Isopolar phosphonate analogue of adenosine diphosphate ribose.

Kim Van derpoorten and Marie E Migaud

Supporting Information

Experimental section

HPLC runs were performed on a Gilson Anachem system with UV detector operating at 254 nm. The HPLC chromatography columns, purchased from Supelco. Anion exchange chromatography was run on a SAX (200 x 4.5 mm, 5μ) column with an isocratic elution using phosphate buffer (KH₂PO₄ 50mM, pH=3.5, 5% MeOH) at a flow rate of 1 mL/min while reversed-phase chromatography was run on a RP-C₁₈ column. For method 1, elutions were achieved by increasing the methanol content of a formic acid solution (50 mM, pH=6.0) from 5% to 30 % in a linear gradient over 30 min. For method 2, a solution of formic acid (50 mM, pH=6.0) containing 5% of methanol was used isocratically. The ¹H, ¹³C and ³¹P NMR spectra were recorded in CDCl₃ or in D₂O on a Brucker AC 300 MHz spectrometer. HMQC and ¹H-¹H COSY experiments were performed on a Brucker AMX 500 spectrometer. TMS (0 ppm, ¹H NMR), CDCl₃ (77 ppm, ¹³C NMR) and (EtO)₃PO (0 ppm, ³¹P NMR) were used as internal references. The chemical shifts are reported in $\delta p.p.m.$ J values are recorded in Hz. Liquid secondary ion mass spectra (LSIMS) were recorded in a 3-nitrobenzylalcohol matrix with an effective accelerating voltage of 17 kV on a VG Autospec (Micromass, UK) instrument. Electrospray mass spectra (ES-MS) was performed on a VG Quattro Triple Quadrupole Mass Spectrometer with a flow rate of 20 µL/min and a capillary voltage of 3.5 kV. Reactions were performed under dry argon atmosphere.

Allyloxy diisopropylamino trimethylsilylethynylphosphine (3)

Trimethylsilylacetylene (0.34 g, 3.45 mmol) dissolved in THF (40 mL) was treated with *n*-butyllithium (2 M in hexane, 1.9 mL, 3.80 mmol) at -78°C. The formed trimethylsilylacetylide anion was added dropwise via cannula to a solution of allyloxychlorodiisopropylaminophosphine in THF (40 mL) cooled at -78° C. The resulting mixture was stirred at -78° C for 2h, diluted with CH₂Cl₂ (40 mL) and washed with NaHCO₃ (5%). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in a mixture of petroleum ether and diethylether (9:1) and applied on a short silica column (5g silicagel) to obtain the title compound **3** as a viscous oil in 80 % yield. ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 5.72-5.78 \text{ (m, 1H, H}_2C=CH-CH_2),$ 5.14-5.08 (m, 1H, HC=CH-CH₂), 4.92-4.98 (m, 1H, HC=CH-CH₂), 3.98-4.03 (m, 2H, CH-CH₂-O), 3.32-3.65 (m, 2H, N-[CH(CH₃)₂]₂), 1.01 (dd, J= 2.5, 10.0 Hz, 6H, $CH(CH_3)_2$), 0.99 (dd, J= 2.5, 10.5 Hz, 6H, $CH(CH_3)_2$), -

0.02 (s, 9H, Si(CH₃)₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 135.9 (d, J = 5.1 Hz, H₂C=CH-CH₂), 116.2 (H₂C=CH-CH₂), 111.0 (d, ³J_{PC}=1.8 Hz, C-2 acetylene), 107.5 (d, ²J_{PC}= 20.3 Hz, C-1 acetylene), 67.6 (d, J_{\pm} 17.1 Hz, P-OCH₂-CH₂), 43.1 (CH(CH₃)₂), 43.3 (CH(CH₃)₂), 24.4 (CH(CH₃)₂), 24.9 (CH(CH₃)₂), -0.0 (Si(CH₃)₃). ³¹P NMR (CDCl₃, 121.5 MHz ¹H-decoupled) δ 94.3. MS *m/z* (+ v/e, FAB) [23%, M+H]⁺ 286, [81%, M+H- C₃H₅]⁺ 244, [100%, M+H-C₃H₅O]⁺ 228. HRMS (LSIMS, positive) calcd for C₁₁H₂₃NPSi [M+H-C₃H₅O] 228.1337 found 228.1329

 β - 5 - O - Allyl - 1 -O - methyl - 2,3 - O, O - isopropylidene –D - ribofuranoside (4)²¹

To a solution of D-ribose (6.30 g, 0.042 mol) in 126 mL methanol, H-Dowex resin (1.4 g) was added. The reaction was stirred 48 h at room temperature. The H-Dowex resin was filtrated off and rinsed portionly with ether. The filtrate was dried over Na₂SO₄ and concentrated under reduced pressure. The oil was dissolved in a mixture of acetone (47.2 mL) and 2.2 dimethoxypropane (0.084 mole, 10 mL). H-Dowex resin (1.4 g) was added and the mixture was stirred overnight. The resin was then removed by filtration and the filtrate evaporated under reduced pressure. β -1-O-Methyl-2,3-0,0- isopropylidene -D-ribofuranoside²¹ was obtained in quantitative yields as a colourless oil, $R_f = 0.4$ (CHCl₃/Acetone, 9:1) and data match ref. 20. H NMR $(CDCl_3, 500 \text{ MHz}) \delta 5.05 \text{ (s, 1H, H-1)}, 4.85 \text{ (d, } J = 3.9 \text{ Hz},$ 1H, H-2), 4.59 (d, J = 3.4 Hz, 1H, H-3), 4.44 (t, J = 2.6 Hz, 1H, H-4), 3.6-3.3 (m, 2H, H-5), 3.44 (s, 3H, OCH₃), 1.49 (s, 3H, isopropylidene-CH₃), 1.32 (s, 3H, isopropylidene-¹³C NMR (CDCl₃, 125.75 MHz) δ 112.1 CH_3). (isopropylidene C (CH₃)₂), 110.0 (C-1), 88.8 (C-4), 86.2 (C-2), 81.9 (C-3), 64.4 (C-5), 55.9 (OCH₃), 26.7 (isopropylidene -CH₃), 25.0 (isopropylidene-CH₃). To a solution of β -1-O-methyl-2,3-O,O- isopropylidene – D-ribofuranoside (5 g, 0.025 mole) in 100 mL DMF, BaO (14.5 g, 0.095 mol) and allylbromide (12.1 g, 0.1 mol) were added. The reaction mixture was stirred at rt, overnight. The solution was filtrated through a celite path and rinsed with chloroform. The filtrate was successively washed with water and aq. KCl (10%, w/v), dried over Na₂SO₄ and concentrated to obtain 4 as a colorless oil (5.5 g, 0.023 mol) in 92 % yield. This compound was used without further purification. ¹H NMR (CDCl₃, 300 MHz) & 5.85-5.92 (m, 1H, H₂C=CH-CH₂), 5.28 (dd, J_{gem}= 1.5 Hz, J_{trans}= 17.2 Hz, 1H, H₂C=CH-CH₂), 5.19 (dd, J_{gem}= 1.5 Hz, J_{cis} = 10.4 Hz, 1H, H₂C=CH-CH₂), 4.96 (s, 1H, H-1, β), 4.68 (d, J = 6.0 Hz, 1H, H-2), 4.58 (d, J = 6.8 Hz, 1H, H-4), 4.02 $(d, J = 5.5 \text{ Hz}, 2\text{H}, \text{H}_2\text{C}=\text{CH}-\text{CH}_2), 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3, 3.41-3.48 \text{ (m, 3H, H}-3, 3.41-3.48) \text{ (m, 3H, H}-3.48) \text{ (m, 3H, H}-3.48) \text{ (m, 3H, H$ H-5), 3.32 (s, 3H, O-Me), 1.48 (s, 3H, isopropylidene-CH₃), 1.34 (s, 3H, isopropylidene-CH₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 136.1(H₂C=*C*H-CH₂), 117.5 (H₂*C*=CH-CH₂), 112.7 (isopro- pylidene-CH₃), 109.6 (C-1), 85.5 (C-4), 82.5 (C-2), 77.6 (C-3), 72.5 (H₂C=CH-CH₂O), 71.3 (C-5), 55.8 (O-Me), 26.3 (isopropylidene-CH₃), 25.3 (isopropylidene

 α/β 1,2,3-Tri-*O*, *O*, *O*-acetyl D-ribofuranose (5)²²

CH₃).

The allylated ribose 4 (4.8 g, 0.02 mol) was dissolved at 0°C in solution containing glacial acetic acid (7mL), acetic anhydride (5 mL) and H₂SO₄ (1.67 mL). The reaction mixture was allowed to warm up progressively and stirred overnight. The solution was poured in a mixture of ice and NaHCO₃. The neutralized solution was extracted three times with CHCl₃. The organic layer was dried over Na₂SO₄, filtered and concentrated. α/β -1,2,3-Tri-O,O,Oacetyl 5-O-allyl D-ribofuranose was obtained as a colourless oil in 75 % yield (0.015 mol, 4.75 g). ¹H NMR (CDCl₃, 300 MHz) δ 6.21 (s, 0.5 H, α/β), 6.15 (s, 0.5 H, α/β), 5.41-5.46 (m, H-2, α/β), 5.32-5.36 (m, H-2, α/β), 5.25-5.31 (m, 1H, HC=CH-CH₂), 5.19-5.21 (m, 1H, *H*C=CH-CH₂), 5.18 (s, H-3, α/β), 5.13 (dd, *J* = 1.2, 5.1 Hz, H-3, α/β), 4.29-4.32 (m, 1H, H-4), 4.02-4.07 (m, 2H, H₂C=CH-CH₂), 3.60-3.62 (m, 2H, H-5), 2.07, 2.08, 2.10, 2.11, 2.12, 2.13, 2.14 (m, 9H, COOCH₃). C NMR (CDCl₂, 75.47 MHz) & 169.3, 169.4, 169.6, 169.8, 170.0 (C=O), 134.3 (H₂C=CH-CH₂), 117.3 (H₂C=CH-CH₂), 99.4, 98.3 (C_1 , α/β), 83.7, 81.0 (C_4 , α/β), 80.9, 76.9 (C_3 , α/β), 74.3, 69.6 (C₂, α/β), 72.6 (H₂C=CH-CH₂), 70.4, 20.5, 20.7, 20.8, 21.0, 22.5, 25.3 69.0 (C₅, α/β), (COOCH₃). MS m/z (+ v/e, EI) [5%, M-H] 315, [100%, M-C₂H₃O₂], [64%, M-2xC₂H₃O₂-C₂H₃O] 155, [13%, M-3xC₂H₃O₂] 139. HRMS (LSIMS, positive) calcd for C₁₄H₂₀O₈ [M-H] 315.1079 found 315.1077.

 α/β –5-O-Allyl-1, 2, 3- O, O, O - triacetyl D-ribofuranoside (1.17 g, 3.70 mmol) was dissolved in a mixture of methanol (25 mL) and CH₂Cl₂ (25 mL) and the solution was cooled at 0°C. Palladium chloride (0.23 g. 1.30 mmol) was added and the reaction mixture was warmed up to room temperature and vigorously stirred for 4h. The reaction was quenched with triethylamine (1.7 mL, 12 mmol) and evaporated under pressure. The residue was dissolved in EtOAc and filtrated through a celite path. The filtrate was concentrated under reduced pressure and the was purified by flash chromatography residue (CHCl₃/acetone). Title compound 5 was obtained as a yellowish oil in 58 % (0.60 g, 2.16 mmol, mixture of α and β anomers) and data match ref. 21. ¹H NMR (CDCl₃, 300 MHz) δ 6.06 (H-1, 0.5 H, α/β), 6.08 (H-1, 0.5 H, α/β), 5.31-5.33 (m, 0.5 H, H-2, α/β), 5.27 (d, J = 4.9 Hz, 0.5 H, H-2, α/β), 5.14 (d, J = 1.8 Hz, 0.5 H, H-3, α/β), 5.04 (dd, J = 1.8, 5.2 Hz, 0.5H, H-3, α/β), 4.16-4.18 (m, 1H, H-4), 3.71-3.78 (m, 2H, H-5), 2.00, 2.01, 2.03, 2.04, 2.05, 2.06 (m, 9H, COOCH₃). ¹³C NMR (CDCl₃, 125.75 MHz) δ 169.3, 169.0, 168.9, 168.7, 168.6 (C=O), 98.2, 97.1 (C₁ α/β), 83.8, 81.4 (C₄ α/β), 80.0, 76.0 (C₃ α/β), 73.5, 68.9 $(C_2 \alpha/\beta), 60.8, 60.6 (C_5 \alpha/\beta), 20.0, 19.8, 19.7, 19.6, 19.5,$ 19.4, 19.3 (COOCH₃). HRMS (LSIMS, positive) calcd for C₁₁H₁₆O₈[M-OH] 259.0817 found 259.0830.

2, 3- *O*, *O* -Triacetyl-5-*O*-[(allyl ethynephosphonyl]-D-ribofuranoside (**6**)

To a solution of 5 (0.60 g, 2.10 mmol) and 3 (0.58 g, 2.10 mmol) in acetonitrile (4.5 mL) was added drop wise 2,4-

dinitrophenol (0.58 g, 3.15 mmol) dissolved in acetonitrile (3 mL). The reaction was stirred for 2 h, diluted with 160 mL of CH₂Cl₂ and cooled down to 0°C. The oxidation was carried out by addition of aq-H₂O₂ (30%, w/v, 2.5 mL, 12.40 mmol). The reaction was stirred for an additional 7 min at 0°C then quenched with 355 mL of a saturated NaHCO₃ solution. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure and the oily residue (0.75 g, 1.58 mmol) was dissolved in dry ethanol (7.5 mL) containing CsF (0.30 g, 1.58 mmol). The reaction mixture was stirred for 1 h. After addition of a saturated solution of NaHCO₃, the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The oily residue was purified by flash chromatography (CHCl₃/CH₃OH: 97.5/2.5, v/v) to obtain 6 as colourless oil in 50% yield (3 steps). ¹H NMR (CDCl₃, 300 MHz) δ 6.14 (s, 0.6 H, β-anomer, H-1'), 6.08 (s, 0.4 H, α-anomer, H-1'), 5.85-5.90 (m, 1H, H₂C=CH-CH₂), 5.34 (dd, J=17.2 Hz, 1.2 Hz, 1H, HC=CH-CH₂), 5.24-5.26 (m, 1H, H-2'), 5.22 (dd, J = 10.3 Hz, 0.8 Hz, 1H, HC=CH-CH₂), 5.13 (d, J = 1.3 Hz, H, H-3', α/β), 5.02 (d, J = 3.0Hz, H, α/β), 4.56-4.59 (m, 2H, H₂C=CH-CH₂), 4.13-4.29 (m, 3H, H-4' & H-5'), 2.92 (d, $J_{\rm PH}$ = 13.6 Hz, 1H, Hacetylene), 1.99, 2.00, 2.01, 2.04, 2.05, 2.06 (9H, COOCH₃). ¹³C NMR (CDCl₃, 75.5 MHz) δ 169.6, 169.8, 169.9, 170.1, 170.4, 170.6 (C=O), 132.1 (d, ${}^{4}J_{PC} = 7.2$ Hz, $H_2C=CH-CH_2$), 119.37 (d, ⁵ $J_{PC}=$ 4.4 Hz, $H_2C=CH-CH_2$), 99.74 (C-1' β anomer), 98.3 (C-1' α anomer), 89.3 (d, ²J_{PC}= 52.5 Hz, C-6 acetylene), 89.1 (d, ${}^{2}J_{PC} = 52.3$ Hz, C-6 acetylene), 83.5 (dd , ${}^{4}J_{PC} = 8.1, 2.5 \text{ Hz}$, C-4', α/β , R or S), 80.8 (C-3', α/β), 80.0 (dd, ${}^{3}J_{PC} = 8.2$, 5.0 Hz, C-4', α/β , R or S), 77.7 (C-3', α/β), 74.6 (C-2', α/β), 73.9 (d, ${}^{3}J_{PC} =$ 297.5 Hz, C-7 acetylene), 70.5 (C-2', α/β), 68.2 (d, ${}^{3}J_{PC} =$ 5.1 Hz, H₂C=CH-*C*H₂), 65.8 (d, ${}^{3}J_{PC}$ = 3.3 Hz, C-5', α/β), 65.78 (d, ${}^{3}J_{PC} = 4.8$ Hz, C-5', α/β), 20.8, 20.9, 21.0, 21.3, 21.4, 21.6 (COOCH₃). ³¹P NMR (CDCl₃, 121.5 MHz ¹Hdecoupled) $\delta -7.28$ (d, J = 4.5 Hz, α/β), -7.39 (d, J = 3.4Hz, α/β). MS m/z (+ v/e, Electrospray) [M+Na]⁺ 427.1. MS *m*/*z* (+ v/e, FAB), [100%, M-C₂H₃O₂] 345. HRMS (LSIMS, positive) calcd for $C_{13}H_{14}O_9P$ [M- $C_2H_3O_2$] 345.0375 found 345.0359.

P¹-[Allyloxy-diisopropylamino]-P²-[$(\alpha / \beta - 1, 2, 3 - 0, 0, 0)$ triacetyl)-D-ribofuranosid-5-yl-allyl] -acetylene- (1phosphine, 2-phosphonate) (7)

To a THF solution (5.7 mL) of **6** (0.22 g, 0.54 mmol) and diisopropylaminochlorophosphine (0.12 g, 0.54 mmol) cooled at -78° C was added *n*-butyllithium (2 M in hexane, 0.33 mL, 0.60 mmol). The solution was stirred for 50 min at -78° C and quenched with a mixture of CH₂Cl₂ and saturated NaHCO₃ solution (17 mL/12 mL). The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in a mixture of diethylether-pentane (3/1) and applied on a short silica column (diethylether/pentane (3/1)

used as eluant) to obtain the title compound 7 as a colorless oil in 53 % yield. ¹H NMR (CDCl₃, 300 MHz) 6.13 (s, 1H, 2/3 H-1', β-anomer), 6.08 (s, 1H, 1/3 H-1', α-anomer), 5.84-5.87 (m, 2H, H₂C=CH-CH₂), 5.31-5.34 (m, 2H, H₂C=CH-CH₂), 5.23-5.28 (m, 1H, H-2'), 5.12-5.21 (m, 1H, HC=CH-CH₂), 5.08-5.1 (m, 1H, HC=CH-CH₂), 5.03 & 5.13 (s, 1H, H-3', α/β), 4.53-4.55 (m, 2H, H₂C=CH-CH₂), 4.31-4.32 (m, 1H, H-4'), 4.25-4.26 (m, 2H, H-5'), 4.13-4.15 (m, 2H, H₂C=CH-CH₂), 3.62 (m, 2H, CH(CH₃)₂), 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06 (9H, COOCH₃), 1.15 (d, J = 6.7 Hz, 6H, CH(CH₃)₂), 1.13 (d, J = 6.8 Hz, 6H, CH(CH₃)₂). ¹³C NMR (CDCl₃, 75.5 MHz) δ 169.6, 169.8, 170.0, 170.2, 170.4 (C=O), 135.4 (d, ${}^{4}J_{PC}$ = 7.2 Hz, $H_2C=CH-CH_2$), 132.7 (d, ${}^{4}J=7.3$ Hz, $H_2C=CH-CH_2$), 119.0 (d, ${}^{5}J$ = 8.6 Hz, H₂C=CH-CH₂), 117.6 (H₂C=CH-CH₂), 104.8 (d, ${}^{2}J_{P(III)-C}$ = 39 Hz, P(V)-CC-P(III)), 99.9 (C-1', β anomer), 98.5 (C-1['], α -anomer), 91.3 (d, ${}^{2}J_{P(V)-C}$ = 286.8 Hz P(V)-CC-P(III)), 83.5 (dd, ${}^{4}J_{PC} = 8.1, 4.0 \text{ Hz}, \text{ C-4'}, \alpha/\beta, \text{ R}$ or S), 80.77 (C-3', α/β), 80.73 (C-3', α/β), 80.2 (d, ${}^{4}J_{PC} =$ 8.5 Hz, C-4', α/β), 74.5 (C-2', α/β)), 70.6 (C-2', α/β)), 68.4 (d, ${}^{3}J_{PC}$ = 20.0 Hz, H₂C=CH-CH₂), 67.9 (d, ${}^{3}J_{PC}$ = 9.1 Hz, H₂C=CH-CH₂), 65.7 (C-5', α/β), 65.57, 65.51, 65.45 (C-5', α/β) 44.1 (CH(CH₃)₂), 21.9 (CH(CH₃)₂), 19.4, 19.5, 19.7, 20.0, 20.1 (CH₃-acetate). ³¹P NMR (CDCl₃, 121.5 MHz ¹Hdecoupled) δ +96.5 (d, J = 6.7 Hz, α/β), +96.3 (d, J = 8.4Hz, α/β), -6.60, -6.66, -6.70, -6.73, -6.77, -6.83. MS *m/z* (+ v/e, FAB) [100%, M+H]⁺ 592, [14%, M-C₂H₃O] 548, [52%, M-C₂H₃O₂] 532, [28%, M-C₆H₁₄N] 492, [41%, M-C₁₄H₂₄P₂N], 276. HRMS (LSIMS, positive) calcd for C₂₅H₃₉NO₁₁P₂ [M+H]⁺ 592.2076 found 592.2102.

P¹-[Allyl (2',3'-*O*-isopropylidene)-adenosin-5'-yl]-P²-[allyl (α/β –1",2",3"-*O*,*O*,*O*-triacetyl)-D-ribofuranosid-5"yl]-acetylene-bis(phosphonate) (**8**).

The aminophosphine 7 (0.34 g, 0.57 mmol) was dissolved with 2',3'-O,O-isopropylidene adenosine (0.17 g, 0.57 mmol) in acetonitrile (23 mL) and stirred for 10 min at rt. To this mixture, 2,4-DNP (0.157 g, 0.855 mmol) dissolved in 0.95 mL of acetonitrile was added dropwise. After 5h, an additional equivalent of 2,4-DNP and of 2',3'-O,O-isopropylidene adenosine were added. The reaction was stirred overnight and then cooled to -40°C. t-BuOOH (solution 5-6 M in decane, 0.17 mL, 0.85 mmol) was added and the reaction was stirred for 7 min. A mixture of CH₂Cl₂ and a saturated NaHCO3 solution (50:30 mL, v/v) was added and the aqueous layer was extracted with CH₂Cl₂ (3x20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The oily silica residue was chromatographed on gel (pentane/diethylether; 1/3; v/v) obtain the to bisphosphonate 8 as a colorless oil (0.145 g) in 31% yield (over two steps). ¹H NMR (CDCl₃, 500 MHz) δ 8.34 (s, 1 H, H-2 ade), 7.99-8.03 (m, 1H, H-8 ade), 6.38 (bs, 2H, NH₂ ade), 6.23 (s, 0.6 H, H-1", β-anomer), 6.16 (s, 0.4 H, H-1", α-anomer) 6.15 (s, 1H, H-1'), 5.80-6.0 (m, 2H, H₂C=CH-CH₂O), 5.42-5.44 (m., 1H, H-2'), 5.33-5.42 (m, 1H, H), 5.21-5.33 (m, 5H, H₂C=CH-CH₂; H-2"), 5.20 (bs, H-3", α/β), 5.15-5.17 (m, 1H, H-3'), 5.13 (bs, H-3", α/β),

4.63-4.65 (m, 2H, H₂C=CH-CH₂), 4.55-4.57 (m, 2H, H₂C=CH-CH₂), 4.50-4.54 (m, 1H, H-4'), 4.39-4.45 (m, 2H, H-5'), 4.28-4.38 (m, 3H, H-4"& H-5"), 2.09, 2.10, 2.105, 2.11, 2.115, 2.121, 2.126, 2.127, 2.128, 2.132, 2.138 (COOCH₃), 1.62 (s, 3H, CH₃-isopropylidene), 1.41 (s, 3H, CH₃ isopropylidene).¹³C NMR (CDCl₃, 75.5 MHz) 169.5, 169.8, 170.0, 170.5, 170.8 (C=O), 155.6 (C-6 ade), 153.0 (C-2 ade), 149.0 (C-4 ade), 139.7 (C-8 ade), 131.2 (d, J= 6.2 Hz, $H_2C=CH-CH_2$), 119.8 (C-5 ade), 119.5 (H₂C=CH-CH₂), 114.5 (C-isopropylidene), 99.2 (C-1", β anomer), 97.8 (C-1", α anomer), 90.7 (d, J = 8.1 Hz, C-1'), 89.35, 89.6, 89.75, 89.9, 90.1, (P¹-CC-P²), 85.9, 86.2, 86.5 (P^1 -CC- P^2), 85.0 (d, J= 5.4 Hz, C-4', α/β), 84.0 (C-2'), 82.9 (d, J = 5.5 Hz, C-4"), 81.2 (d, J = 3.5 Hz, C-3'), 80.2 (d, J = 3.0 Hz, C-4", α/β), 78.6 (C-3", α/β), 77.2(C-3", α/β), 74.0 (d, J = 7.1 Hz, C-2", α/β), 69.8 (d, J = 7.7 Hz, C-2", α/β), 68.5 (H₂C=CH-CH₂), 66.9 (bs, C5'), 66.0, 66.1, 66.4, 66.8 (C-5"), 27.5 (CH₃-isopropylidene), 25.19 (CH₃isopropylidene), 20.3, 20.4, 20.5, 20.9, (COOCH₃). ³¹P NMR (CDCl₃, 121.5 MHz ¹H-decoupled) δ from -9.41 to -9.86, multiplet (9 peaks: -9.41, -9.48, -9.54, -9.57, -9.63, -9.64, -9.67, -9.74, -9.77, -9.83, -9.86). MS m/z (+ v/e, FAB) [100%, M+H]⁺ 814, [10%, M- C₂H₃O₂]⁺ 754, [48%, M-C₁₉H₂₅P₂O₁₃]⁺ 290. HRMS (LSIMS, positive) calcd for $C_{32}H_{42}O_{16}N_5P_2$ [M+H] 814.2098 found 814.2085.

Allyl (2', 3'-O, O -isopropylidene)- D-adenosin-5'-ylmethyl phosphate (10)

Compound 8 (0.010 g, 0.0123 mmol) was dissolved in 2.5 mL methanol and added to a cooled (ice bath) methanol solution saturated with ammonia. Gaseous ammonia was bubbled through this solution during 5 min and the mixture was stirred for 1 h at RT. The solvent was removed under vacuum and the residue was dissolved in a minimum of chloroform and applied on a preparative TLC using as eluant a mixture of chloroform and methanol (10:1). Compound 10 was obtained in 55 % yield (0.003 g, 0.0068 mmol). ¹H NMR (CDCl₃, 300 MHz) δ 8.36 (s, 1H, H-2) ade), 8.02 (s, 1H, H-8 ade), 6.14 (d, J= 2.3 Hz, H1-ade), 5.79-5.92 (m, 1H, CH₂=CHCH₂O), 5.70 (bs, 2H, NH₂-ade), 5.40-5.43 (m, 1H, H-2' ade), 5.23-5.34 (m, 2H, CH₂=CHCH₂O), 5.10-5.12 (m, 1H, H-3' ade), 4.44-4.51 (m, 3H, CH₂=CHCH₂O, H-4' ade), 4.20-4.25 (m, 2H, H-5' ade), 1.62 (s, 3H, CH₃-acetonide). ³¹P NMR (CDCl₃, 121.5 MHz ¹H-decoupled) δ 0.62, 0.65 ppm. MS *m*/*z* (+ ve Electrospray) [100% M+H]⁺ 442 and [15% M+Na]⁺ 464 $(C_{17}H_{24}O_7N_5P \text{ requires } M, 441)$. MS m/z (+ v/e, FAB) [38%, M+H]⁺ 442, [100%, M-C₅H₄N₅] 307, [23%, M+H- $C_5H_4N_5$ ⁺ 308. HRMS (LSIMS, positive) calcd for C₁₇H₂₅O₇N₅P [M+H] 442.1491 found 442.1507.

P¹-[Allyl-adenosin-5'-yl]-P²-[allyl $(\alpha/\beta - 1", 2", 3"-O, O, O-$ triacetyl)-D-ribofuranosid-5"-yl]-acetylenebis(phosphonate) (**9**).

Compound 8 (0.0195 g, 0.024 mmol) was dissolved in a mixture of water (0.40 mL) and TFA (0.76 mL). The solution was stirred for 40 min at RT and evaporated under

high vacuum. Residual TFA was removed by coevaporating three times with toluene. The residue was dissolved in minimum of chloroform and applied on a preparative TLC using as eluent a mixture of chloroform/methanol (10:1) to obtain the title compound as colourless oil in 65% yield. Unreacted starting material (4.5 mg, 23%) was recovered. ¹H NMR (CDCl₃, 300 MHz) δ 8.19 (s, 1 H, H-2 ade), 8.00 (m, 1H, H-8 ade), 6.07 (s, 0.6 H, H-1", β-anomer), 6.06 (s, 0.4 H, H-1", αanomer), 5.97 (d, J= 4.7 Hz, 1 H, H-1'), 5.72-5.92 (m, 2H, H₂C=CH-CH₂O), 5.35-5.36 (m., 1H, H-2'), 5.21-5.33 (m, 6H, H₂C=CH-CH₂; m, 1H, H-2"; m, 1 H, H-3'), 5.19 (bs, 1 H, H-3", 0.6 β), 5.18 (bs, 1 H, H-3", 0.4 α), 4.53-4.61 (m, 4H, H₂C=CH-CH₂), 4.50-4.52 (m, 2H, H-5'), 4.27-4.42 (m, 4H, H-4', H-4"& H-5"), 3.72 (dd, J= 4.35, 11.25 Hz, 3H, POCH₃), 1.99, 2.00, 2.01, 2.03, 2.04, 2.047, 2.05, 2.06, 2.07 (COOCH₃). ³¹P NMR (CDCl₃, 121.5 MHz ¹Hdecoupled) δ - 8.50, - 8.52 ppm. MS m/z (+ ve Electrospray) $[M+H]^+$ $[M+Na]^+$ 774 and 796 $(C_{29}H_{37}N_5O_{16}P_2 \text{ requires } M, 773)$

P¹-[(Adenosin-5'-yl]-P²- $[\alpha/\beta$ -D-ribofuranosid-5"-yl]acetylene-bis(phosphonate) (**2**).

Compound 9 (0.012 g, 0.0157 mmol), PPh₃ (0.0012 g, 0.0046 mmol), formic acid (0.0017 mL, 0.045 mmol) and triethylamine (0.007 mL, 0.043 mmol) were dissolved in 0.2 mL THF. To this solution, Pd[PPh₃] (0.003 g, 0.0026 mmol) was added and the resulting solution was stirred for 8 h at RT and the solution was evaporated under reduced pressure. The residue was dissolved in 0.5 mL water and three times extracted with 0.5 mL diethylether. The aqueous layer was evaporated under high vacuum and the residue was dried by coevaporating three times with toluene then dissolved in 0.5 mL of a 0.1 M Sodium methoxide in methanol solution (0.05 mmol) and vigorously stirred at RT for 25 min. The solution was quenched with a formate solution (50 mM formic acid, pH=3 with ammonia solution) and the resulting solution evaporated under high vacuum. The residue was purified by reversed phase column chromatography (method 2) and the fractions containing the title compound were evaporated under high vacuum. The excess of ammonium salts were removed by coevaporating several times with methanol. 2 (0.006 g, 0.0106 mole) was obtained in 67 %yield. ¹H NMR (D₂O, 300 Mhz) δ 8.31 (s, 1H, H-2 ade), 8.16 (s, 1H, H-8 ade), 5.83 (d, J = 11.4 Hz, 1H, H-1'), 5.00 $(d, J = 4.0 \text{ Hz}, 0.3 \text{ H}, \text{H-1"} \beta), 4.9 (d, J = 3.5 \text{ Hz}, \text{H-3'}), 4.1$ (bs, 1H, H-4'), 3.89 (bs, 2H, H-5'), 3.24-3.68 (m, 6H, H-2", H-3", H-4", H-5"). ³¹P NMR (D₂O, 121.5 MHz ¹Hdecoupled) δ -8.86. MS m/z (-ve Electrospray) [100% M-H]⁻ 566, [49% M-2H+Na]⁻ 588.2 (C₁₇H₂₃N₅O₁₆P₂ requires *M*, 567). MS m/z (+ve Electrospray) [95% M+H]⁺ 568, [100% M+Na]⁺, 590. HRMS (LSIMS, positive) calcd for $C_{17}H_{22}O_{13}N_5P_2[M+H]^-$ 566.0689 found 566.0681.

Supplement: Acetylene β -(2', 3' *O*, *O*-isopropylidene)- 5'-*O*-(allyl ethynephosphonyl) D-adenosine

To a solution of 3 (0.12 g, 0.42 mmol) and 2', 3'-O, O isopropylidene adenosine (0.13 g, 0.42 mmol) in acetonitrile (17 mL) was added 2,4-DNP as a solid (0.12 g, 0.63 mmol). The reaction was stirred for 2 h after which time further quantities of 3 (0.06g, 0.21 mmol) and 2,4-DNP (0.04 g, 0.21 mmol) were added. The reaction was stirred for a further 3h followed by further addition of the same amounts of 3 and 2,4-DNP. The reaction was almost completed after 10 h and the condensed intermediate was oxidized in situ by adding tBuOOH (solution 5-6 M in hexane, 0.084 mL). After 7 min, the reaction was guenched with a mixture of CH₂Cl₂ and a NaHCO₃ saturated solution. The aqueous layer was extracted three times with CH₂Cl₂. The organic layers were combined, dried over Na₂SO₄ and concentrated under reduced pressure. The oily residue was chromatographed (silica, CHCl₃/MeOH (92/8)) to obtain a colorless oil (0.14 g, 0.28 mmol) which was directly dissolved in ethanol (1.3 mL). To the solution, CsF was added (0.06 g, 0.39 mmol) and the reaction was stirred for 1 h at rt. A mixture DCM and saturated solution of NaHCO₃ was then added and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The oily residue was chromatographed on silica to obtain the title compound as colourless oil in 57 % yield (0.103 g, 0.24 mmol). ¹H NMR (CDCl₃, 300 MHz) δ 8.43 (d, J = 2.6 Hz, 1H, H-2 ade), 7.97 (d, J = 2.6 Hz, 1H, H-8 ade), 6.21 (bs, 2H, NH₂-ad), 6.16 (d, J= 2.0Hz., 1H, H-1'), 5.82-5.96 (m, 1H, CH₂=CHCH₂), 5.42-5.46 (m, 1H, H-2'), 5.32-5.37 (m, 1H, CH=CHCH₂), 5.23-5.26 (m, 1H, CH=CHCH₂), 5.12-5.14 (m, 1H, H-3'), 4.53-4.57 (m, 2H, CH₂=CHCH₂), 4.50-4.52 (m, 1H, H-4'), 4.31-4.37 (m, 1H, H-5'), 4.28-4.29 (m, 1H, H-5') 2.93 (dd, J= 13.5 Hz, 18.6 Hz, 1H, H-acetylene), 1.63 (s, 3H, CH₃isopropylidene), 1.39 (s, 3H, CH₃-isopropylidene). ^{13}C NMR (CDCl₃, 125.75 MHz) δ 155.6 (C-6 ade),153.1 (C-2 ade), 149.2 (C-4 ade), 139.6 (d, J= 3.4 Hz, C-8 ade), 131.6 (d, J= 6.9 Hz, H₂C=CH-CH₂O), 120.0 (C-5 ade), 119.0 $(H_2C=CH-CH_2O)$, 114.5 (C-isopropylidene), 90.9 (d, J= 9.0 Hz, C-1 ade), 89.2 (d, J= 52.1 Hz, C-6 acetylene), 85.2 (d, J = 8.6 Hz, C-4'), 85.1 (d, J = 8.7 Hz, C-4'), 84.2 (C-2'), 81.4 (d, J = 4.9 Hz, C-3'), 74.4 (d, ${}^{3}J_{PC} = 9.7$ Hz, C-7 acetylene), 67.92 (d, J= 4.8 Hz, H₂C=CH-CH₂), 67.88 (d, J= 4.7 Hz, H₂C=CH-CH₂), 66.2 (bs, C-5), 26.1 (CH₃isopropylidene), 24.3 (CH₃-isopropylidene). ³¹P NMR (CDCl₃, 121.5 MHz ¹H-decoupled) δ -7.16, -7.33, -7.36. HRMS (LSIMS, positive) calcd for C₁₈H₂₂O₆N₅P [M+H] 436.1385 found 436.1399.