*

General Experimental

All other solvents used HPLC grade. Column chromatography was performed with Merck silica gel (0.04-0.63 $\mu \mathrm{m}, 240-400 \mathrm{mesh})$ under pressure. TLC was carried out with E. Merck silica gel 60-F254 plates. NMR spectra were recorded on either a Brucker Avance DPX 250 MHz or 400 MHz . Unless otherwise stated, all NMR spectra were measured in CDCl_{3} solutions and referenced to the residual CHCl_{3} signal $\left({ }^{1} \mathrm{H}, \delta=7.27\right.$; ${ }^{13} \mathrm{C}, \delta=77.0$). All ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{C}$ shifts are given in $\mathrm{ppm}(\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; q $=$ quadruplet; $\mathrm{m}=$ multiplet; br $\mathrm{s}=$ broad signal). Coupling constants J are given in Hz . Mass spectra were measured on a MAT 900 (Finnegan-MAT, San Jose, CA). Highresolution mass spectra (HRMS) were taken with a Finnigan MAT 8230 with a resolution of 10,000 (Finnigan-MAT, San Jose, CA). The EPR experiment was performed at room temperature with a Bruker EMX 10/12 spectrometer operated in the X-band $(9-10 \mathrm{GHz})$. In order to improve the signal-to-noise ratio 20 scans were accumulated in one spectrum.

1-(4-Methoxy-2,5-bis-methoxymethoxy-3-methyl-phenyl)-3-methyl-butan-2-ol (9a)

The aryl bromide ${ }^{2 \mathrm{c}}(2.00 \mathrm{~g}, 6.25 \mathrm{mmol})$ was dissolved in 10 mL of dry THF and Mg (163 $\mathrm{mg}, 6.25$) was suspended in the reaction mixture. Iodine (2 mg) was added and the
mixture was heated to reflux for 2 h . The mixture was cooled to room temperature and transferred via cannula to a three necked flask containing $\mathrm{CuI}(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ which was suspended in 2 mL of dry THF at $-50^{\circ} \mathrm{C}$. The temperature was raised to $-30^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 30 min . Afterwards, isobutene oxide (686 mg 8.0 mmol) was added at $-60^{\circ} \mathrm{C}$ and the temperature was raised to $0^{\circ} \mathrm{C}$ over 4 h . The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with diethyl $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, brine (10 mL) dried over MgSO_{4} and the solvent was removed by evaporation. The crude material was purified by SiO_{2} flash column chromatography using hexane and EtOAc (3:1) to afford 9a, as a colorless oil $(1.74 \mathrm{~g}, 85 \%) . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.20(1 \mathrm{H}, \mathrm{d}$, $J=6 \mathrm{~Hz}, \mathrm{C} H \mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{C} H \mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{C} H \mathrm{H}), 4.92(1 \mathrm{H}$, $\mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHH}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.62-3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{CHCHAr}), 2.74(1 \mathrm{H}, \mathrm{s}, \mathrm{CHHAr}), 2.36(1 \mathrm{H}, \mathrm{d}$, $J=5 \mathrm{~Hz}, \mathrm{OH}), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80-1.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.01(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.5(\mathrm{C}), 147.8(\mathrm{C}), 147.4(\mathrm{C}), 128.5(\mathrm{C}), 126.1(\mathrm{C})$, $116.2(\mathrm{CH}), 100.3\left(\mathrm{CH}_{2}\right), 96.0\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{3}\right), 57.9\left(\mathrm{CH}_{3}\right), 56.6\left(\mathrm{CH}_{3}\right), 35.6\left(\mathrm{CH}_{2}\right)$, $34.4(\mathrm{CH}), 19.2\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 17.8(\mathrm{CH}), 10.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 328\left(\mathrm{M}^{+}, 26.3 \%\right), 296(36.5)$, 266 (29.8), 221 (100.0); ($\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{6}$ requires 328.1886. Found 328.1881).

1-(4-Methoxy-2,5-bis-methoxymethoxy-3-methyl-phenyl)-3-methyl-butan-2-one (10)

DMSO ($1.3 \mathrm{~mL}, 18.3 \mathrm{mmol}$) was added dropwise to a solution of oxalyl chloride (0.78 $\mathrm{mL}, 9.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for one hour 9a ($1.50 \mathrm{~g}, 4.57 \mathrm{mmol}$) was added slowly and stirring was continued for an additional 10 min . After the dropwise addition of freshly distilled $\mathrm{NEt}_{3}(3.8 \mathrm{~mL}, 27.5$ mmol) a yellow slurry was formed and stirring was continued at $-7{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was allowed to warm to room temperature (45 min), then hydrolyzed
with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with diethyl $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, saturated aqueous NaHCO_{3} (5 mL) and brine (5 mL), dried over MgSO_{4} and the solvent removed. The crude material was purified by SiO_{2} flash column chromatography using hexane and EtOAc (5:1) to afford 10, as a colorless oil ($1.33 \mathrm{~g}, 89 \%) . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.77(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.17$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.55(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.73\left(1 \mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}\right.$, and $7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.13\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 212.6(\mathrm{C}), 150.3(\mathrm{C}), 147.3(\mathrm{C})$, $147.3(\mathrm{C}), 126.2(\mathrm{C}), 124.0(\mathrm{C}), 116.6(\mathrm{CH}), 100.1\left(\mathrm{CH}_{2}\right), 95.9\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{3}\right), 57.8$ $\left(\mathrm{CH}_{3}\right), 56.6\left(\mathrm{CH}_{3}\right), 43.1\left(\mathrm{CH}_{2}\right), 40.3(\mathrm{CH}), 18.8\left(2 \times \mathrm{CH}_{3}\right), 10.8\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 326\left(\mathrm{M}^{+}\right.$, 96.0%), 281 (36.5), 249 (62.9), 211 (41.6); $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6}\right.$ requires 326.1729. Found 326.1737).

2-Isopropyl-6-methoxy-7-methyl-benzofuran-5-ol (10a)

Ketone $\mathbf{1 0}(1.00 \mathrm{~g}, 3.10 \mathrm{mmol})$ was dissolved in a solution of $\mathrm{PhMe}(200 \mathrm{~mL})$ and EtOH $(50 \mathrm{~mL})$ and 3.0 g of MS $4 \AA$ were added. The suspension was heated to $80^{\circ} \mathrm{C}$ and $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}(92 \mu \mathrm{~L}, 1.24 \mathrm{mmol})$ was added. After 5 min , the reaction flask was put into an ice bath to cool down to room temperature as quickly as possible. A saturated aq. solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ solution was added and the resulting mixture was filtered over a pad of Celite ${ }^{\circledR}$ to remove the molecular sieves. The layers were separated and the aq.layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and the solvent removed. The crude material was purified by SiO_{2} column chromatography using hexane and EtOAc (8:1) to afford 10a, as a brown oil ($660 \mathrm{mg}, 95 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (film) 3750, 2966, 2934, $2873,1608,1463,1420,1352,1318,1265,1218,1189,1158,1131,1111,1070,991,942$ and $881 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.65(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.06\left(1 \mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.35(6$
$\left.\mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.2(\mathrm{C}), 147.9(\mathrm{C}), 145.1(\mathrm{C}), 142.5$ $(\mathrm{C}), 124.1(\mathrm{C}), 113.8(\mathrm{C}), 102.1(\mathrm{CH}), 99.7(\mathrm{CH}), 61.3\left(\mathrm{CH}_{3}\right), 28.2(\mathrm{CH}), 20.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right)$, $9.3\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 220\left(\mathrm{M}^{+}, 64.9 \%\right), 205(100.0) ;\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\right.$ requires 220.1099. Found 220.1096).

2-Isopropyl-6-methoxy-5-methoxymethoxy-7-methyl-benzofuran (11)

10a ($180 \mathrm{mg}, 0.82 \mathrm{mmol}$), was dissolved in dry DMF (2 mL) and $\mathrm{NaH}(60 \%$ in min. oil suspension, $66 \mathrm{mg}, 1.64 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the mixture stirred for 10 min , forming a black suspension. Treatment with $\mathrm{MOMCl}(0.20 \mathrm{~mL}, 2.46 \mathrm{mmol})$ changed the color of the suspension to slightly brown. After 30 min a diethyl $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3$ mL) were added. The layers were separated and the organic phase was extracted was diethyl $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered and distilled. The crude material was purified by flash column chromatography using hexane and EtOAc (5:1) to afford 11, as a colorless oil ($180 \mathrm{mg}, 83 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2966, 2934, 2873, 1608, 1434, 1218, 1190, 1158, 1131, 1111, 1070, 991, 942, 881, 854, 793, 739 and 688; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.09(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.25(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}, \mathrm{CH})$, $5.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.05(1 \mathrm{H}, \mathrm{qqd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}$ and $1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 165.6 (C), 149.7 (C), 147.3 (C), $146.0(\mathrm{C}), 123.9$ (C), 115.6 (C), 105.5 (CH), $100.2(\mathrm{CH}), 96.6\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 28.7(\mathrm{CH}), 21.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 9.5\left(\mathrm{CH}_{3}\right)$; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 264\left(\mathrm{M}^{+}, 100 \%\right), 219(60.0) ;\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}\right.$ requires 264.1362. Found 264.1358).

2-Isopropyl-6-methoxy-5-methoxymethoxy-4,7-dimethyl-benzofuran (11a)

Benzofuran 11 ($180 \mathrm{mg}, 0.68 \mathrm{mmol}$) was dissolved in dry THF (3 mL) cooled to $-40{ }^{\circ} \mathrm{C}$ and n-Buli (2.5 M in hexanes, $0.80 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added. After one hour at -30° the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and methyl iodide ($0.43 \mathrm{~mL}, 68 \mathrm{mmol}$) was added. The reaction mixture was warmed to $-25^{\circ} \mathrm{C}$ over 2 h and finally quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL). The reaction mixture was extracted with diethyl $\mathrm{Et}_{2} \mathrm{O}$ (3 x 3 mL), dried over MgSO_{4}, filtered and the solvent was removed. The crude material was purified by flash column chromatography using hexane and EtOAc (7:1) to afford 11a, as a colorless oil ($180 \mathrm{mg}, 95 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (film) 2964, 2926, 2361, 2344, 1654, $1560,1458,1389,1338,1160,1118,1093,972,1160,1118,1093,972,880,738$ and 610; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}, \mathrm{CH}), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.06\left(1 \mathrm{H}, \mathrm{qqd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}\right.$ and $1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.41(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 165.1 (C), 150.0 (C), 148.4 (C), 144.7 (C), 124.5(C), 120.2, (C), 112.9 (C), $100.0\left(\mathrm{CH}_{2}\right)$, $99.1(\mathrm{CH}), 61.2\left(\mathrm{CH}_{3}\right), 57.9\left(\mathrm{CH}_{3}\right), 28.7(\mathrm{CH}), 21.5\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right), 9.5\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (EI) $278\left(\mathrm{M}^{+}, 91.7 \%\right), 233$ (100.0).

2-Isopropyl-6-methoxy-4,7-dimethyl-benzofuran-5-ol (7)

To a solution of 11a ($150 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added aqueous $\mathrm{HCl}(1.0$ $\mathrm{M}, 0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The reaction was warmed to $50^{\circ} \mathrm{C}$. After $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was
added and the product was extracted to $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic fractions were combined, washed with brine and dried over MgSO_{4}. The solvent was removed and the crude material purified by flash column chromatography using hexane and EtOAc ($4: 1$) to afford 7 as a light brown oil (123 mg, 96\%). $v_{\max } / \mathrm{cm}^{-1}$ (film) $3751,2964,2926,1458$, $1398,1289,1115,1073,880,738$ and $610 ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.29(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}$, $\mathrm{CH}), 5.51(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.05(1 \mathrm{H}, \mathrm{qqd}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}$ and 1 Hz , $\mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 165.0 (C), 147.4 (C), 143.0 (C), 142.8 (C), 124.8(C), 111.6, (C), 111.1 (C), $98.8(\mathrm{CH}), 61.8\left(\mathrm{CH}_{3}\right), 28.7(\mathrm{CH}), 21.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right), 9.6\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 234$ $\left(\mathrm{M}^{+}, 52.1 \%\right), 219$ (100.0).

1-(2-Isopropyl-6-methoxy-5-methoxymethoxy-7-methyl-benzofuran-4-yl)-2-methyl-propan-1-ol (15)

Benzofuran 11 ($180 \mathrm{mg}, 0.68 \mathrm{mmol}$) was dissolved in dry THF (3 mL) cooled to $-40^{\circ} \mathrm{C}$ and n-Buli (2.5 M in hexanes, $0.80 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added. After one hour at -30° the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and isobutyraldehyde ($0.25 \mathrm{~mL}, 2.7 \mathrm{mmol}$) was added. The reaction mixture was warmed to $-25^{\circ} \mathrm{C}$ over 2 h and finally quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). The reaction mixture was extracted with diethyl $\mathrm{Et}_{2} \mathrm{O}$ (3 x 5 mL), dried over MgSO_{4}, filtered and the solvent was removed. The crude material was purified by SiO_{2} flash column chromatography using hexane and EtOAc (5:1) to afford 15, as a colorless oil ($205 \mathrm{mg}, 90 \%$). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.51(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}$, $\mathrm{CH}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) 4.74(1 \mathrm{H}, \mathrm{dd}, J=9.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, \mathrm{CHOH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.05\left(1 \mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}\right.$ and $1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{d}, J=$ $5.5 \mathrm{~Hz}, \mathrm{OH}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35-2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.34(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.33\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH} H_{3} \mathrm{CH}\right), 0.74(3 \mathrm{H}, \mathrm{d}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.1(\mathrm{C}), 150.6(\mathrm{C}), 147.9(\mathrm{C}), 144.6(\mathrm{C})$,
$126.2(\mathrm{C}), 122.7(\mathrm{C}), 114.8(\mathrm{C}), 100.5\left(\mathrm{CH}_{2}\right), 100.2(\mathrm{CH}), 76.1(\mathrm{CH}), 61.1\left(\mathrm{CH}_{3}\right), 58.0$ $\left(\mathrm{CH}_{3}\right), 34.6(\mathrm{CH}), 28.6(\mathrm{CH}), 21.4\left(2 \times \mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right) 9.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI})$ $336\left(\mathrm{M}^{+}, 44.0 \%\right), 293(26.7), 274(100), 233(94.6)$; $\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}\right.$ requires 336.1937. Found 336.1942).

2-Isopropyl-6-methoxy-4-(1-methoxy-2-methyl-propyl)-7-methyl-benzofuran-5-ol

 (8)

To a solution of $15(47 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added aqueous $\mathrm{HCl}(1 \mathrm{~N})$ $(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The reaction was warmed to $50^{\circ} \mathrm{C}$. After $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the product was extracted to $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic fractions were combined, washed with brine and dried over MgSO_{4}. The solvent was removed and the crude material purified by SiO_{2} flash column chromatography using hexane and ethyl acetate (4:1) to afford $\mathbf{8}$ as a colorless oil ($33 \mathrm{mg}, 77 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (film) 2960, 2925, 1603, 1449, $1403,1356,1283,1104,944,894,816,738$ and $610 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.10(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 6.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.33(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CHOMe}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.34(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.04\left(1 \mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}\right.$ and $7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20-2.10(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.34\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CH}\right), 0.85(3 \mathrm{H}$, d, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.0(\mathrm{C}), 144.8(\mathrm{C}), 143.5(\mathrm{C}), 142.2(\mathrm{C})$, $123.2(\mathrm{C}), 114.0,(\mathrm{C}), 99.1(\mathrm{CH}), 87.1(\mathrm{CH}), 61.3\left(\mathrm{CH}_{3}\right), 58.0\left(\mathrm{CH}_{3}\right), 34.3(\mathrm{CH}), 28.7$ (CH), $21.4\left(2 \times \mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right) 9.5\left(\mathrm{CH}_{3}\right) ; m / \mathrm{z}(\mathrm{EI}) 306\left(\mathrm{M}^{+}, 19.3 \%\right), 278$, (21.8), 274 (100.0), 263 (63.2), 233 (67.6).

2,5-Dihydroxy-2-isopropyl-4,7-dimethyl-2H-benzofuran-6-one (14)

To a solution of benzofuran $7(14 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a 0.2 M solution of boron tribromide and lutidine (1:1) ($1.2 \mathrm{~mL}, 0.24 \mathrm{mmol}$) in DCM. After stirring for 10 h at $0-4^{\circ} \mathrm{C}$, methanol was added and the reaction stirred at room temperature. After $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added and the layers separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic fractions were combined, washed with brine and dried over MgSO_{4}. The solvent was removed to give a crude sample of catechol 18 which was used directly in the next reaction.

To a solution of crude catechol $\mathbf{1 8}$ in DCM $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of dimethyldioxirane (0.09 M in acetone, $0.73 \mathrm{~mL}, 0.07 \mathrm{mmol}$). After stirring for 20 min at this temperature, the reagent and solvent were removed by evaporation. The crude product was purified by SiO_{2} flash column chromatography using hexane and $\mathrm{Et}_{2} \mathrm{O}(4: 1)$ to afford para-quinone methide $\mathbf{1 4}$ as a yellow oil ($10 \mathrm{mg}, 73 \%$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3356 , $2969,2360,2343,1671,1613,1584,1568,1381,1329,1263,1116,1091,926,891,788$, 737 and $610 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.18(1 \mathrm{H}, \mathrm{br}$ s, OH$), 6.63(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.09(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 2.23\left(1 \mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}\right.$ and $7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 182.2 (C), 166.9 (C), 145.9 (C), $135.8(\mathrm{CH}), 133.9$ (C), 116.8 (C), 106.3 (C), $104.6(\mathrm{CH}), 35.3\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right), 10.0\left(\mathrm{CH}_{3}\right), 7.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 236$ $\left(\mathrm{M}^{+}, 32.8 \%\right), 193$ (100.0); ($\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ requires 236.1049. Found 236.1044).

2,5-Dihydroxy-2-isopropyl-4-(1-methoxy-2-methyl-propyl)-7-methyl-2H-

 benzofuran-6-one (17)

To a solution of benzofuran $\mathbf{8}(9 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a 0.2 M solution of boron tribromide and lutidine (1:1) $(0.60 \mathrm{~mL}, 0.12 \mathrm{mmol})$ in DCM. After stirring for 10 h at $0-4^{\circ} \mathrm{C}$, methanol was added and the reaction stirred at room temperature. After $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added and the layers separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic fractions were combined, washed with brine and dried over MgSO_{4}. The solvent was removed to give a crude sample of catechol 19 which was used directly in the next reaction.

To a solution of crude catechol 19 in DCM $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of dimethyldioxirane (0.9 M in acetone, $0.39 \mathrm{~mL}, 0.035 \mathrm{mmol}$). After stirring for 20 min at this temperature, the reagent and solvent were removed by evaporation. The crude product was purified by SiO_{2} flash column chromatography using hexane and ethyl acetate (6:1) to afford both diasteroisomers of para-quinone methide $\mathbf{1 7}$ as a yellow oil (6 $\mathrm{mg}, 65 \%) . v_{\max } / \mathrm{cm}^{-1}$ (film) 3331, 2966, 2926, 1611, 1378, 1332, 1092, 920, 738 and 610; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.06$ and $7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.20$ and $4.18(1 \mathrm{H}$, d, $J=9 \mathrm{~Hz}, \mathrm{CHOMe}), 3.26$ and $3.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.00$ and $3.97(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.26(1$ $\mathrm{H}, \mathrm{qq}, J=7 \mathrm{~Hz}$ and $\left.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 2.2 .02-2.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.02 and $1.00\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.93$ and 0.92 ($3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$), 0.76 and $0.75(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH} \mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz , quaternary carbons missing after 20000 scans $): \delta_{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.9$ and $138.8(\mathrm{CH}), 100.2(\mathrm{C}), 83.2$ and $83.0(\mathrm{CH}), 57.7$ and $57.3\left(\mathrm{CH}_{3}\right), 36.3(\mathrm{CH}), 33.7$ and $33.6(\mathrm{CH}), 20.0$ and $19.9\left(\mathrm{CH}_{3}\right), 19.2$ and $19.1\left(\mathrm{CH}_{3}\right), 18.1$ and $18.0\left(\mathrm{CH}_{3}\right), 17.3$ and 17.2 $\left(\mathrm{CH}_{3}\right), 7.99\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{El}) 308\left(\mathrm{M}^{+}, 10.3 \%\right), 265$ (100.0), 205 (55.0); $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}\right.$ requires 308.1624. Found 308.1617).

S10

S11

(20)

S14

S15

S16

S19

