Supporting Information

Reversible Alkyl C-H Bond Activation, Alcohol Dehydrogenation and *Trans-Cis* Dihydride Isomerisation in Ruthenium N-Heterocyclic Carbene Complexes

Suzanne Burling, Belinda M. Paine, Mary F. Mahon, Michael K. Whittlesey* and Jonathan M. J. Williams

Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

		Page
I. Syntl	netic, Spectroscopic and Analytical Data	2
II. X-R	ay Experimental Data	4
III. Stru	actural Data for 1	4
	(a) Figure S-1: Molecular structure of 1	4
	(b) Table S-1: Crystal and Data Collection Parameters	5
	(c) Table S-2: Atomic Coordinates	6
	(d) Table S-3: Bond Lengths and Angles	8
	(e) Table S-4: Anisotropic Displacement Parameters	10
	(f) Table S-5: Hydrogen Coordinates and Isotropic Displacement Parameters	12
IV. Stru	uctural Data for 3	14
	(a) Figure S-2: Molecular structure Diagram of 3	14
	(b) Table S-6: Crystal and Data Collection Parameters	15
	(b) Table S-7: Atomic Coordinates	16
	(c) Table S-8: Bond Lengths and Angles	18
	(d) Table S-9: Anisotropic Displacement Parameters	20
	(e) Table S-10: Hydrogen Coordinates and Isotropic Displacement Parameters	22

I. Synthetic, Spectroscopic and Analytical Data

Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂ (1).

Toluene (20 mL) was added to IEt₂Me₂ (700 mg, 4.60 mmol) and Ru(PPh₃)₃(CO)(H)₂ (1.4 g, 1.53 mmol) in a schlenk flask under argon. The mixture was heated at 70 °C with stirring for 20 hours. The volatiles were removed in vacuo and the red/brown oily residue was washed with ethanol (1 x 20 mL), left to form a precipitate and then filtered. The solid was dissolved in benzene (5 mL) and heated at 70 °C for 1 hour. The volatiles were removed in vacuo and the resulting solid dissolved in THF and layered with hexane affording $Ru(IEt_2Me_2)(PPh_3)_2(CO)H_2$ (1) as a white crystalline solid. Yield 600 mg, 48%. ¹H (THF- d_8 , 298K): δ 7.62-7.48 (m, 12H, PPh₃), 7.25-7.07 (m, 18H, PPh₃), 3.69 (q, $J_{HH} = 6.6$ Hz, 2H, CH_2), 3.28 (q, $J_{HH} = 6.6$ Hz, 2H, CH₂), 2.00 (s, 3H, im-CH₃), 1.72 (s, 3H, im-CH₃), 1.01 (t, J_{HH} = 6.6 Hz, 3H, CH₃), 0.34 (t, J_{HH} = 6.6 Hz, 3H, CH₃), -6.38 (dt, $J_{\text{HP}} = 26.3$ Hz, $J_{\text{HH}} = 5.5$ Hz, 1H, Ru-H), -9.99 (dt, $J_{\text{HP}} = 24.7$ Hz, $J_{\rm HH} = 5.5 \text{ Hz}, 1\text{H}, \text{Ru-}H$). ³¹P{¹H} (THF- $d_8, 298 \text{ K}$): $\delta 63.7 \text{ (s, PPh_3)}$. ¹³C{¹H}(THF- $d_8, 298 \text{ K}$): δ 208.3 (t, J_{CP} = 9.2 Hz, CO), 191.1 (t, J_{CP} = 8.3 Hz, Ru-C(carbene)), 141.6 (t, J_{CP} = 19.3 Hz, PPh₃), 134.6 (t, $J_{CP} = 6.4$ Hz, PPh₃), 128.6 (s, PPh₃), 127.6 (t, $J_{CP} = 4.6$ Hz, PPh₃), 124.2 (s, im-C), 124.1 (s, im-C), 43.9 (s, CH₂, Et), 43.7 (s, CH₂, Et), 15.9 (s, im-CH₃), 14.2 (s, im-CH₃), 9.6 (s, CH₃, Et), 9.4 (s, CH₃, Et). IR (nujol, cm⁻¹): 1913 (v_{CO}). Analysis for RuC₄₆H₄₈N₂OP₂ [found (calculated)]: C, 68.6 (68.39); H, 6.08 (5.99); N, 3.46 (3.47).

Ru(IEt₂Me₂)'(PPh₃)₂(CO)H (3)

Trimethylvinylsilane (100 equivalents) was added to $Ru(IEt_2Me_2)(PPh_3)_2(CO)H_2$ (1) (15 mg) dissolved in d₈-THF (0.6 mL). The sample was heated at 50 °C for 16 hours. ³¹P{¹H} NMR spectroscopy indicated complete conversion to the C-H activated complex **3**. The solvent was

removed *in vacuo* affording a yellow solid. Yellow crystals for x-ray analysis were grown by layering a THF solution with hexane. ¹H (benzene- d_6 , 298 K): δ 7.96-7.84 (m, 12H, PPh₃), 7.11-6.87 (m, 18H, PPh₃), 3.28 (q, $J_{HH} = 7.1$ Hz, 2H, CH_2 -CH₃), 2.67-2.78 (m, 2H CH₂), 1.50 (s, 3H, im-CH₃), 1.34(s, 3H, im-CH₃), 1.28-1.16 (m, 2H, CH₂), 0.73 (t, $J_{HH} = 7.1$ Hz, 3H, CH₃), -7.01 (t, $J_{HP} = 23.1$ Hz, 1H, Ru-H). ³¹P{¹H} (benzene- d_6 , 298 K): δ 61.1 (s, PPh₃). ¹³C{¹H} (benzene- d_6 , 298 K): δ 206.4 (t, $J_{CP} = 11.7$ Hz, CO), 191.7 (t, $J_{CP} = 8.8$ Hz, Ru-C(carbene)), 139.3 (t, $J_{CP} =$ 19.0 Hz, PPh₃), 134.3 (t, $J_{CP} = 5.9$ Hz, PPh₃), 128.4 (s, PPh₃), 127.6 (t, $J_{CP} = 4.4$ Hz, PPh₃), 122.3 (m, 2 x im-C), 50.2 (s, CH₂-CH₂-Ru), 42.9 (s, CH₂, Et), 15.7 (s, CH₃, Et), 9.5 (s, im-CH₃), 8.9 (s, im-CH₃), 8.3 (t, $J_{CP} = 11.0$ Hz, CH₂-Ru). IR (nujol, cm⁻¹): 1884 (v_{CO}). Analysis for RuC₄₆H₄₆N₂OP₂ [found (calculated)]: C, 68.7 (68.56); H, 6.38 (5.75); N, 3.20 (3.48).

trans-Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂ (4).

Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂ (**1**) was stirred in ethanol for 16 hours at room temperature. The resulting green precipitate was filtered and washed with THF, affording *trans*-Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂ (**4**) as a white solid. ¹H (pyridine-*d*₅, 298 K): δ 7.51-7.40 (m, 12 H, PPh₃), 7.39-7.30 (m, 18H, PPh₃) 3.93 (q, *J*_{HH} = 7.1 Hz, 4H, CH₂), 1.76 (s, 6H, im-CH₃), 0.67 (t, *J*_{HH} = 7.1 Hz, 6H, CH₃), -4.90 (t, *J*_{HP} = 20.3 Hz, 2H, Ru-*H*). ³¹P{¹H} (pyridine-*d*₅, 298 K): δ 63.2 (s, PPh₃). ¹³C{¹H}(pyridine-*d*₅, 298 K): δ 209.9 (CO^{*}), 183.6 (Ru-*C*(carbene)^{*}), 139.5 (t, *J*_{CP} = 19.2 Hz, PPh₃), 134.3 (m, PPh₃), 128.6 (m, PPh₃), 127.3 (m, PPh₃), 124.4 (s, im-*C*), 43.2 (s, CH₂, Et), 14.3 (s, im-CH₃), 9.3 (s, CH₃, Et). IR (nujol, cm⁻¹): 1905 (v_{CO}). Analysis for RuC₄₆H₄₈N₂OP₂ [found (calculated)]: C, 68.2 (68.39); H, 6.00 (5.99); N, 3.51 (3.47). * Due to low solubility and rapid isomerisation, ¹³C shifts obtained by ¹³C-¹H HMBC spectroscopy.

II. X-ray Experimental Data.

III. Structural data for 1

Figure S-1. Molecular structure of 1.

Table S-1. Crystal data and structure refinement for $[Ru(IEt_2Me_2)(PPh_3)_2(CO)H_2]$ **1**.

Identification code	h04mkw1
Empirical formula	$C_{46}H_{48}N_2OP_2Ru$
Formula weight	807.87
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	Cc
Unit cell dimensions	a = 23.5760(2)Å α = 90°
	b = 9.9740(1)Å β = 113.239(1)°
	$c = 18.2220(2)$ Å $\gamma = 90^{\circ}$
Volume	3937.20(7) Å ³
Z	4
Density (calculated)	1.363 Mg/m ³
Absorption coefficient	0.517 mm ⁻¹
F(000)	1680
Crystal size	0.15 x 0.10 x 0.10 mm
Theta range for data collection	3.58 to 27.49°
Index ranges	-30<=h<=28; -12<=k<=12; -23<=l<=23
Reflections collected	32590
Independent reflections	8871 [R(int) = 0.0583]
Reflections observed (> 2σ)	7674
Data Completeness	0.997
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8871 / 16 / 503
Goodness-of-fit on F ²	1.033
Final R indices [I>2σ(I)]	R1 = 0.0355 wR2 = 0.0735
R indices (all data)	R1 = 0.0470 wR2 = 0.0773
Absolute structure parameter	0.21(2)
Largest diff. peak and hole	0.373 and -0.425 eÅ ⁻³

Notes: Ru, C1, and O1 disordered in ratio 80:20 with their primed labelled counterparts. H1 are refined at 1.6 Å from metal centres. No attempt made to locate the second hydride ligand because of disorder. **Table S-2**. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for [Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂] **1**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	Х	у	Z	U(eq)
Ru(1)	7255(1)	7902(1)	7552(1)	20(1)
P(1)	6311(1)	7671(1)	6467(1)	22(1)
P(2)	8255(1)	7629(1)	8464(1)	23(1)
O(1)	6805(2)	7517(4)	8893(2)	40(1)
N(1)	6906(2)	10946(3)	7653(2)	22(1)
N(2)	7647(2)	10899(3)	7261(2)	22(1)
C(1)	6966(2)	7721(5)	8371(2)	24(1)
C(2)	7278(2)	10070(2)	7478(3)	24(1)
C(3)	7046(2)	12285(4)	7559(2)	25(1)
C(4)	7516(2)	12252(4)	7321(2)	25(1)
C(5)	6429(2)	10615(5)	7940(2)	32(1)
C(6)	6649(2)	10758(6)	8852(3)	52(1)
C(7)	8135(2)	10481(5)	7004(2)	32(1)
C(8)	7938(2)	10427(6)	6117(3)	56(1)
C(9)	6676(2)	13441(4)	7657(3)	39(1)
C(10)	7873(2)	13371(5)	7167(3)	42(1)
C(11)	5937(2)	9268(4)	6028(2)	23(1)
C(12)	6274(2)	10105(4)	5742(2)	31(1)
C(13)	6077(2)	11409(4)	5498(3)	40(1)
C(14)	5535(3)	11863(5)	5538(3)	51(1)
C(15)	5185(3)	11032(5)	5784(3)	50(1)
C(16)	5389(2)	9721(5)	6036(2)	37(1)
C(17)	5701(2)	6793(4)	6669(2)	26(1)
C(18)	5345(2)	5761(5)	6186(3)	37(1)
C(19)	4895(2)	5121(6)	6360(3)	50(1)
C(20)	4778(2)	5492(5)	7013(3)	42(1)
C(21)	5101(3)	6530(5)	7478(3)	55(1)
C(22)	5560(2)	7160(5)	7314(2)	48(1)
C(23)	6276(2)	6758(4)	5574(2)	28(1)
C(24)	5851(2)	7053(5)	4819(2)	36(1)
C(25)	5800(2)	6294(5)	4159(3)	40(1)
C(26)	6184(2)	5197(5)	4261(3)	44(1)
C(27)	6615(2)	4876(5)	5012(3)	43(1)
C(28)	6668(2)	5669(4)	5667(2)	36(1)
C(29)	8652(2)	9198(4)	8905(2)	26(1)
C(30)	8328(2)	10095(5)	9188(3)	38(1)
C(31)	8545(3)	11379(5)	9403(3)	54(1)
C(32)	9077(3)	11799(5)	9345(3)	56(1)
C(33)	9411(2)	10899(5)	9093(2)	47(1)
C(34)	9210(2)	9613(4)	8888(2)	33(1)
C(35)	8302(2)	6678(4)	9342(2)	28(1)
C(36)	7953(2)	5504(4)	9232(3)	40(1)
C(37)	7982(2)	4744(5)	9874(3)	48(1)
C(38)	8349(3)	5115(5)	10633(3)	53(2)

C(39)	8704(2)	6236(6)	10757(3)	52(2)
C(40)	8691(2)	7041(5)	10129(2)	34(1)
C(41)	8854(2)	6763(4)	8219(2)	26(1)
C(42)	9276(2)	5900(5)	8754(3)	41(1)
C(43)	9734(2)	5304(5)	8566(3)	48(1)
C(44)	9780(2)	5564(5)	7860(3)	45(1)
C(45)	9369(3)	6434(5)	7328(3)	55(1)
C(46)	8895(2)	6995(5)	7500(3)	51(1)
Ru(1A)	7331(1)	7923(2)	7286(1)	18(1)
O(1A)	7768(5)	7623(12)	5961(6)	22(3)
C(1A)	7603(7)	7727(17)	6492(9)	14(3)

Ru(1)-C(1)	1.878(4)	Ru(1)-C(2)	2.168(2)
Ru(1)-P(2)	2.3034(11)	Ru(1)-P(1)	2.3329(11)
P(1)-C(23)	1.837(3)	P(1)-C(17)	1.842(4)
P(1)-C(11)	1.843(4)	P(1)-Ru(1A)	2.289(3)
P(2)-C(35)	1.826(4)	P(2)-C(29)	1.837(4)
P(2)-C(41)	1.853(4)	P(2)-Ru(1A)	2.398(3)
O(1)-C(1)	1.173(4)	N(1)-C(2)	1.362(4)
N(1)-C(3)	1.402(5)	N(1)-C(5)	1.453(4)
N(2)-C(2)	1.368(5)	N(2)-C(4)	1.399(5)
N(2)-C(7)	1.462(4)	C(2)-Ru(1A)	2,181(3)
C(3)-C(4)	1.341(3)	C(3)-C(9)	1 499(5)
C(4)-C(10)	1 488(6)	C(5)-C(6)	1 540(6)
C(7)-C(8)	1.497(6)	C(11)-C(16)	1.010(0)
C(11)-C(12)	1 388(5)	C(12)-C(13)	1 393(6)
C(13)- $C(14)$	1.384(7)	C(14)-C(15)	1.353(0) 1.364(7)
C(15)-C(16)	1.304(7)	C(17) - C(22)	1.304(7)
C(17) - C(18)	1 300(6)	C(18) - C(10)	1.331(3)
C(17) - C(10)	1.335(0)	C(10) - C(13)	1.377(3)
C(19)-C(20)	1.373(0)	C(20)-C(21)	1.303(7)
C(21)-C(22)	1.302(0)	C(23)-C(24)	1.377(0)
C(25)-C(26)	1.392(0)	C(24)- $C(25)$	1.300(0)
	1.385(7)	C(26)-C(27)	1.382(7)
C(27)- $C(28)$	1.395(6)	C(29)-C(34)	1.392(5)
C(29)-C(30)	1.401(5)	C(30)-C(31)	1.377(7)
C(31)-C(32)	1.366(8)	C(32)-C(33)	1.385(7)
C(33)-C(34)	1.367(6)		1.400(6)
C(35)-C(40)	1.411(6)	C(36)-C(37)	1.373(6)
C(37)-C(38)	1.361(8)	C(38)-C(39)	1.362(8)
C(39)-C(40)	1.389(6)	C(41)-C(46)	1.372(5)
C(41)-C(42)	1.384(6)	C(42)-C(43)	1.388(6)
C(43)-C(44)	1.358(6)	C(44)-C(45)	1.375(7)
C(45)-C(46)	1.392(6)	Ru(1A)-C(1A)	1.809(13)
O(1A)-C(1A)	1.182(16)		
C(1)-Ru(1)-C(2)	99.85(17)	C(1)-Ru(1)-P(2)	90.30(14)
C(2)-Ru(1)-P(2)	96.83(15)	C(1)-Ru(1)-P(1)	98.04(14)
C(2)-Ru(1)-P(1)	94.88(15)	P(2)-Ru(1)-P(1)	164.25(3)
C(23)-P(1)-C(17)	100.15(17)	C(23)-P(1)-C(11)	101.43(17)
C(17)-P(1)-C(11)	102.66(17)	C(23)-P(1)-Ru(1A)	107.50(14)
C(17)-P(1)-Ru(1A)	128.62(14)	C(11)-P(1)-Ru(1A)	112.80(15)
C(23)-P(1)-Ru(1)	119.61(14)	C(17)-P(1)-Ru(1)	115.88(13)
C(11)-P(1)-Ru(1)	114.51(14)	Ru(1A)-P(1)-Ru(1)	14.36(4)
C(35)-P(2)-C(29)	102.40(18)	C(35)-P(2)-C(41)	100.38(17)
C(29)-P(2)-C(41)	101.40(18)	C(35)-P(2)-Ru(1)	112.58(13)
C(29)-P(2)-Ru(1)	114.50(14)	C(41)-P(2)-Ru(1)	122.83(13)
C(35)-P(2)-Ru(1A)	124.53(14)	C(29)-P(2)-Ru(1A)	114.43(14)
C(41)-P(2)-Ru(1A)	110.58(13)	Ru(1)-P(2)-Ru(1A)	13.97(4)
C(2)-N(1)-C(3)	112.2(3)	C(2)-N(1)-C(5)	126.8(3)

	0		
Table S-3.	Bond lengths [Å] and an	gles [°] for [Ru(IEt ₂ Me ₂	$(PPh_3)_2(CO)H_2$] 1.

C(3)-N(1)-C(5)	120.9(3)	C(2)-N(2)-C(4)	112.1(2)
C(2)-N(2)-C(7)	126.2(3)	C(4)-N(2)-C(7)	121.7(3)
O(1)-C(1)-Ru(1)	175.1(4)	N(1)-C(2)-N(2)	102.82(17)
N(1)-C(2)-Ru(1)	126.2(2)	N(2)-C(2)-Ru(1)	130.9(2)
N(1)-C(2)-Ru(1A)	138.6(3)	N(2)-C(2)-Ru(1A)	117.6(2)
Ru(1)-C(2)-Ru(1A)	15.30(4)	C(4)-C(3)-N(1)	106.3(4)
C(4)-C(3)-C(9)	130.7(4)	N(1)-C(3)-C(9)	122.8(3)
C(3)-C(4)-N(2)	106.6(4)	C(3)-C(4)-C(10)	130.0(5)
N(2)-C(4)-C(10)	123.4(3)	N(1)-C(5)-C(6)	112.8(3)
N(2)-C(7)-C(8)	114.1(3)	C(16)-C(11)-C(12)	119.0(4)
C(16)-C(11)-P(1)	124.8(3)	C(12)-C(11)-P(1)	115.8(3)
C(11)-C(12)-C(13)	120.9(4)	C(14)-C(13)-C(12)	119.1(4)
C(15)-C(14)-C(13)	120.6(4)	C(14)-C(15)-C(16)	119.9(4)
C(11)-C(16)-C(15)	120.3(4)	C(22)-C(17)-C(18)	116.2(3)
C(22)-C(17)-P(1)	120.7(3)	C(18)-C(17)-P(1)	123.1(3)
C(19)-C(18)-C(17)	121.4(4)	C(20)-C(19)-C(18)	120.7(5)
C(21)-C(20)-C(19)	119.3(4)	C(20)-C(21)-C(22)	120.2(4)
C(21)-C(22)-C(17)	122.1(4)	C(24)-C(23)-C(28)	118.3(4)
C(24)-C(23)-P(1)	122.7(3)	C(28)-C(23)-P(1)	118.9(3)
C(23)-C(24)-C(25)	122.0(4)	C(26)-C(25)-C(24)	119.1(5)
C(27)-C(26)-C(25)	120.2(4)	C(26)-C(27)-C(28)	119.9(4)
C(23)-C(28)-C(27)	120.4(4)	C(34)-C(29)-C(30)	118.4(4)
C(34)-C(29)-P(2)	124.5(3)	C(30)-C(29)-P(2)	116.6(3)
C(31)-C(30)-C(29)	120.2(4)	C(32)-C(31)-C(30)	120.8(5)
C(31)-C(32)-C(33)	119.1(5)	C(34)-C(33)-C(32)	121.3(4)
C(33)-C(34)-C(29)	120.0(4)	C(36)-C(35)-C(40)	118.0(4)
C(36)-C(35)-P(2)	118.8(3)	C(40)-C(35)-P(2)	123.2(3)
C(37)-C(36)-C(35)	120.7(5)	C(38)-C(37)-C(36)	120.9(5)
C(37)-C(38)-C(39)	119.6(4)	C(38)-C(39)-C(40)	121.7(5)
C(39)-C(40)-C(35)	119.0(5)	C(46)-C(41)-C(42)	118.4(4)
C(46)-C(41)-P(2)	119.9(3)	C(42)-C(41)-P(2)	121.7(3)
C(41)-C(42)-C(43)	120.3(4)	C(44)-C(43)-C(42)	120.8(5)
C(43)-C(44)-C(45)	119.5(4)	C(44)-C(45)-C(46)	119.9(4)
C(41)-C(46)-C(45)	120.9(4)	C(1A)-Ru(1A)-C(2)	107.2(5)
C(1A)-Ru(1A)-P(1)	94.5(5)	C(2)-Ru(1A)-P(1)	95.77(17)
C(1A)-Ru(1A)-P(2)	102.7(5)	C(2)-Ru(1A)-P(2)	93.76(17)
P(1)-Ru(1A)-P(2)	156.95(9)	O(1A)-C(1A)-Ru(1A)	178.3(15)

Symmetry transformations used to generate equivalent atoms:

Table S-4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for $[\text{Ru}(\text{IEt}_2\text{Me}_2)(\text{PPh}_3)_2(\text{CO})\text{H}_2]$ **1**. The anisotropic displacement factor exponent takes the form: -2 gpi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U

Atom	U11	U22	U33	U23	U13	U12
Ru(1)	18(1)	15(1)	24(1)	1(1)	6(1)	0(1)
P(1)	17(1)	19(1)	29(1)	2(1)	6(1)	0(1)
P(2)	18(1)	20(1)	28(1)	-1(1)	6(1)	1(1)
O(1)	43(2)	41(2)	42(2)	10(2)	24(2)	5(1)
N(1)	23(2)	18(2)	25(1)	3(1)	10(1)	-2(1)
N(2)	21(2)	24(2)	23(1)	1(1)	9(1)	2(1)
C(1)	24(2)	22(2)	24(2)	3(2)	8(2)	3(2)
C(2)	22(1)	21(1)	23(1)	-4(2)	4(1)	5(2)
C(3)	29(2)	14(2)	30(2)	-1(1)	11(2)	0(1)
C(4)	27(2)	23(2)	26(2)	4(2)	11(2)	1(2)
C(5)	20(2)	37(2)	38(2)	8(2)	11(2)	-2(2)
C(6)	41(3)	77(3)	47(3)	21(2)	27(2)	8(2)
C(7)	22(2)	42(2)	30(2)	-12(2)	10(2)	-3(2)
C(8)	31(2)	107(4)	32(2)	-18(2)	17(2)	2(2)
C(9)	38(2)	24(2)	57(2)	-10(2)	23(2)	3(2)
C(10)	45(3)	30(2)	59(3)	6(2)	28(2)	-3(2)
C(11)	19(2)	21(2)	25(2)	2(1)	3(2)	5(2)
C(12)	23(2)	27(2)	37(2)	5(2)	6(2)	-2(2)
C(13)	38(3)	26(2)	41(2)	12(2)	-1(2)	-6(2)
C(14)	72(4)	28(3)	38(2)	5(2)	6(2)	16(2)
C(15)	61(3)	58(3)	36(2)	21(2)	23(2)	42(3)
C(16)	35(2)	48(3)	32(2)	8(2)	20(2)	10(2)
C(17)	27(2)	23(2)	31(2)	6(1)	13(2)	6(2)
C(18)	31(2)	41(2)	42(2)	-16(2)	18(2)	-19(2)
C(19)	41(3)	52(3)	58(3)	-12(2)	21(2)	-21(2)
C(20)	34(3)	44(3)	51(3)	7(2)	19(2)	-7(2)
C(21)	80(3)	53(3)	52(3)	-3(2)	46(3)	-15(2)
C(22)	67(3)	44(2)	39(2)	-13(2)	29(2)	-30(2)
C(23)	28(2)	25(2)	39(2)	-6(2)	20(2)	-6(2)
C(24)	25(2)	45(3)	36(2)	-9(2)	8(2)	-5(2)
C(25)	46(3)	36(3)	37(2)	-7(2)	17(2)	-11(2)
C(26)	46(3)	48(3)	46(2)	-19(2)	27(2)	-20(2)
C(27)	42(3)	35(2)	62(3)	-10(2)	33(2)	-1(2)
C(28)	30(2)	38(2)	40(2)	1(2)	15(2)	5(2)
C(29)	26(2)	24(2)	25(2)	0(1)	6(2)	6(2)
C(30)	28(2)	38(3)	39(2)	-13(2)	4(2)	4(2)
C(31)	54(3)	38(3)	51(3)	-19(2)	-1(2)	13(2)
C(32)	72(4)	31(3)	40(2)	-4(2)	-4(2)	-18(2)
C(33)	53(3)	54(3)	31(2)	-8(2)	14(2)	-29(2)
C(34)	28(2)	40(2)	30(2)	-14(2)	10(2)	-15(2)
C(35)	20(2)	30(2)	33(2)	1(2)	11(2)	5(2)
C(36)	42(2)	31(2)	52(2)	3(2)	25(2)	5(2)
C(37)	55(3)	32(2)	74(3)	11(2)	44(3)	7(2)
C(38)	66(4)	43(3)	67(3)	23(2)	46(3)	21(3)

C(39)	42(3)	73(4)	39(2)	12(2)	15(2)	17(3)
C(40)	32(3)	31(3)	39(2)	4(2)	13(2)	4(2)
C(41)	21(2)	24(2)	28(2)	-2(1)	5(2)	5(2)
C(42)	37(2)	45(2)	44(2)	6(2)	18(2)	10(2)
C(43)	29(2)	54(3)	57(3)	6(2)	12(2)	20(2)
C(44)	28(2)	51(3)	61(3)	-19(2)	23(2)	-1(2)
C(45)	76(3)	56(3)	51(3)	-2(2)	44(3)	17(2)
C(46)	74(3)	49(2)	39(2)	4(2)	33(2)	28(2)
Ru(1A)	16(1)	18(1)	20(1)	-1(1)	6(1)	-1(1)
O(1A)	22(4)	24(4)	23(3)	-2(2)	11(3)	-2(2)
C(1A)	11(4)	11(4)	17(4)	-2(3)	2(3)	-2(3)

Table S-5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for [Ru(IEt₂Me₂)(PPh₃)₂(CO)H₂] **1**.

$H(5A)$ e_{291} 9681 7787 38 $H(5B)$ 6070 11211 7678 38 $H(6A)$ 6310 10529 9013 78 $H(6B)$ 6780 11685 9008 78 $H(6C)$ 6998 10152 9116 78 $H(7B)$ 8283 9582 7228 38 $H(7B)$ 8486 11112 7229 38 $H(7B)$ 8486 11112 7229 38 $H(7B)$ 8486 11112 7229 38 $H(8A)$ 8288 10145 5990 83 $H(8C)$ 7799 11317 5889 83 $H(8C)$ 7799 11317 5889 83 $H(9B)$ 6662 13399 8187 58 $H(9D)$ 6255 13394 7246 58 $H(10C)$ 8314 13236 7484 63 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(15)$ 4804 11338 577 44 $H(20)$ <	Atom	х	у	Z	U(eq)
H(5A) 6291 9681 7787 38 $H(6B)$ 6070 11211 7678 38 $H(6A)$ 6310 10529 9013 78 $H(6E)$ 6998 10152 9116 78 $H(6E)$ 6998 10152 9116 78 $H(7A)$ 8283 9582 7228 38 $H(7B)$ 8486 11112 7229 38 $H(7B)$ 8486 11112 7229 38 $H(8A)$ 8288 10145 5990 83 $H(8B)$ 7799 11317 5889 83 $H(8B)$ 7799 11317 5889 83 $H(9B)$ 6662 13399 8187 58 $H(9C)$ 6255 13394 7246 58 $H(10A)$ 7742 14223 7317 63 $H(10B)$ 7797 13390 6598 63 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(14)$ 5406 12762 5394 61 $H(13)$ 5414 5496 5727 44 $H(14)$ 5414 5496 5727 44 $H(14)$ 5414 5496 5727 44 $H(20)$ 4476 5031 7140 51 $H(24)$			-		· · ·
H(5B) 6070 11211 7678 38 $H(6A)$ 6310 10529 9013 78 $H(6B)$ 6780 11685 9008 78 $H(6C)$ 6998 10152 9116 78 $H(7A)$ 8283 9582 7228 38 $H(8A)$ 8288 10145 5990 83 $H(8B)$ 7799 11317 5889 83 $H(8E)$ 7599 9784 5889 83 $H(8E)$ 7599 9784 5889 83 $H(9B)$ 6662 13399 8187 58 $H(10A)$ 7742 14223 7317 63 $H(10B)$ 7797 13390 6598 63 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(16)$ 5414 5496 5727 44 $H(20)$ 47	H(5A)	6291	9681	7787	38
H(6A) 6310 10529 9013 78 $H(6C)$ 6998 10152 9116 78 $H(7A)$ 8283 9582 7228 38 $H(7A)$ 8283 9582 7229 38 $H(7A)$ 8288 10145 5990 83 $H(7B)$ 8486 11112 7229 38 $H(8A)$ 8288 10145 5990 83 $H(8B)$ 7799 11317 5889 83 $H(8C)$ 7599 9784 5889 83 $H(9A)$ 6869 14285 7603 58 $H(9B)$ 6662 13399 8187 58 $H(9B)$ 6662 13399 8187 58 $H(10A)$ 7742 14223 7317 63 $H(10B)$ 7797 13390 6598 63 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(18)$ 5414 5496 5727 44 $H(19)$ 4664 4415 6026 60 $H(22)$ 5786 7867 7653 57 $H(24)$ 5505 6522 3643 48 $H(26)$ 61	H(5B)	6070	11211	7678	38
H(6E) 6780 11685 9008 78 H(GC) 6998 10152 9116 78 H(7A) 8283 9582 7228 38 H(7B) 8486 11112 7229 38 H(8A) 8288 10145 5990 83 H(8B) 7799 11317 5889 83 H(8C) 7599 9784 5889 83 H(9C) 6869 14285 7603 58 H(9C) 6255 13394 7246 58 H(9C) 6255 13394 7246 58 H(10A) 7742 14223 7317 63 H(10B) 7797 13390 6598 63 H(10C) 8314 13236 7484 63 H(112) 6644 9785 5712 37 H(13) 6311 11978 5306 48 H(14) 5406 12762 5394 61 H(15) 5147 9146 6211 44 H(18) 5414 5496 5727 44 H(21) 5011 6821 7917 66 H(22) 5786 7867 7653 57 H(24) 5855 7801 4748 44	H(6A)	6310	10529	9013	78
H(6C)699810152911678H(7A)82839582722838H(7B)848611112722938H(8A)828810145599083H(8A)828810145599083H(8C)75999784588983H(8C)75999784588983H(9A)686914285760358H(9B)666213399818758H(9C)625513394724658H(10A)774214223731763H(10B)779713390659863H(10C)831413236748463H(12)66449785571237H(13)631111978530648H(14)540612762539461H(15)480411338578660H(16)51479146621144H(18)54145496572744H(19)46644415602660H(20)44765031714051H(21)50116821791766H(22)57867867765357H(24)58557801474844H(25)55056522364348H(26)61524664381453H(27)68745416508351H(33)9786111819	H(6B)	6780	11685	9008	78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(6C)	6998	10152	9116	78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(7A)	8283	9582	7228	38
H(8A)828810145599083 $H(8B)$ 779911317588983 $H(8C)$ 75999784588983 $H(9A)$ 686914285760358 $H(9B)$ 666213399818758 $H(9C)$ 625513394724658 $H(10A)$ 774214223731763 $H(10B)$ 779713390659863 $H(10C)$ 831413236748463 $H(12)$ 66449785571237 $H(13)$ 631111978530648 $H(14)$ 540612762539461 $H(15)$ 480411338578660 $H(16)$ 51479146621144 $H(18)$ 54145496572744 $H(19)$ 46644415602660 $H(20)$ 44765031714051 $H(21)$ 50116821791766 $H(22)$ 57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(33)$ 978611181906356<	H(7B)	8486	11112	7229	38
h(8B) 7799 11317 5889 83 $H(8C)$ 7599 9784 5889 83 $H(9A)$ 6869 14285 7603 58 $H(9B)$ 6662 13399 8187 58 $H(9C)$ 6255 13394 7246 58 $H(10A)$ 7742 14223 7317 63 $H(10B)$ 7797 13390 6598 63 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(18)$ 5414 5496 5727 44 $H(18)$ 5414 5496 5727 44 $H(18)$ 5414 5496 5727 44 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 <	H(8A)	8288	10145	5990	83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(8B)	7799	11317	5889	83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(8C)	7599	9784	5889	83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6869	14285	7603	58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(9R)	6662	13300	8187	58
In (30)1023310334124030 $H(10A)$ 774214223731763 $H(10B)$ 779713390659863 $H(10C)$ 831413236748463 $H(12)$ 66449785571237 $H(13)$ 631111978530648 $H(14)$ 540612762539461 $H(15)$ 480411338578660 $H(16)$ 51479146621144 $H(18)$ 54145496572744 $H(19)$ 46644415602660 $H(20)$ 44765031714051 $H(21)$ 50116821791766 $H(22)$ 57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(38)$ 835745941107463 $H(39)$ 896864741128862<		6255	13304	7246	58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(100)	7742	1/222	7240	63
H(10C) 7137 13390 0393 0393 0393 $H(10C)$ 8314 13236 7484 63 $H(12)$ 6644 9785 5712 37 $H(13)$ 6311 11978 5306 48 $H(14)$ 5406 12762 5394 61 $H(15)$ 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(18)$ 5414 5496 5727 44 $H(19)$ 4664 4415 6026 60 $H(20)$ 4476 5031 7140 51 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 963 56 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ <td></td> <td>7707</td> <td>14223</td> <td>6509</td> <td>62</td>		7707	14223	6509	62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0214	12226	0090	62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6644	13230	7404 5710	03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Pi(12)$	0044	9700	5712	37
H(14)5406 12762 539461 $H(15)$ 480411338578660 $H(16)$ 51479146621144 $H(18)$ 54145496572744 $H(19)$ 46644415602660 $H(20)$ 44765031714051 $H(21)$ 50116821791766 $H(22)$ 57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(33)$ 978611181906356 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(44)$ 100935147773554 $H(44)$ 100935147773554 $H(46)$ 85967545711461	$\Pi(13)$	5311	11978	5306	48
H(15) 4804 11338 5786 60 $H(16)$ 5147 9146 6211 44 $H(18)$ 5414 5496 5727 44 $H(19)$ 4664 4415 6026 60 $H(20)$ 4476 5031 7140 51 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(44)$ 10093 5147 7735 54 $H(44)$ 10093 5147 7735 54 $H(46)$ 8596 <t< td=""><td>H(14)</td><td>5406</td><td>12762</td><td>5394</td><td>61</td></t<>	H(14)	5406	12762	5394	61
H(16) 5147 9146 6211 44 $H(18)$ 5414 5496 5727 44 $H(19)$ 4664 4415 6026 60 $H(20)$ 4476 5031 7140 51 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(44)$ 10093 5147 7735 54 $H(44)$ 10093 5147 7735 54 $H(46)$ 8596 7545 7114 61	H(15)	4804	11338	5786	60
H(18) 5414 5496 5727 44 $H(19)$ 4664 4415 6026 60 $H(20)$ 4476 5031 7140 51 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(44)$ 10093 5147 7735 54 $H(44)$ 10093 5147 7735 54 $H(46)$ 8596 7545 7114 61	H(16)	5147	9146	6211	44
H(19)46644415602660 $H(20)$ 44765031714051 $H(21)$ 50116821791766 $H(22)$ 57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(18)	5414	5496	5/2/	44
H(20) 4476 5031 7140 51 $H(21)$ 5011 6821 7917 66 $H(22)$ 5786 7867 7653 57 $H(24)$ 5585 7801 4748 44 $H(25)$ 5505 6522 3643 48 $H(26)$ 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(39)$ 8968 6474 11288 62 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(43)$ 10019 4708 8936 58 $H(44)$ 10093 5147 7735 54 $H(46)$ 8596 7545 7114 61	H(19)	4664	4415	6026	60
H(21)50116821791766 $H(22)$ 57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(20)	4476	5031	7140	51
H(22)57867867765357 $H(24)$ 55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(46)$ 85967545711461	H(21)	5011	6821	7917	66
H(24)55857801474844 $H(25)$ 55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(37)$ 77423949978857 $H(38)$ 835745941107463 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(44)$ 100935147773554 $H(44)$ 100935147773554 $H(46)$ 85967545711461	H(22)	5786	7867	7653	57
H(25)55056522364348 $H(26)$ 61524664381453 $H(27)$ 68744116508351 $H(28)$ 69745465618043 $H(30)$ 79579818923246 $H(31)$ 832211981959465 $H(32)$ 921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(37)$ 77423949978857 $H(38)$ 835745941107463 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(24)	5585	7801	4748	44
H(26) 6152 4664 3814 53 $H(27)$ 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(39)$ 8968 6474 11288 62 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(43)$ 10019 4708 8936 58 $H(44)$ 10093 5147 7735 54 $H(45)$ 9410 6653 6843 66 $H(46)$ 8596 7545 7114 61	H(25)	5505	6522	3643	48
H(27) 6874 4116 5083 51 $H(28)$ 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(39)$ 8968 6474 11288 62 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(43)$ 10019 4708 8936 58 $H(44)$ 10093 5147 7735 54 $H(46)$ 8596 7545 7114 61	H(26)	6152	4664	3814	53
H(28) 6974 5465 6180 43 $H(30)$ 7957 9818 9232 46 $H(31)$ 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(39)$ 8968 6474 11288 62 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(43)$ 10019 4708 8936 58 $H(44)$ 10093 5147 7735 54 $H(45)$ 9410 6653 6843 66 $H(46)$ 8596 7545 7114 61	H(27)	6874	4116	5083	51
H(30)79579818923246H(31)832211981959465H(32)921712695947567H(33)978611181906356H(34)94529003873340H(36)76935229870747H(37)77423949978857H(38)835745941107463H(39)896864741128862H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(28)	6974	5465	6180	43
H(31) 8322 11981 9594 65 $H(32)$ 9217 12695 9475 67 $H(33)$ 9786 11181 9063 56 $H(34)$ 9452 9003 8733 40 $H(36)$ 7693 5229 8707 47 $H(37)$ 7742 3949 9788 57 $H(38)$ 8357 4594 11074 63 $H(39)$ 8968 6474 11288 62 $H(40)$ 8940 7823 10227 41 $H(42)$ 9253 5716 9253 49 $H(43)$ 10019 4708 8936 58 $H(44)$ 10093 5147 7735 54 $H(45)$ 9410 6653 6843 66 $H(46)$ 8596 7545 7114 61	H(30)	7957	9818	9232	46
H(32)921712695947567 $H(33)$ 978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(37)$ 77423949978857 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(31)	8322	11981	9594	65
H(33)978611181906356 $H(34)$ 94529003873340 $H(36)$ 76935229870747 $H(37)$ 77423949978857 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(32)	9217	12695	9475	67
H(34)94529003873340 $H(36)$ 76935229870747 $H(37)$ 77423949978857 $H(38)$ 835745941107463 $H(39)$ 896864741128862 $H(40)$ 894078231022741 $H(42)$ 92535716925349 $H(43)$ 100194708893658 $H(44)$ 100935147773554 $H(45)$ 94106653684366 $H(46)$ 85967545711461	H(33)	9786	11181	9063	56
H(36)76935229870747H(37)77423949978857H(38)835745941107463H(39)896864741128862H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(34)	9452	9003	8733	40
H(37)77423949978857H(38)835745941107463H(39)896864741128862H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(36)	7693	5229	8707	47
H(38)835745941107463H(39)896864741128862H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(37)	7742	3949	9788	57
H(39)896864741128862H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(38)	8357	4594	11074	63
H(40)894078231022741H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(39)	8968	6474	11288	62
H(42)92535716925349H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(40)	8940	7823	10227	41
H(43)100194708893658H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(42)	9253	5716	9253	49
H(44)100935147773554H(45)94106653684366H(46)85967545711461	H(43)	10019	4708	8936	58
H(45)94106653684366H(46)85967545711461	H(44)	10093	5147	7735	54
H(46) 8596 7545 7114 61	H(45)	9410	6653	6843	66
	H(46)	8596	7545	7114	61

H(1) 7336(19) 6344(8) 7360(20) 50					
	H(1)	7336(19)	6344(8)	7360(20)	50

IV. Structural data for 3.

Figure S-2. Molecular structure of 3.

Table S-6. Crystal data and structure refinement for [Ru(IEt₂Me₂)'(PPh₃)₂(CO)H] **3**.

Identification code	h04mkw2
Empirical formula	$C_{46}H_{46}N_2OP_2Ru$
Formula weight	805.86
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2₁/a
Unit cell dimensions	$a = 16.9680(1)$ Å $\alpha = 90^{\circ}$
	$b = 10.5800(1)$ Å $\beta = 109.720(1)^{\circ}$
	$c = 23.1530(2)$ Å $\gamma = 90^{\circ}$
Volume	3912.60(6) Å ³
Z	4
Density (calculated)	1.368 Mg/m ³
Absorption coefficient	0.520 mm ⁻¹
F(000)	1672
Crystal size	0.15 x 0.15 x 0.10 mm
Theta range for data collection	3.85 to 27.47°
Index ranges	-22<=h<=22; -13<=k<=13; -29<=l<=30
Reflections collected	58667
Independent reflections	8901 [R(int) = 0.0497]
Reflections observed (> 2σ)	7511
Data Completeness	0.995
Absorption correction	None
Max. and min. transmission	0.9498 and 0.9260
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8901 / 5 / 484
Goodness-of-fit on F ²	1.051
Final R indices [I>2σ(I)]	R1 = 0.0276 wR2 = 0.0629
R indices (all data)	R1 = 0.0375 wR2 = 0.0671
Largest diff. peak and hole	0.356 and -0.642 eÅ ⁻³

Notes: H1, H5A, H5B, H6A and H6B located and refined at fixed distances of 1.6Å (H1 – Ru1) and 0.89Å for the subsequent pairs, from the relevant parent carbon atom.

Table S-7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for [Ru(IEt₂Me₂)'(PPh₃)₂(CO)H] **3**.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	У	Z	U(eq)
Du(1)	2270(4)	29/(1)	7452(1)	22(1)
D(1)	2313(1)	12(1)	8/22(1)	25(1)
$\Gamma(1)$	1262(1)	102(1)	6403(1)	23(1)
$\frac{\Gamma(2)}{\Omega(1)}$	2970(1)	192(1)	7024(1)	24(1)
$\frac{O(1)}{N(2)}$	3079(1)	403(1)	7024(1)	43(1)
$\frac{N(2)}{N(1)}$	17/2(1)	2772(1)	7915(1)	20(1)
$\frac{IN(1)}{C(1)}$	2280(1)	270(2)		29(1)
C(1)	3209(1)	2228(2)	7170(1)	29(1)
C(2)	1602(1)	2330(2)	7499(1)	20(1)
C(3)	1092(1)	4002(2)	7007(1)	27(1)
C(4)	1272(1)	4400(2)	9125(1)	37(1)
$\frac{C(5)}{C(6)}$	1373(1)	1607(Z)		34(1)
C(0)	1009(1)	2427(2)	7620(1)	29(1)
$\frac{\mathcal{O}(I)}{\mathcal{O}(P)}$	3008(1)	3421(2)		40(1) 54(1)
C(8)	3927(1)	3571(2)	7283(1)	<u> </u>
C(9)		4799(2)	8114(1)	48(1)
$\frac{C(10)}{C(11)}$	2304(2)	5/8/(2)		57(1) 20(1)
C(11)	898(1)	1696(2)	6126(1)	26(1)
$\frac{C(12)}{C(12)}$	516(1)	2459(2)	6447(1)	31(1)
C(13)	258(1)	3673(2)	6257(1)	40(1)
C(14)	381(1)	4149(2)	5736(1)	51(1)
C(15)	722(1)	3390(2)	5398(1)	54(1)
$\frac{C(16)}{C(17)}$	976(1)	2165(2)	5588(1)	39(1)
$\frac{C(17)}{C(10)}$	432(1)	-757(2)	6431(1)	28(1)
$\frac{C(18)}{C(18)}$	-365(1)	-459(2)	6036(1)	35(1)
<u>C(19)</u>	-1039(1)	-1248(2)	5995(1)	43(1)
<u>C(20)</u>	-923(1)	-2347(2)	6334(1)	43(1)
<u>C(21)</u>	-132(1)	-2658(2)	6720(1)	43(1)
<u>C(22)</u>	538(1)	-1861(2)	6778(1)	37(1)
<u>C(23)</u>	1688(1)	-541(2)	5878(1)	30(1)
<u>C(24)</u>	2359(1)	-21(2)	5/38(1)	35(1)
<u>C(25)</u>	2620(1)	-533(2)	5283(1)	44(1)
<u>C(26)</u>	2219(1)	-1582(2)	4961(1)	49(1)
C(27)	1562(2)	-2113(2)	5092(1)	51(1)
<u>C(28)</u>	1290(1)	-1595(2)	5547(1)	41(1)
<u>C(29)</u>	3990(1)	-1389(2)	8523(1)	30(1)
C(30)	4413(1)	-1876(2)	9107(1)	41(1)
$\overline{\mathcal{C}(31)}$	4920(1)	-2936(2)	9179(1)	49(1)
0(32)	5020(1)	-3517(2)	8675(1)	42(1)
0(33)	4607(1)	-3052(2)	8098(1)	38(1)
<u>C(34)</u>	4088(1)	-2001(2)	8022(1)	33(1)
<u>C(35)</u>	4071(1)	1269(2)	8798(1)	29(1)
<u>C(36)</u>	3773(1)	2498(2)	8799(1)	35(1)
<u>C(37)</u>	4312(1)	3492(2)	9045(1)	41(1)
C(38)	5164(1)	3279(2)	9294(1)	44(1)

C(39)	5472(1)	2074(2)	9297(1)	44(1)
C(40)	4933(1)	1074(2)	9051(1)	37(1)
C(41)	2863(1)	-375(2)	9034(1)	30(1)
C(42)	2938(1)	361(2)	9541(1)	40(1)
C(43)	2555(2)	-13(2)	9963(1)	50(1)
C(44)	2114(1)	-1114(2)	9882(1)	48(1)
C(45)	2034(1)	-1860(2)	9378(1)	44(1)
C(46)	2403(1)	-1489(2)	8957(1)	37(1)

Ru(1)-C(1)	1.8691(18)	Ru(1)-C(2)	2.0893(18)
Ru(1)-C(6)	2.2107(17)	Ru(1)-P(1)	2.3217(5)
Ru(1)-P(2)	2.3315(5)	P(1)-C(29)	1.8445(18)
P(1)-C(41)	1.8450(18)	P(1)-C(35)	1.8456(18)
P(2)-C(17)	1.8391(18)	P(2)-C(11)	1.8428(17)
P(2)-C(23)	1.8434(18)	O(1)-C(1)	1.160(2)
N(2)-C(2)	1.357(2)	N(2)-C(4)	1.400(2)
N(2)-C(7)	1.460(2)	N(1)-C(2)	1.360(2)
N(1)-C(3)	1.387(2)	N(1)-C(5)	1.466(2)
C(3)-C(4)	1.350(3)	C(3)-C(9)	1.496(3)
C(4)-C(10)	1.493(3)	C(5)-C(6)	1.535(3)
C(7)-C(8)	1.519(3)	C(11)-C(16)	1.390(3)
C(11)-C(12)	1.396(2)	C(12)-C(13)	1.380(3)
C(13)-C(14)	1.386(3)	C(14)-C(15)	1.378(3)
C(15)-C(16)	1.389(3)	C(17)-C(18)	1.389(3)
C(17)-C(22)	1.395(3)	C(18)-C(19)	1.392(3)
C(19)-C(20)	1.378(3)	C(20)-C(21)	1.378(3)
C(21)-C(22)	1.384(3)	C(23)-C(28)	1.392(3)
C(23)-C(24)	1.398(3)	C(24)-C(25)	1.382(3)
C(25)-C(26)	1.382(3)	C(26)-C(27)	1.371(3)
C(27)-C(28)	1.397(3)	C(29)-C(34)	1.386(3)
C(29)-C(30)	1.397(3)	C(30)-C(31)	1.388(3)
C(31)-C(32)	1.379(3)	C(32)-C(33)	1.373(3)
C(33)-C(34)	1.393(3)	C(35)-C(40)	1.395(3)
C(35)-C(36)	1.396(3)	C(36)-C(37)	1.384(3)
C(37)-C(38)	1.383(3)	C(38)-C(39)	1.377(3)
C(39)-C(40)	1.390(3)	C(41)-C(42)	1.378(3)
C(41)-C(46)	1.392(3)	C(42)-C(43)	1.401(3)
C(43)-C(44)	1.363(3)	C(44)-C(45)	1.377(3)
C(45)-C(46)	1.379(3)		
C(1)-Ru(1)-C(2)	98.44(7)	C(1)-Ru(1)-C(6)	174.86(8)
C(2)-Ru(1)-C(6)	76.88(7)	C(1)-Ru(1)-P(1)	88.25(5)
C(2)-Ru(1)-P(1)	99.83(5)	C(6)-Ru(1)-P(1)	90.44(5)
C(1)-Ru(1)-P(2)	95.41(6)	C(2)-Ru(1)-P(2)	94.25(5)
C(6)-Ru(1)-P(2)	87.14(5)	P(1)-Ru(1)-P(2)	164.789(17)
C(29)-P(1)-C(41)	97.85(8)	C(29)-P(1)-C(35)	102.45(8)
C(41)-P(1)-C(35)	102.49(8)	C(29)-P(1)-Ru(1)	116.16(6)
C(41)-P(1)-Ru(1)	117.09(6)	C(35)-P(1)-Ru(1)	117.80(6)
C(17)-P(2)-C(11)	102.40(8)	C(17)-P(2)-C(23)	101.06(8)
C(11)-P(2)-C(23)	102.37(8)	C(17)-P(2)-Ru(1)	116.79(6)
C(11)-P(2)-Ru(1)	114.95(6)	C(23)-P(2)-Ru(1)	116.96(6)
C(2)-N(2)-C(4)	111.49(15)	C(2)-N(2)-C(7)	124.28(16)
C(4)-N(2)-C(7)	124.23(16)	C(2)-N(1)-C(3)	112.16(16)
C(2)-N(1)-C(5)	118.68(15)	C(3)-N(1)-C(5)	129.12(16)
O(1)-C(1)-Ru(1)	176.38(17)	N(2)-C(2)-N(1)	103.60(15)
N(2)-C(2)-Ru(1)	138.54(13)	N(1)-C(2)-Ru(1)	117.82(12)
C(4)-C(3)-N(1)	106.25(16)	C(4)-C(3)-C(9)	130.82(19)

Table S-8. Bond lengths [Å] and angles $[^{\circ}]$ for $[\text{Ru}(\text{IEt}_2\text{Me}_2)'(\text{PPh}_3)_2(\text{CO})\text{H}]$ **3**.

N(1)-C(3)-C(9)	122.90(19)	C(3)-C(4)-N(2)	106.49(17)
C(3)-C(4)-C(10)	131.13(19)	N(2)-C(4)-C(10)	122.33(19)
N(1)-C(5)-C(6)	108.78(14)	C(5)-C(6)-Ru(1)	109.95(11)
N(2)-C(7)-C(8)	112.09(18)	C(16)-C(11)-C(12)	118.24(17)
C(16)-C(11)-P(2)	123.73(14)	C(12)-C(11)-P(2)	117.73(13)
C(13)-C(12)-C(11)	121.51(18)	C(12)-C(13)-C(14)	119.41(19)
C(15)-C(14)-C(13)	119.86(19)	C(14)-C(15)-C(16)	120.6(2)
C(15)-C(16)-C(11)	120.21(19)	C(18)-C(17)-C(22)	118.47(17)
C(18)-C(17)-P(2)	122.83(14)	C(22)-C(17)-P(2)	118.60(14)
C(17)-C(18)-C(19)	120.20(18)	C(20)-C(19)-C(18)	120.74(19)
C(19)-C(20)-C(21)	119.34(18)	C(20)-C(21)-C(22)	120.42(19)
C(21)-C(22)-C(17)	120.78(18)	C(28)-C(23)-C(24)	117.95(17)
C(28)-C(23)-P(2)	122.79(15)	C(24)-C(23)-P(2)	119.26(14)
C(25)-C(24)-C(23)	121.2(2)	C(26)-C(25)-C(24)	120.0(2)
C(27)-C(26)-C(25)	119.9(2)	C(26)-C(27)-C(28)	120.4(2)
C(23)-C(28)-C(27)	120.5(2)	C(34)-C(29)-C(30)	118.05(17)
C(34)-C(29)-P(1)	121.75(13)	C(30)-C(29)-P(1)	120.19(14)
C(31)-C(30)-C(29)	120.56(19)	C(32)-C(31)-C(30)	120.44(19)
C(33)-C(32)-C(31)	119.70(18)	C(32)-C(33)-C(34)	120.15(19)
C(29)-C(34)-C(33)	121.08(18)	C(40)-C(35)-C(36)	117.83(17)
C(40)-C(35)-P(1)	123.80(15)	C(36)-C(35)-P(1)	118.31(14)
C(37)-C(36)-C(35)	121.25(18)	C(38)-C(37)-C(36)	120.1(2)
C(39)-C(38)-C(37)	119.65(19)	C(38)-C(39)-C(40)	120.4(2)
C(39)-C(40)-C(35)	120.8(2)	C(42)-C(41)-C(46)	118.25(17)
C(42)-C(41)-P(1)	125.04(15)	C(46)-C(41)-P(1)	116.70(14)
C(41)-C(42)-C(43)	120.2(2)	C(44)-C(43)-C(42)	120.5(2)
C(43)-C(44)-C(45)	119.97(19)	C(44)-C(45)-C(46)	119.7(2)
C(45)-C(46)-C(41)	121.3(2)		

Table S-9. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for $[\text{Ru}(\text{IEt}_2\text{Me}_2)'(\text{PPh}_3)_2(\text{CO})\text{H}]$ **3**. The anisotropic displacement factor exponent takes the form: -2 gpi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U

Atom	U11	U22	U33	U23	U13	U12
Ru(1)	21(1)	24(1)	23(1)	2(1)	7(1)	2(1)
P(1)	23(1)	29(1)	23(1)	3(1)	7(1)	2(1)
P(2)	24(1)	26(1)	21(1)	2(1)	7(1)	2(1)
O(1)	35(1)	49(1)	53(1)	8(1)	24(1)	8(1)
N(2)	28(1)	27(1)	38(1)	2(1)	10(1)	1(1)
N(1)	25(1)	31(1)	31(1)	-3(1)	8(1)	5(1)
C(1)	29(1)	30(1)	28(1)	4(1)	8(1)	6(1)
C(2)	22(1)	29(1)	26(1)	1(1)	6(1)	2(1)
C(3)	29(1)	32(1)	42(1)	-7(1)	6(1)	5(1)
C(4)	30(1)	27(1)	50(1)	-2(1)	8(1)	3(1)
C(5)	29(1)	45(1)	31(1)	0(1)	13(1)	5(1)
C(6)	26(1)	35(1)	27(1)	6(1)	9(1)	1(1)
C(7)	41(1)	34(1)	48(1)	6(1)	21(1)	0(1)
C(8)	38(1)	53(1)	80(2)	-6(1)	30(1)	-9(1)
C(9)	44(1)	44(1)	56(1)	-12(1)	17(1)	10(1)
C(10)	52(1)	27(1)	91(2)	2(1)	25(1)	2(1)
C(11)	22(1)	29(1)	26(1)	4(1)	6(1)	1(1)
C(12)	29(1)	36(1)	26(1)	2(1)	7(1)	4(1)
C(13)	35(1)	38(1)	43(1)	-1(1)	8(1)	10(1)
C(14)	45(1)	39(1)	69(2)	24(1)	19(1)	14(1)
C(15)	49(1)	61(2)	61(2)	38(1)	32(1)	22(1)
C(16)	36(1)	47(1)	39(1)	16(1)	19(1)	15(1)
C(17)	29(1)	30(1)	25(1)	-2(1)	8(1)	-2(1)
C(18)	32(1)	40(1)	29(1)	5(1)	5(1)	-3(1)
C(19)	29(1)	56(1)	36(1)	3(1)	3(1)	-9(1)
C(20)	42(1)	49(1)	37(1)	-5(1)	11(1)	-19(1)
C(21)	50(1)	35(1)	41(1)	5(1)	10(1)	-11(1)
C(22)	36(1)	32(1)	40(1)	5(1)	7(1)	-3(1)
C(23)	32(1)	35(1)	22(1)	1(1)	7(1)	8(1)
C(24)	37(1)	40(1)	31(1)	4(1)	14(1)	10(1)
C(25)	42(1)	57(1)	36(1)	8(1)	19(1)	17(1)
C(26)	54(1)	62(2)	33(1)	-4(1)	16(1)	23(1)
C(27)	55(1)	53(1)	41(1)	-16(1)	10(1)	9(1)
C(28)	41(1)	44(1)	37(1)	-8(1)	11(1)	3(1)
C(29)	25(1)	31(1)	32(1)	7(1)	8(1)	3(1)
C(30)	38(1)	54(1)	32(1)	9(1)	13(1)	15(1)
C(31)	42(1)	63(2)	43(1)	23(1)	16(1)	24(1)
C(32)	37(1)	40(1)	53(1)	13(1)	19(1)	13(1)
C(33)	38(1)	33(1)	43(1)	2(1)	14(1)	5(1)
C(34)	34(1)	30(1)	33(1)	3(1)	8(1)	4(1)
C(35)	30(1)	36(1)	22(1)	2(1)	9(1)	-5(1)
C(36)	34(1)	37(1)	30(1)	0(1)	5(1)	-2(1)
C(37)	48(1)	37(1)	34(1)	0(1)	8(1)	-7(1)
C(38)	46(1)	51(1)	31(1)	-3(1)	9(1)	-21(1)

C(39)	30(1)	62(1)	40(1)	0(1)	10(1)	-10(1)
C(40)	31(1)	46(1)	35(1)	0(1)	12(1)	-2(1)
C(41)	27(1)	34(1)	28(1)	8(1)	9(1)	6(1)
C(42)	45(1)	41(1)	35(1)	0(1)	16(1)	-2(1)
C(43)	60(1)	60(1)	36(1)	0(1)	25(1)	3(1)
C(44)	48(1)	57(1)	47(1)	19(1)	26(1)	4(1)
C(45)	42(1)	42(1)	54(1)	14(1)	21(1)	2(1)
C(46)	37(1)	37(1)	40(1)	6(1)	14(1)	1(1)

Table S-10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for [Ru(IEt₂Me₂)'(PPh₃)₂(CO)H] **3**.

Atom	х	у	Z	U(eq)
H(7A)	2838	4137	6606	48
H(7B)	2930	2632	6662	48
H(8A)	4002	4334	7536	81
H(8B)	4260	3642	7012	81
H(8C)	4111	2830	7549	81
H(9A)	1249	5708	8063	72
H(9B)	1378	4592	8553	72
H(9C)	593	4566	7929	72
H(10Á)	2000	5896	6837	85
H(10B)	2905	5904	7357	85
H(10C)	2109	6412	7510	85
H(12)	431	2135	6804	37
H(13)	-2	4178	6481	48
H(14)	231	4997	5613	61
H(15)	783	3706	5032	64
H(16)	1205	1647	5349	47
H(18)	-451	285	5793	41
H(19)	-1584	-1026	5731	51
H(20)	-1384	-2885	6301	52
H(21)	-45	-3424	6947	52
H(22)	1076	-2069	7058	45
H(24)	2641	697	5959	42
H(25)	3075	-163	5193	52
H(26)	2399	-1935	4649	59
H(27)	1290	-2837	4871	61
H(28)	830	-1965	5631	49
H(30)	4354	-1477	9458	49
H(31)	5199	-3264	9578	59
H(32)	5373	-4235	8727	51
H(33)	4675	-3448	7750	45
H(34)	3795	-1698	7620	40
H(36)	3188	2655	8627	42
H(37)	4096	4321	9043	49
H(38)	5535	3961	9462	52
H(39)	6058	1926	9469	53
H(40)	5154	247	9055	44
H(42)	3251	1124	9604	47
H(43)	2603	506	10308	60
H(44)	1863	-1367	10173	58
H(45)	1726	-2627	9320	53
H(46)	2341	-2004	8609	45
H(1)	2386	-1144	7451	12(4)
H(6A)	784	455	7489	24(5)
H(6B)	1319	-39	8119	31(5)
H(5A)	860(8)	2172(18)	8106(9)	37(5)

H(5B)	1701(11)	1850(20)	8532(5)	41(6)