Stereoselectivity Toward VX is Determined by Interactions with Residues of the Acyl Pocket as well as of the Peripheral Anionic Site of AChE

Suplementary Material

Synthesis of nc-VX Enantiomers

The VX "non-charged" analogs were synthesized as outlined in schemes 1,2
Scheme 1

6

i. 3-Hydroxy-3-isopropyl-4-methyl-pentanoic acid tert- butyl ester (1)

Zinc powder ($11.35 \mathrm{~g}, 0.175 \mathrm{~mol}$) and iodine (50 mg) were refluxed in dry THF for 1 hr . A mixture of tert- butyl bromoacetate ($22.5 \mathrm{~g}, 0.115 \mathrm{~mol}$) and 2,4-dimethyl-3-one ($11.4 \mathrm{~g}, 0.1$ $\mathrm{mol})$ in dry THF (80 mL) was added dropwise over a period of 30 min and the solution was further refluxed for 3 hr . The solution was cooled down to rt and the pH was adjusted to 1 by addition of hydrochloric acid. The precipitate was filtered off, the filtrate was washed 3 times with ethyl acetae. The organic layer was extracted with 5% aqueous sodium carbonate $(400 \mathrm{~mL})$, water $(400 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and finally concentrated in vacuo to give a colorless liquid (68\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0 / 95(\mathrm{dd}, \mathrm{J}=7 \mathrm{~Hz}, 12 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H})$, 4.50 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR: $17.3,17.5,27.9,34.9,36.3,81.5,174.3$.
ii. 3-Isopropyl-4-methyl-pent-2-enoic acid tert- butyl ester (2a) and 3-

Isopropyl-4-methyl-pent-3-enoic acid tert- butyl ester (3)

Phosphorus oxychloride $(5.3 \mathrm{~g}, 0.034 \mathrm{~mol}), 1(4.73 \mathrm{~g}, 0.026 \mathrm{~mol})$ and pyridine (27 mL) were stirred for 6 hr at rt . The reaction propagation was followed up by TLC (silica, ether:hexane 3:1). Cold water was added carefully and the solution was extracted with ether (500 mL). The organic layer was washed successively with $1 \mathrm{~N} \mathrm{HCl}(300 \mathrm{~mL})$ and $5 \% \mathrm{NaHCO}_{3}$ $(200 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The crude product was obtained (in 72% yield) as a $1: 1$ isomeric mixture of 2, and used for the next reaction without further purification.
${ }^{1}{ }^{H}$ NMR ($\mathbf{2}, \mathrm{CDCl}_{3}$): $1.02(\mathrm{dd}, \mathrm{J}=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.48(\mathrm{~m}$, $2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{1}$ H NMR (3): 0.89 (d, 6H), 1.45 (s, 9H), 1.63 (s, 3H), 1.69 (s, 3H), 2.80
$(\mathrm{m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 2 \mathrm{H})$.

iii. 3-Isopropyl-4-methyl-pentanoic acid tert- butyl ester (4)

tert- Butyl esters $2(900 \mathrm{mg}, 4.24 \mathrm{mmol}$) were reduced in methanol (80 mL) in the presence of Palladium (310 mg) at $50 \mathrm{psi} \mathrm{H}_{2}$ for 4 hr at rt. The mixture was filtered and the solvent removed in vacup to give 3 as a colorless liquid (80\%).
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $0.86(\mathrm{dd}, 12 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}$,
$2 \mathrm{H}), 2.07$ (d, 2H).
${ }^{13}$ C NMR: 17.8, 18.7, 28.1, 29.4, 34.3, 46.8, 79.8, 174.3 .

iv. 3-Isopropyl-4-methyl-pentan-1-ol (5)

Ester $4(720 \mathrm{mg}, 0.018 \mathrm{~mol})$ in dry ether (5 mL) was added dropwise to a slurry of $\mathrm{LiAlH}_{4}(700 \mathrm{mg}, 0.018 \mathrm{~mol})$ in ether $(150 \mathrm{~mL})$. The mixture was stirred for 15 hr at $\mathrm{rt}, 1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ was added carefully and the solution was extracted with ether $(100 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to give 5 as a colorless liquid (90%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 0.86(\mathrm{dd}, 12 \mathrm{H}), 1.48(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{t}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR: 19.1, 21.4, 29.4, 31.1, 46.4, 63.8 .

v. 3-(2-Bromoethyl)-2,4-dimethylpentane (6)

Alcohol $5(390 \mathrm{mg}, 2.7 \mathrm{mmol})$ and phosphorus tribromide $(783 \mathrm{mg}, 2.9$ mmol) were heated in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{~mL})$ for 5 days at $85{ }^{\circ} \mathrm{C}$. the solvent was removed in vacuo and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ was added. The solution was washed with aqueous potassium carbonate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The resulting colorless oil was purified by column chromatography (silica, ether: hexane $3: 1$) to give pure $\mathbf{6}(18 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}^{3}\right): 0.78(\mathrm{dd}, 12 \mathrm{H}), 1.56(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: 18.9, 21.1, 29.0, 31.8, 33.7, 49.3 .

Scheme2

O-Ethyl methylphosphonothioate sodium salt ($\mathbf{8 R}$ and $\mathbf{8 S}$)

Optically active $7 \quad(30 \mathrm{mg}, \quad 0.4 \mathrm{mmol}$, each enantiomer prepared following the above procedure) and $\mathrm{NaH}(6 \mathrm{mg}, 0.25 \mathrm{mmol}$) were stirred for 30 min at rt in DMSO-d6 $(300 \mu \mathrm{~L})$. The reaction propagation was followed up by ${ }^{31} \mathrm{P}$ NMR. The resulting salts 7 were further used as such in the final reaction.
${ }^{1} \mathrm{H}$ NMR (6R or 6S, DMSO-d6): $1.23(\mathrm{t}, 3 \mathrm{H}), 1.45(\mathrm{~d}, 14.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.82$
($\mathrm{m}, 2 \mathrm{H}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (6R or 6S, DMSO-d6): 72.7

O-Ethyl S-(3-isopropyl-4-methylpentyl) methylphosphonothioate (9R and 9S)

The preparation of optically active $\mathbf{9 R}$ or $\mathbf{9 S}$ was carried out in an NMR tubeon mixing either $\mathbf{8 R}$ or $\mathbf{8 S}$ (from step e) with bromide $\mathbf{5}(38 \mathrm{mg}, 0.19 \mathrm{~mol})$ and heating up the tube to $40{ }^{\circ} \mathrm{C}$ for 48 hr . Each solution was poured into a separatory funnel containing 5% aqueous sodium bicarbonate $(10 \mathrm{~mL})$ and extracted with ether $(10 \mathrm{~mL})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the solvents were removed at 8 mmHg and the crude product was purified by column chromatography (ether:hexane 1:1, 40\% yield).

Products 9R and 9S were obtained $>95 \%$ enantiomerically pure as evidenced from ${ }^{1} \mathrm{H}$ NMR using the chiral reagent $[\mathrm{R}]-222$-trifluoro 1-(9-anthryl) ethanol.
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 9 R or $9 \mathbf{S}$): $0.86(\mathrm{dd}, 12 \mathrm{H}), 0.92(\mathrm{t}, 1 \mathrm{H}), 1.33(\mathrm{t}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.70$
(m, 2H), 1.77 (d, J=15.6 Hz, 3H), $2.81(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (9 R or $9 \mathbf{S}$): $16.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=7.2 \mathrm{~Hz}\right.$), $19.120 .1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=110 \mathrm{~Hz}\right), 21.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=3.2\right.$
Hz), 29.0, 29.7 (d, $\mathrm{J}_{\mathrm{PC}}=4.9 \mathrm{~Hz}$), $31.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right.$), 49.9, $61.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR (9R or 9S): 50.6 ppm .

