SUPPORTING INFORMATION

One-Pot Homolytic Aromatic Substitution/HWE-Olefinations under Microwave Conditions for the Formation of a Small Oxindole Library

Antje Teichert, ${ }^{a}$ Katja Jantos, ${ }^{a}$ Klaus Harms, ${ }^{a}$ and Armido Studer ${ }^{a, b}$ *
${ }^{a}$ Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg,
Germany. ${ }^{\text {b }}$ Organisch-Chemisches Institut, Westfälische Wilhelms-
Universität Münster, Corrensstrasse 40, 48149 Münster, Germany.

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker ARX 300 and ARX 200. Chemical shifts δ in ppm rel. to SiMe_{4} as an internal standard. TLC: Merck silica gel $60 \mathrm{~F}_{254}$ plates; detection with UV or dipping into a soln. of $\mathrm{KMnO}_{4}(6.0 \mathrm{~g}), \mathrm{NaHCO}_{3}(20.0 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$ or a soln. of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~g})$, phosphormolybdic acid hydrate (25.0 g), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$, followed by heating. FC: Merck or Fluka silica gel $60(40-63 \mu \mathrm{~m})$ at $c a .0 .4$ bar. IR spectra were recorded on an IR 750 (Nicolet Magna) or a IFS-200 (Bruker). MS: Recorded on a VG Tribid, Varian CH7 (EI); IonSpec Ultima, Finnigan MAT TSQ 700 or a Finnigan MAT 95S (ESI) in m/z (\% of basis peak). Melting points: Büchi Kofler apparatus; uncorrected. Microwave assisted heating was performed in an MLS-Ethos 1600 Microwave System (MLS). Solvents were purified by standard methods. Compounds sensitive to air and moisture were handled under argon using Schlenk techniques.

(Diethoxyphosphoryl)acetic acid

According to Patel et al. ${ }^{[1]}$ ethyl (diethoxyphosphoryl)acetate ($4.40 \mathrm{~mL}, 22.3 \mathrm{mmol}$) was added dropwise to $1 \mathrm{~m} \mathrm{NaOH}(22.5 \mathrm{~mL}$). After stirring for 3 h at RT , EtOH was partially evaporated and the reaction mixture was treated with 2 N HCl (until pH 1). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine dried over anhydrous MgSO_{4}. The solvent was removed in vacuo to yield (diethoxyphosphoryl)acetic acid ($3.36 \mathrm{~g}, 77 \%$) as a greenish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.79(s, 1 \mathrm{H}, \mathrm{OH})$; 4.27-4.12 ($m, 4 \mathrm{H}, \mathrm{OCH}_{2}$); $2.97\left(d, J=21.7,2 \mathrm{H}, \mathrm{PCH}_{2}\right) ; 1.34\left(t, J=7.0,6 \mathrm{H}, \mathrm{CH}_{3}\right)$. The acid was used for the subsequent reaction without further purification.

(Diethoxyphosphoryl)acetic acid chloride 4

According to Fryxell et al. ${ }^{[2]}$ (diethoxyphosphoryl)acetic acid ($2.00 \mathrm{~g}, 10.20 \mathrm{mmol}$) was added dropwise to thionyl chloride ($3.20 \mathrm{~mL}, 43.63 \mathrm{mmol}$). After stirring for 4 h at RT, the excess thionyl chloride was evaporated to give $4(2.10 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $4.23\left(d q, J_{1}=7.1, J_{2}=1.3,4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.50\left(d, J=21.2,2 \mathrm{H}, \mathrm{PCH}_{2}\right) ; 1.38(t, J=7.1,6 \mathrm{H}$, CH_{3}). The compound was used without further purification.

\boldsymbol{p}-Methoxy- N -methylaniline

According to Barluenga et al. ${ }^{[3,4]}$ p-anisidin ($1.00 \mathrm{~g}, 8.12 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaOMe}(2.18 \mathrm{~g}, 40.6 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$. The resulting brown solution was poured into a suspension of paraformaldehyde ($340 \mathrm{mg}, 11.36 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$. The reaction mixture was stirred for 5 h at RT and then $\mathrm{NaBH}_{4}(306 \mathrm{mg}, 8.12 \mathrm{mmol})$ was added. The solution was heated to reflux for 1.75 h . After evaporating part of the solvent, the reaction mixture was treated with 1 m KOH . After extraction with MTBE, the organic layer was dried over MgSO_{4}. Evaporation of the solvent in vacuo and purification by FC (pentane/Et $\mathrm{E}_{2} \mathrm{O}$ 1:2) afforded p-methoxy- N-methylaniline ($887 \mathrm{mg}, 80 \%$). The spectroscopic data are in agreement with the literature values. ${ }^{[3,4]}$

m-Methoxy- N-methylaniline

According to Barluenga et al. ${ }^{[3,4]} m$-anisidine ($1.00 \mathrm{~g}, 8.12 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaOMe}(2.18 \mathrm{~g}, 40.6 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$. The resulting brown solution was poured into a suspension of paraformaldehyde ($340 \mathrm{mg}, 11.36 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$. The solution was stirred for 5 h at RT and then NaBH_{4} ($306 \mathrm{mg}, 8.12 \mathrm{mmol}$) was added. The solution was heated to reflux for 1.75 h . After evaporating part of the solvent, the reaction mixture was treated with 1 m KOH . After extraction with MTBE, the organic layer was dried over MgSO_{4}. Evaporation of the solvent and purification by FC (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:2) afforded m-methoxy- N methylaniline ($949 \mathrm{mg}, 85 \%$) as a brown oil. The spectroscopic data are in agreement with the literature values. ${ }^{[3,4]}$

o-Methoxy- N-methylaniline

According to Barluenga et al. ${ }^{[3,4]}$ o-anisidine ($1.00 \mathrm{~g}, 8.12 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaOMe}(2.18 \mathrm{~g}, 40.6 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$. The resulting brown solution was poured into a suspension of paraformaldehyde ($340 \mathrm{mg}, 11.36 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$. The solution
was stirred for 5 h at RT and then NaBH_{4} ($306 \mathrm{mg}, 8.12 \mathrm{mmol}$) was added. The solution was heated to reflux for 1.75 h . After evaporating part of the solvent, the reaction mixture was treated with 1 m KOH . After extraction with MTBE, the organic layer was dried over MgSO_{4}. Evaporation of the solvent and purification by FC (pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 2$) afforded o-methoxy- N methylaniline ($327 \mathrm{mg}, 29 \%$) as a yellow oil. The spectroscopic data are in agreement with the literature values. ${ }^{[3,4]}$

\boldsymbol{p}-Methoxy- N -tosylaniline

NEt_{3} ($0.62 \mathrm{~mL}, 4.46 \mathrm{mmol}$), DMAP (tip of spatula) and tosyl chloride ($850 \mathrm{mg}, 4.46 \mathrm{mmol}$) were added to a solution of p-anisidine ($500 \mathrm{mg}, 4.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After stirring for 3 h at RT the reaction mixture was treated with 1 m NaOH . After separation of the layers the organic phase was washed with brine and dried over MgSO_{4}. Evaporation of the solvent gave p-methoxy- N-tosylaniline ($1.13 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45$ ($d, J=8.3,2 \mathrm{H}, \mathrm{CH}$); $7.22(d, J=8.5,2 \mathrm{H}, \mathrm{CH}) ; 6.98-6.91(m, 2 \mathrm{H}, \mathrm{CH}) ; 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}) ; 3.76\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.40\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The tosylamide was used without further purification.

Synthesis of phosphonamides: General Procedure 1 (GP 1)

According to Khan et al. ${ }^{[5]}$ a soln. of NEt_{3} and the aniline derivative in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a soln. of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 16 h at $0^{\circ} \mathrm{C}$, the reaction mixture was treated with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. and extracted with methyl(t-butyl)ether (MTBE). The organic layer was dried over MgSO_{4}. Removal of the solvent in vacuo and purification by FC afforded the corresponding phosphonamides 5a-g.

[(Methyl-phenyl-carbamoyl)-methyl]-phosphonic acid diethyl ester 5a

According to GP 1 a soln. of $\mathrm{NEt}_{3}(1.00 \mathrm{~mL}, 9.32 \mathrm{mmol})$ and N -methylaniline $(1.28 \mathrm{~mL}, 9.32$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added to $\mathbf{4}(2.00 \mathrm{~g}, 9.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Purification by FC (pentane/MTBE 4:1 then acetone): 5a ($1.60 \mathrm{~g}, 60 \%$). IR (film): 3474br, $2982 s, 1656 s, 1595 m, 1497 m, 1422 w, 1375 m, 1256 s, 1026 s, 966 m, 777 m, 516 b r .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.26(m, 5 \mathrm{H}, \mathrm{CH}) ; 4.14\left(q d, J_{1}=J_{2}=7.1,4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.29(s$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.82\left(d, J=21.7,2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.31\left(t, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $164.8\left(d, J_{\mathrm{CP}}=5.6, \mathrm{C}\right), 143.8(\mathrm{C}), 129.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 62.3\left(d, J_{\mathrm{CP}}\right.$
$\left.=6.2, \mathrm{OCH}_{2}\right), 37.5\left(\mathrm{NCH}_{3}\right), 33.1\left(d, J_{\mathrm{CP}}=138.0, \mathrm{CH}_{2}\right), 16.3\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right)$. MS (EI): 285 (20, $\left.[\mathrm{M}]^{+}\right), 137$ (100, N-methylaniline). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{P}$ ([M] $]^{+}$): 285.1130. Found: 285.1132.

\{[(4-Methoxy-phenyl)-methyl-carbamoyl]-methyl\}-phosphonic acid diethyl ester 5b

According to GP 1 a soln. of $\mathrm{NEt}_{3}(0.87 \mathrm{~mL}, 6.34 \mathrm{mmol})$ and p-methoxy- N-methylaniline ($870 \mathrm{mg}, 6.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$) were added to $\mathbf{4}\left(1.36 \mathrm{~g}, 6.34 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) at $0^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone 1:1): 5b ($1.47 \mathrm{~g}, 74 \%$). IR (film): 3500 br , $2982 s, 1656 s, 1513 s, 1375 s, 1300 s, 1250 s, 1109 m, 1027 s, 968 m .{ }^{1} H-N M R(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.18(d, J=9.0,2 \mathrm{H}, \mathrm{CH}) ; 6.90(d, J=9.0,2 \mathrm{H}, \mathrm{CH}) ; 4.20-4.04\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right)$; $3.81\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.23\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.79\left(d, J=21.5,2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.32-1.23(m, 6 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 163.6\left(d, J_{\mathrm{CP}}=5.3, \mathrm{C}\right), 159.0(\mathrm{C}), 136.5(\mathrm{C}), 128.5(\mathrm{CH})$, $114.8(\mathrm{CH}), 62.3\left(d, J_{\mathrm{CP}}=6.1, \mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 37.7\left(\mathrm{CH}_{3}\right), 32.9\left(d, J_{\mathrm{CP}}=137.0, \mathrm{CH}_{2}\right), 16.3$ $\left(d, J_{\mathrm{CP}}=6.6, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 315\left(17,[\mathrm{M}]^{+}\right), 137$ (100, p-methoxy- N-methylaniline). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}\left([\mathrm{M}]^{+}\right): 315.1236$. Found: 315.1225.

\{[(3-Methoxy-phenyl)-methyl-carbamoyl]-methyl\}-phosphonic acid diethyl ester 5c

According to GP 1 a soln. of $\mathrm{NEt}_{3}(0.80 \mathrm{~mL}, 5.83 \mathrm{mmol})$ and m-methoxy- N-methylaniline ($800 \mathrm{mg}, 5.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$) were added to $\mathbf{4}\left(1.25 \mathrm{~g}, 5.83 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) at $0{ }^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone 1:1): 5c (1.03 g, 56%). IR (film): 3477 br , $2838 s, 1659 s, 1601 s, 1490 s, 1372 s, 1254 s, 1109 m, 1028 s, 966 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta=7.32-7.28(m, 1 \mathrm{H}, \mathrm{CH}) ; 6.91-6.85(m, 3 \mathrm{H}, \mathrm{CH}) ; 4.15\left(q d, J_{1}=J_{2}=7.3,4 \mathrm{H}\right.$, OCH_{2}); $3.84\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.28\left(d, J=1.0,3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.84\left(d, J=21.7,2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.32$ $\left(t, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.8(\mathrm{C}), 160.6(\mathrm{C}), 145.0(\mathrm{C}), 130.4$ $(\mathrm{CH}), 119.4(\mathrm{CH}), 114.0(\mathrm{CH}), 113.2(\mathrm{CH}), 62.3\left(d, J_{\mathrm{CP}}=6.2, \mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{3}\right)$, $33.7\left(d, J_{\mathrm{CP}}=137.0, \mathrm{CH}_{2}\right), 16.3\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 315\left(20,[\mathrm{M}]^{+}\right), 137(100, m-$ methoxy- N -methylaniline). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}\left([\mathrm{M}]^{+}\right)$: 315.1236. Found: 315.1233.

\{[(2-Methoxy-phenyl)-methyl-carbamoyl]-methyl\}-phosphonic acid diethyl ester 5d

According to GP 1 a soln. of $\mathrm{NEt}_{3}(0.33 \mathrm{~mL}, 2.33 \mathrm{mmol})$ and o-methoxy- N -methylaniline ($320 \mathrm{mg}, 2.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added to $\mathbf{4}(0.50 \mathrm{~g}, 2.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8
mL) at $0^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone 1:1): $\mathbf{5 d}$ ($331 \mathrm{mg}, 45 \%$). IR (film): 3473 br , $2841 s, 1660 s, 1597 m, 1502 s, 1375 s, 1257 s, 1102 m, 1027 s, 967 m, 761 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta=7.34-7.27(m, 2 \mathrm{H}, \mathrm{CH}) ; 7.02-6.95(m, 2 \mathrm{H}, \mathrm{CH}) ; 4.12\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.84(s, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.20\left(d, J=1.0,3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.82\left(d d, J_{1}=15.2, J_{2}=20.3,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.72$ $\left(d d, J_{1}=15.2, J_{2}=20.3,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.30\left(d t, J_{1}=7.1, J_{2}=9.3,6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.8 (C), 154.7 (C), $132.0(\mathrm{C}), 129.7(\mathrm{CH}), 129.4(\mathrm{CH}), 121.1(\mathrm{CH}), 111.8$ $(\mathrm{CH}), 62.4\left(d, J_{\mathrm{CP}}=6.5, \mathrm{CH}_{2}\right), 62.1\left(d, J_{\mathrm{CP}}=6.1, \mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 36.3\left(\mathrm{CH}_{3}\right), 32.7\left(d, J_{\mathrm{CP}}=\right.$ $139.0, \mathrm{CH}_{2}$), $16.3\left(d, J_{\mathrm{CP}}=6.6, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 315\left(17,[\mathrm{M}]^{+}\right), 137$ (100, o-methoxy- N methylaniline), 122 (63). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}\left([M]^{+}\right)$: 315.1236. Found: 315.1227.

\{2-[4-Methoxy-phenyl-(toluene-4-sulfonyl)-amino]-2-oxo-ethyl\}-phosphonic acid diethyl ester 5e

According to GP 1 a soln. of $\mathrm{NEt}_{3}(0.64 \mathrm{~mL}, 4.66 \mathrm{mmol})$ and p-methoxy- N-tosylanilide (1.20 $\mathrm{g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added to $4(1.00 \mathrm{~g}, 4.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone $1: 1$): $\mathbf{5 e}(741 \mathrm{mg}, 41 \%$). IR (film): $2983 w, 1703 \mathrm{~s}$, $1602 m, 1507 s, 1361 s, 1252 s, 1171 s, 1025 s, 972 m, 641 m, 564 s, 547 s .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.92(d, J=8.6,2 \mathrm{H}, \mathrm{CH}) ; 7.33(d, J=8.0,2 \mathrm{H}, \mathrm{CH}) ; 7.25(d, J=8.8,2 \mathrm{H}, \mathrm{CH})$; $6.97(d, J=6.8,2 \mathrm{H}, \mathrm{CH}) ; 4.08-3.98\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.86\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.80(d, J=21.7$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.45\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.25\left(t, J=7.1,6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 165.1 (C), 160.8 (C), 144.9 (C), 135.7 (C), 131.4 (CH), 129.3 (CH), 128.5 (C), 115.0 (CH), $62.8\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right), 35.5\left(d, J_{\mathrm{CP}}=134.0, \mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 16.3\left(d, J_{\mathrm{CP}}=\right.$ 9.9, CH_{3}). MS (ESI): 478 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 398 (20), 323 (24). HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NNaO}_{7} \mathrm{PS}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 478.1066$. Found: 478.1066.

[(Benzyl-phenyl-carbamoyl)-methyl]-phosphonic acid diethyl ester 5f

According to GP 1 a soln. of $\mathrm{NEt}_{3}(0.75 \mathrm{~mL}, 5.46 \mathrm{mmol})$ and N-phenylbenzylamine $(1.00 \mathrm{~g}$, $5.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added to $4(1.17 \mathrm{~g}, 5.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone 1:1): $\mathbf{5 f}(828 \mathrm{mg}, 42 \%)$ was obtained as a brown oil. IR (film): $3475 s, 3031 m, 1657 s, 1595 s, 1496 s, 1410 m, 1389 m, 1256 s, 1027 s, 967 s, 778 m$, 701s. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.32-7.05(m, 10 \mathrm{H}, \mathrm{CH}) ; 4.92\left(s, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.15$ $\left(q d, J_{1}=J_{2}=7.2,4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 2.84\left(d, J=21.9,2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.31\left(t, J=7.2,6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.9 ($d, J_{\mathrm{CP}}=5.6, \mathrm{C}$), 142.1 (C), $137.0(\mathrm{C}), 129.6$ (CH), 128.7 $(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.3(\mathrm{CH}), 127.4(\mathrm{CH}), 62.4\left(d, J_{\mathrm{CP}}=6.2, \mathrm{CH}_{2}\right), 53.2\left(\mathrm{CH}_{2}\right)$, $33.5\left(d, J_{\mathrm{CP}}=136.0, \mathrm{CH}_{2}\right), 16.3\left(d, J_{\mathrm{CP}}=6.2, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 361\left(4,[\mathrm{M}]^{+}\right), 182(100, \mathrm{~N}-$ phenylbenzylamine), 91 (31). HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}\left([\mathrm{M}]^{+}\right): 361.1443$. Found: 301.1440 .

[(4-Methoxy-phenylcarbamoyl)-methyl]-phosphonic acid diethyl ester 5g

According to GP 1 a soln. of $\mathrm{NEt}_{3}(1.28 \mathrm{~mL}, 9.32 \mathrm{mmol})$ and p-methoxy- N-methylaniline $(1.14 \mathrm{~g}, 9.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added to $4(2.00 \mathrm{~g}, 9.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL) at $0{ }^{\circ} \mathrm{C}$. Purification by FC (pentane/acetone 1:1): 5g (1.87 g, 66%). M.p. $79{ }^{\circ} \mathrm{C}$. IR (KBr): $3273 m, 2987 m, 1688 s, 1607 m, 1554 m, 1513 s, 1250 s, 1226 s, 1029 s, 953 m, 880 m .{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70(s, 1 \mathrm{H}, \mathrm{NH}) ; 7.43(d, J=9.0,2 \mathrm{H}, \mathrm{CH}) ; 6.84(d, J=9.0,2$ $\mathrm{H}, \mathrm{CH}) ;$ 4.23-4.13 ($m, 4 \mathrm{H}, \mathrm{OCH}_{2}$); $3.79\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.99\left(d, J=20.5,2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.36$ $\left(t, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 161.9(\mathrm{C}), 156.3(\mathrm{C}), 131.1(\mathrm{C}), 121.5$ $(\mathrm{CH}), 114.0(\mathrm{CH}), 63.0\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 36.0\left(d, J_{\mathrm{CP}}=129.0, \mathrm{CH}_{2}\right), 16.3(d$, $J_{\mathrm{CP}}=6.2, \mathrm{CH}_{3}$). MS (EI): 301 (32, $[\mathrm{M}]^{+}$), 123 (100). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}$ ([M] ${ }^{+}$): 301.1079. Found: 301.1079.

Synthesis of alkoxyamines: General Procedure 2 (GP 2)

A soln. of diisopropylamine (DIPA) in 1,2-dimethoxyethane (DME) was treated with BuLi at $-60^{\circ} \mathrm{C}$. After stirring for 20 min . at $-60^{\circ} \mathrm{C}$ the phosphonamide was added and stirring was continued for 30 min . at $-60^{\circ} \mathrm{C}$. 2,2,6,6-Tetramethylpiperidin-1-oxyl radical (TEMPO) and subsequently anhydrous CuCl_{2} were added. The resulting mixture was stirred for 1 h at -60 ${ }^{\circ} \mathrm{C}$ and was then allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred for another 3 h at this temperature. The reaction mixture was treated with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. and extracted with MTBE (three times). The organic layers were combined and dried over MgSO_{4}. Evaporation of the solvent in vacuo and purification of by FC afforded the alkoxyamines 6a-g.

[(Methyl-phenyl-carbamoyl)-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-methyl]-

 phosphonic acid diethyl ester 6aAccording to GP 2 TEMPO ($358 \mathrm{mg}, 2.29 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(1.67 \mathrm{~g}, 12.48 \mathrm{mmol})$ were added to a soln. of DIPA ($0.32 \mathrm{~mL}, 2.29 \mathrm{mmol}$), BuLi ($1.21 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 2.29
mmol) and 5a(594 mg, 2.08 mmol) in DME (20 mL). After purification by FC (EtOAc) 6a ($685 \mathrm{mg}, 75 \%$) was obtained as yellow crystals. M.p. $98-104^{\circ} \mathrm{C}$. IR (KBr): 2972s, 2935s, $1662 s, 1595 w, 1496 m, 1390 m, 1252 s, 1033 s, 972 m, 540 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.42-7.32 ($m, 5 \mathrm{H}, \mathrm{CH}$); $4.94(d, J=17.7,1 \mathrm{H}, \mathrm{PCH}) ; 4.31-4.15\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.30(s, 3 \mathrm{H}$, NCH_{3}); 1.47-1.09 ($m, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 130.1(\mathrm{C}), 129.4(\mathrm{CH})$, $128.2(\mathrm{CH}), 127.8(\mathrm{C}), 63.0\left(d, J_{\mathrm{CP}}=55.0, \mathrm{CH}\right), 61.3\left(\mathrm{CH}_{2}\right), 59.5(\mathrm{C}), 40.7\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{3}\right)$, $33.12\left(\mathrm{CH}_{3}\right)$, $31.6\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): 463\left(55,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, 307 (100). HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 463.2338$. Found: 463.2344.

\{[(4-Methoxy-phenyl)-methyl-carbamoyl]-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-methyl\}-phosphonic acid diethyl ester 6b

According to GP 2 TEMPO ($791 \mathrm{mg}, 5.06 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(3.71 \mathrm{~g}, 27.60 \mathrm{mmol})$ were added to a soln. of DIPA ($0.71 \mathrm{~mL}, 5.06 \mathrm{mmol}$), BuLi $(2.67 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 5.06 $\mathbf{m m o l}$) and $\mathbf{5 b}(1.45 \mathrm{~g}, 4.60 \mathrm{mmol})$ in DME $(30 \mathrm{~mL})$. After purification by FC (EtOAc) 6b ($1.72 \mathrm{mg}, 81 \%$) was obtained as a brown oil. IR (film): $3479 \mathrm{br}, 2975 \mathrm{~s}, 2932 \mathrm{~s}, 1665 \mathrm{~s}, 1512 \mathrm{~s}$, $1466 w, 1380 \mathrm{~m}, 1249 \mathrm{~s}, 1013 \mathrm{~s}, 974 \mathrm{~m}, 540 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(d, J=9.0$, $2 \mathrm{H}, \mathrm{CH}) ; 6.91(d, J=9.0,2 \mathrm{H}, \mathrm{CH}) ; 4.95(d, J=18.0,1 \mathrm{H}, \mathrm{PCH}) ; 4.27-4.10\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right)$; $3.83\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.26\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 1.47-1.10\left(m, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.5(\mathrm{C}), 158.9(\mathrm{C}), 136.2(\mathrm{C}), 129.2(\mathrm{CH}), 114.4(\mathrm{CH}), 78.5\left(d, J_{\mathrm{CP}}=155.0\right.$, $\mathrm{CH}), 63.4\left(d, J_{\mathrm{CP}}=9.2, \mathrm{CH}_{2}\right), 62.6(\mathrm{C}), 62.5(\mathrm{C}), 55.5\left(\mathrm{CH}_{3}\right), 40.9\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 38.0$ $\left(\mathrm{CH}_{3}\right), 33.1\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): 493$ (30, $[\mathrm{M}+\mathrm{Na}]^{+}$), 337 (100), 280 (85), 233 (38), 201 (85). HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{P}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 493.2443$. Found: 493.2436.

\{[(3-Methoxy-phenyl)-methyl-carbamoyl]-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-

 methyl\}-phosphonic acid diethyl ester 6cAccording to GP 2 TEMPO ($436 \mathrm{mg}, 2.79 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(2.05 \mathrm{~g}, 15.24 \mathrm{mmol})$ were added to a soln. of DIPA ($0.40 \mathrm{~mL}, 2.79 \mathrm{mmol}$), BuLi $(1.47 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 2.79 mmol) and 5c ($800 \mathrm{mg}, 2.54 \mathrm{mmol}$) in DME (18 mL). After purification by FC (EtOAc/ pentane $4: 1$) $6 \mathbf{c}(1.06 \mathrm{~g}, 89 \%)$ was obtained as a red oil. IR (film): $3480 \mathrm{br}, 2976 s, 2932 s$, $1669 s, 1601 s, 1489 m, 1380 m, 1257 s, 1030 s, 975 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-$ $7.28(m, 1 \mathrm{H}, \mathrm{CH}) ;$ 6.97-6.85 ($m, 3 \mathrm{H}, \mathrm{CH}$); $4.99(d, J=18.1,1 \mathrm{H}, \mathrm{PCH}) ; 4.37-4.11(m, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right) ; 3.84\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.29\left(d, J=1.0,3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 1.53-1.10\left(m, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.3(\mathrm{C}), 160.3(\mathrm{C}), 144.6(\mathrm{C}), 130.0(\mathrm{CH}), 120.2(\mathrm{CH}), 113.9$ $(\mathrm{CH}), 113.8(\mathrm{CH}), 78.0\left(d, J_{\mathrm{CP}}=152.0, \mathrm{CH}\right), 63.3\left(d, \mathrm{~J}_{\mathrm{CP}}=6.2, \mathrm{CH}_{2}\right), 63.0\left(d, J_{\mathrm{CP}}=6.2\right.$, $\left.\mathrm{CH}_{2}\right), 61.4(\mathrm{C}), 59.5(\mathrm{C}), 55.5\left(\mathrm{CH}_{3}\right), 41.0\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{3}\right), 33.3\left(\mathrm{CH}_{3}\right), 31.7$ $\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{2}\right), 16.4\left(d, J_{\mathrm{CP}}=8.4, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): 493$ (85, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 337$ (100), 156 (35). HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 493.2443$. Found: 493.2445.

\{[(2-Methoxy-phenyl)-methyl-carbamoyl]-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-methyl\}-phosphonic acid diethyl ester 6d

According to GP 2 TEMPO ($158 \mathrm{mg}, 1.01 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(750 \mathrm{mg}, 5.52 \mathrm{mmol})$ were added to a soln. of DIPA ($0.15 \mathrm{~mL}, 1.01 \mathrm{mmol}$), BuLi ($0.53 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 1.01 mmol) and 5d ($290 \mathrm{mg}, 0.92 \mathrm{mmol}$) in DME (10 mL). After purification by FC (EtOAc/ pentane $4: 1$) $\mathbf{6 d}$ ($302 \mathrm{mg}, 70 \%$, isomer ratio $1: 1.7$) was obtained as a mixture of isomers. Both isomers: IR (film): 2979s, 2940s, 1667s, 1502s, 1382m, 1254s, 1047m, 1026s, 969m, 704s. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.35-7.28$ ($m, 2 \mathrm{H}, \mathrm{CH}$); 7.02-6.91 ($m, 2 \mathrm{H}, \mathrm{CH}$); 4.92, 4.82 $(d, J=20.8,1 \mathrm{H}, \mathrm{PCH}) ; 4.28-4.15\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.88$, $3.85\left(2 s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.21(2 s, 3$ $\mathrm{H}, \mathrm{NCH}_{3}$); 1.43-1.06 ($m, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 155.3 (C), 130.7 (CH), $130.3(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 120.7(\mathrm{CH}), 120.3(\mathrm{CH}), 111.7(\mathrm{CH}), 111.4(\mathrm{CH})$, $79.0(\mathrm{CH}), 78.6(\mathrm{CH}), 63.6\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{2}\right), 62.4\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{2}\right), 61.6(\mathrm{C}), 61.1(\mathrm{C})$, $55.3\left(\mathrm{CH}_{3}\right), 40.8\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{3}\right), 35.9\left(\mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{3}\right), 32.6\left(\mathrm{CH}_{3}\right), 32.2$ $\left(\mathrm{CH}_{3}\right)$, $31.3\left(\mathrm{CH}_{3}\right)$, $20.4\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3}\right)$, $17.0\left(\mathrm{CH}_{2}\right)$, $16.4\left(\mathrm{CH}_{3}\right)$, $16.3\left(\mathrm{CH}_{3}\right)$. MS (EI): 470 (6, [M] ${ }^{+}$), 314 (6), 156 (100), 69 (27). HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ ([M] ${ }^{+}$): 470.2546. Found: 470.2545.

[2-(4-Methoxy-phenyl)-(toluene-4-sulfonyl)-amino)-2-oxo-1-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethyl]-phosphonic acid diethyl ester 6e

According to GP 2 TEMPO ($257 \mathrm{mg}, 1.64 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(1.60 \mathrm{~g}, 11.95 \mathrm{mmol})$ were added to a soln. of DIPA ($0.24 \mathrm{~mL}, 1.64 \mathrm{mmol}$), BuLi $(0.87 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 1.64 $\mathrm{mmol})$ and $\mathbf{5 e}(680 \mathrm{mg}, 1.50 \mathrm{mmol})$ in DME (25 mL). After purification by FC ($1 . \mathrm{FC}$ EtOAc, 2. FC pentane/acetone $2: 1$) 6 e ($694 \mathrm{mg}, 76 \%$) was obtained as a yellow oil. IR (film): 2934w, $1711 s, 1604 w, 1508 s, 1365 s, 1250 s, 1173 s, 1054 s, 1025 s, 667 m, 568 s, 550 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(200$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97(d, J=8.3,2 \mathrm{H}, \mathrm{CH}) ; 7.31(d, J=8.3,4 \mathrm{H}, \mathrm{CH}) ; 6.97(d, J=9.0,2 \mathrm{H}$, $\mathrm{CH}) ; 4.82(d, J=20.0,1 \mathrm{H}, \mathrm{PCH}) ; 4.25-4.02\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.86\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.44(s, 3$
$\mathrm{H}, \mathrm{CH}_{3}$); 1.35-0.76 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.0(\mathrm{C}), 160.6(\mathrm{C})$, 144.6 (C), $136.0(\mathrm{C}), 132.1(\mathrm{CH}), 129.5(\mathrm{CH}), 129.1(\mathrm{CH}), 128.2(\mathrm{C}), 114.7(\mathrm{CH}), 81.3$ (d, $\left.J_{\mathrm{CP}}=150.5, \mathrm{CH}\right), 63.7\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{OCH}_{2}\right), 61.6(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 40.9\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right)$, $33.7\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): 633(15$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 477$ (25), 331 (50), 299 (100). HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{PS}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$633.2375. Found: 633.2382.

[(Benzyl-phenyl-carbamoyl]-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-methyl]-phosphonic acid diethyl ester $\mathbf{6 f}$

According to GP 2 TEMPO ($380 \mathrm{mg}, 2.22 \mathrm{mmol}$) and $\mathrm{CuCl}_{2}(1.81 \mathrm{~g}, 13.29 \mathrm{mmol})$ were added to a soln. of DIPA ($0.36 \mathrm{~mL}, 2.44 \mathrm{mmol}$), BuLi ($1.28 \mathrm{~mL}, 1.89 \mathrm{~m}$ in hexane, 2.44 mmol) and $\mathbf{5 f}$ ($800 \mathrm{mg}, 2.22 \mathrm{mmol}$) in DME (24 mL). After purification by FC (EtOAc/ pentane 4:1) $\mathbf{6 f}(1.05 \mathrm{~g}, 92 \%)$ was obtained as a yellow oil. IR (film): 2976s, 2931s, 1667s, $1496 s, 1396 m, 1256 s, 1026 s, 973 m, 700 s, 536 m .{ }^{1}{ }^{1} H-N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.34-7.15$ ($m, 10 \mathrm{H}, \mathrm{CH}$); $5.03\left(d, J=14.3,1 \mathrm{H}, \mathrm{NCH}_{2}\right) ; 4.89(d, J=18.2,1 \mathrm{H}, \mathrm{PCH}) ; 4.81(d, J=13.9$, $1 \mathrm{H}, \mathrm{NCH}_{2}$); 4.39-4.12 ($m, 4 \mathrm{H}, \mathrm{OCH}_{2}$); 1.45-1.10 ($m, 24 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 167.1 (C), 141.5 (C), 136.6 (C), $129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.0(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 78.4(\mathrm{CH}), 63.0\left(d, J_{\mathrm{CP}}=6.2, \mathrm{CH}_{2}\right), 62.7\left(d, J_{\mathrm{CP}}=5.6, \mathrm{CH}_{2}\right), 61.2$ (C), $59.3(\mathrm{C}), 53.3\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 19.8$ $\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): 743$ (60), $560(20), 539$ (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 383 (80), 156 (50). HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 539.2651$. Found: 539.2654.
[(4-Methoxy-phenylcarbamoyl)-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-methyl]phosphonic acid diethyl ester 6 g

According to GP 2 TEMPO (284 mg , 1.82 mmol) and $\mathrm{CuCl}_{2}(1.78 \mathrm{~g}, 13.28 \mathrm{mmol})$ were added to a soln. of DIPA ($0.50 \mathrm{~mL}, 3.49 \mathrm{mmol}$), BuLi ($2.14 \mathrm{~mL}, 1.63 \mathrm{~m}$ in hexane, 3.49 $\mathbf{m m o l}$) and $\mathbf{5 g}(500 \mathrm{mg}, 1.66 \mathrm{mmol})$ in DME (15 mL). After purification by FC (EtOAc) $\mathbf{6 g}$ ($403 \mathrm{mg}, 53 \%$) was obtained as yellow crystals. M.p. $115-119{ }^{\circ} \mathrm{C} . \mathrm{IR}$ (KBr): $3259 \mathrm{~m}, 2983 \mathrm{~m}$, $2937 m, 1680 s, 1551 m, 1511 s, 1234 m, 1063 s, 1037 s, 834 m, 549 m .{ }^{1} H-N M R(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.21(s, 1 \mathrm{H}, \mathrm{NH}) ; 7.44(d, J=7.0,2 \mathrm{H}, \mathrm{CH}) ; 6.84(d, J=7.0,2 \mathrm{H}, \mathrm{CH}) ; 4.74(d$, $J=17.0,1 \mathrm{H}, \mathrm{PCH}) ; 4.32-4.13\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.79\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 1.47-1.18(m, 24 \mathrm{H}$, $\mathrm{CH}_{3}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.3(\mathrm{C}), 156.5(\mathrm{C}), 130.5(\mathrm{C}), 121.2(\mathrm{CH}), 114.2$
$(\mathrm{CH}), 85.2\left(d, J_{\mathrm{CP}}=146.0, \mathrm{CH}\right) 63.4\left(d, J_{\mathrm{CP}}=6.7, \mathrm{CH}_{2}\right), 63.2\left(d, J_{\mathrm{CP}}=7.3, \mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right)$, $40.8\left(\mathrm{CH}_{2}\right), 16.9\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): 479\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 323$ (75). HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 479.2287. Found: 479.2282

(1-Methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-phosphonic acid diethyl ester 7

Phosphonate $\mathbf{6 a}(56 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved under Ar in DMF (5 mL). In a sealed tube the soln. was heated to $180^{\circ} \mathrm{C}$ for 2 min using microwave irradiation. Evaporation of the solvent and purification by FC (EtOAc) afforded 7 ($29 \mathrm{mg}, 81 \%$) as an oil. IR (film): 3500 br, $2980 s, 1717 s, 1559 s, 1539 s, 1473 s, 1377 s, 1185 m, 1021 s, 960 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, CDCl_{3}): $\delta=7.48-7.33(m, 4 \mathrm{H}, \mathrm{CH}) ; 4.44(d, J=13.6,2 \mathrm{H}, \mathrm{PCH}) ; 4.41-4.26\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$; 4.24-4.11 ($m, 2 \mathrm{H}, \mathrm{OCH}_{2}$); $3.33\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 1.38\left(t d, J_{l}=6.8, J_{l}=0.8,3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.29$ $\left(t, J=6.8,3 \mathrm{H}, \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.8$ (C), 159.1 (C), 136.4 (C), 129.4 $(\mathrm{CH}), 114.6(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 33.4\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right)$. MS (EI): 283 (87, [M] ${ }^{+}$), 255 (38), 227 (79), 157 (TEMPOH). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{P}\left([\mathrm{M}]^{+}\right): 283.0973$. Found: 283.0960.

Homolytic Aromatic Substitution with Subsequent Horner-Wadsworth-EmmonsOlefination: General Prodcedure 3 (GP 3)

The alkoxyamine was dissolved under Ar in DMF (5 mL). In a sealed tube the soln. was heated to $180{ }^{\circ} \mathrm{C}$ for 2 min using microwave irradiation. The reaction mixture was then allowed to cool to room temperature and $\mathrm{KO} t-\mathrm{Bu}$ and the aldehyde (10-20 equiv) were added. The reaction mixture was then heated to $180^{\circ} \mathrm{C}$ for 6 min using microwave irradiation. The reaction mixture was treated with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ soln. and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times). The organic layer was dried over MgSO_{4}. Removal of the solvent in vacuo and FC afforded the 2-oxindole derivatives.

3-Benzylidene-1-methyl-1,3-dihydro-indol-2-one 8a

According to GP 3 with $\mathbf{6 a}(217 \mathrm{mg}, 0.49 \mathrm{mmol})$ in DMF (5 mL) and KOt - $\mathrm{Bu}(66 \mathrm{mg}, 0.59$ mmol) and benzaldehyde ($0.53 \mathrm{~g}, 4.9 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 8a ($87 \mathrm{mg}, 75 \%$) was obtained as a mixture of isomers (cis:trans $=1: 3.4$) which were separated. cis-Isomer: M.p. $106{ }^{\circ} \mathrm{C}$. IR (KBr): 1688s, $1618 w, 1604 m, 1491 \mathrm{~m}, 1469 s, 1389 m$, $1090 s, 1040 m, 752 s, 708 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29(d, J=7.8,2 \mathrm{H}, \mathrm{CH}) ; 7.51$
($s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$); $7.49(d, 1 \mathrm{H}, \mathrm{CH}) ; 7.46-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}) ; 7.26\left(d d, J_{1}=J_{2}=7.6,1.0,1 \mathrm{H}\right.$, $\mathrm{CH}) ; 7.05\left(d d, J_{1}=J_{2}=7.6,1 \mathrm{H}, \mathrm{CH}\right) ; 6.80(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.26\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.1 (C), 141.4 (C), 136.0 (CH), 132.8 (C), 130.9 (CH), 129.4 (CH), $128.3(\mathrm{CH}), 127.2(\mathrm{CH}), 125.1(\mathrm{C}), 123.4(\mathrm{C}), 120.8(\mathrm{CH}) 118.0(\mathrm{CH}), 106.9(\mathrm{CH})$, $24.9\left(\mathrm{CH}_{3}\right)$. MS (EI): $235\left(100,[\mathrm{M}]^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 235.0997$. Found: 235.0998.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.66-7.46(m, 3 \mathrm{H}, \mathrm{CH})$; 7.43-7.24 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}$); 6.90-6.81 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$); $3.28\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 168.2(\mathrm{C}), 144.0(\mathrm{C}), 136.9(\mathrm{CH}), 134.8(\mathrm{C}), 129.5(\mathrm{CH}), 129.2(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.0(\mathrm{C}), 122.5(\mathrm{CH}), 121.5(\mathrm{CH}), 120.9(\mathrm{C}), 107.9(\mathrm{CH}), 25.9\left(\mathrm{CH}_{3}\right)$.

1-Methyl-3-(4-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one 8b

According to GP 3 with $\mathbf{6 a}(189 \mathrm{mg}, 0.43 \mathrm{mmol})$ in DMF (5 mL) and KOt -Bu ($58 \mathrm{mg}, 0.52$ mmol) and α, α, α-trifluorotolylaldehyde ($0.75 \mathrm{~g}, 4.3 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 8b (113 mg, 87\%) was obtained as a mixture of isomers (cis:trans $=$ 1:1.9) which were separated. cis-Isomer: M.p. $131{ }^{\circ} \mathrm{C}$. IR (KBr): $3452 \mathrm{br}, 2963 \mathrm{w}, 1687 \mathrm{~s}$, $1322 s, 1176 m, 1109 s, 1067 m, 1040 m, 1018 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(d, J=$ 8.3, $2 \mathrm{H}, \mathrm{CH}$); $7.68(d, J=7.0,2 \mathrm{H}, \mathrm{CH}) ; 7.54(d, J=7.0,1 \mathrm{H}, \mathrm{CH}) ; 7.53(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$; $7.30\left(d d, J_{1}=J_{2}=7.5,1 \mathrm{H}, \mathrm{CH}\right) ; 7.09\left(d d, J_{1}=J_{2}=7.5,1 \mathrm{H}, \mathrm{CH}\right) ; 6.84(d, J=7.7,1 \mathrm{H}, \mathrm{CH})$; $3.27\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.8(\mathrm{C}), 142.8(\mathrm{C}), 137.0(\mathrm{C}), 134.4(\mathrm{CH})$, $131.7(\mathrm{CH}), 131.1(\mathrm{C}), 130.7(\mathrm{CH}), 128.3(\mathrm{C}), 125.0(\mathrm{CH}), 123.7(\mathrm{C}), 122.0(\mathrm{CH}), 119.3$ $(\mathrm{CH}), 108.1(\mathrm{CH}), 26.0\left(\mathrm{CH}_{3}\right)$. MS (EI): $303\left(100,[\mathrm{M}]^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}$ ([M] ${ }^{+}$): 303.0871. Found: 303.0875.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.74(b r, s, 3 \mathrm{H}, \mathrm{CH})$; $7.42(d, J=7.5,1 \mathrm{H}, \mathrm{CH}) ; 7.33\left(d d, J_{1}=6.74, J_{2}=1.0,2 \mathrm{H}, \mathrm{CH}\right) ; 6.94-6.83(m, 2 \mathrm{H}, \mathrm{CH})$; $3.30\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.9(\mathrm{C}), 144.6(\mathrm{C}), 138.7(\mathrm{C}), 134.6(\mathrm{CH})$, $130.5(\mathrm{C}), 130.4(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{C}), 125.6(\mathrm{CH}), 122.8(\mathrm{CH}), 121.9(\mathrm{CH}), 120.6(\mathrm{C})$ $108.4(\mathrm{CH}), 24.9\left(\mathrm{CH}_{3}\right)$.

1-Methyl-3-(4-nitro-benzylidene)-1,3-dihydro-indol-2-one 8c

According to GP 3 with $\mathbf{6 a}(78 \mathrm{mg}, 0.18 \mathrm{mmol})$ in DMF (5 mL) and KOt-Bu ($24 \mathrm{mg}, 0.21$ mmol) and 4-nitrobenzaldehyde ($0.27 \mathrm{~g}, 1.8 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 8c ($22 \mathrm{mg}, 44 \%$) was obtained as a mixture of isomers (cis:trans $=1: 1.4$) which were separated. cis-Isomer: M.p. $189^{\circ} \mathrm{C}$. IR (KBr): 2963w, 1677s, 1605m, 1588m, 1517m, 1469m, 1337s, $1263 m, 1090 m, 906 m, 816 w, 744 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.37(d, J=$ 13.5, $2 \mathrm{H}, \mathrm{CH}) ; 8.25$ ($d, J=13.5,2 \mathrm{H}, \mathrm{CH}$); $7.55(d, J=13.5,1 \mathrm{H}, \mathrm{CH}) ; 7.53(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$; $7.36\left(d d, J_{1}=J_{2}=11.3,1 \mathrm{H}, \mathrm{CH}\right) ; 7.10\left(d d, J_{1}=J_{2}=11.3,1 \mathrm{H}, \mathrm{CH}\right) ; 6.85(d, J=12.4,1 \mathrm{H}$, $\mathrm{CH}) ; 3.28\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.7(\mathrm{C}), 148.0(\mathrm{C}), 143.1(\mathrm{C}), 139.9$ (C), $133.0(\mathrm{CH}), 132.2(\mathrm{CH}), 130.4(\mathrm{C}), 130.3(\mathrm{CH}), 129.7(\mathrm{C}), 123.5(\mathrm{CH}), 122.3(\mathrm{CH})$, $119.4(\mathrm{CH}), 108.3(\mathrm{CH}), 26.0\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 280\left(100,[\mathrm{M}]^{+}\right), 158(21)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}]^{+}\right):$280.0848. Found: 280.0857 .
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.34(d, J=9.0,1 \mathrm{H}, \mathrm{CH}) ; 7.81-7.77(m, 2 \mathrm{H}$, $\mathrm{CH}, \mathrm{CH}=\mathrm{C}$); 7.46-7.29 ($m, 4 \mathrm{H}, \mathrm{CH}$); 6.94-6.84 ($m, 2 \mathrm{H}, \mathrm{CH}$); $3.30\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$).

3-(4-Bromo-benzylidene)-1-methyl-1,3-dihydro-indol-2-one 8d

According to GP 3 with $\mathbf{6 a}(202 \mathrm{mg}, 0.46 \mathrm{mmol}$) in DMF (5 mL) and KOt - $\mathrm{Bu}(62 \mathrm{mg}, 0.55$ mmol) and 4-bromobenzaldehyde ($1.27 \mathrm{~g}, 6.9 \mathrm{mmol})$. After purification by FC (pentane/MTBE 4:1) 8d ($55 \mathrm{mg}, 38 \%$) was obtained as a mixture of isomers (cis:trans $=$ 1:2.4) which were separated. cis-Isomer: M.p. $146{ }^{\circ} \mathrm{C}$. IR (KBr): 3439br, 2826w, 1686s, $1605 s, 1489 m, 1469 m, 1338 m, 1091 m, 743 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(d, J=$ 8.5, $2 \mathrm{H}, \mathrm{CH}$); 7.57-7.49 ($m, 3 \mathrm{H}, \mathrm{CH}$); 7.42 ($s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$); 7.33-7.26 ($m, 1 \mathrm{H}, \mathrm{CH}$); 7.06 $\left(d d d, J_{1}=J_{2}=7.6, J_{3}=1.0,1 \mathrm{H}, \mathrm{CH}\right) ; 6.81(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.26\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 166.0 (C), 142.4 (C), 135.4 (CH), 133.4 (CH), 132.7 (CH), 129.4 $(\mathrm{CH}), 126.7(\mathrm{C}), 125.6(\mathrm{C}), 124.9(\mathrm{C}), 124.1(\mathrm{C}), 121.9(\mathrm{CH}), 119.0(\mathrm{CH}), 108.0(\mathrm{CH}), 25.9$ $\left(\mathrm{CH}_{3}\right)$. MS (EI): 303 (100, $[\mathrm{M}]^{+}$). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{81} \mathrm{BrNO}\left([\mathrm{M}]^{+}\right): 315.0083$. Found: 315.0084.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.61-7.45(m, 4 \mathrm{H}, \mathrm{CH})$; 7.31-7.23 ($m, 2 \mathrm{H}, \mathrm{CH}$); $6.89\left(d d d, J_{1}=J_{2}=7.8, J_{3}=1.0,1 \mathrm{H}, \mathrm{CH}\right) ; 6.83(d, J=7.8,1 \mathrm{H}$, CH); 3.27 ($s, 3 \mathrm{H}, \mathrm{NCH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.1$ (C), $144.3(\mathrm{C}), 135.3(\mathrm{CH})$, 133.8 (C), $131.8(\mathrm{CH}), 130.7(\mathrm{CH}), 130.0(\mathrm{CH}), 127.7(\mathrm{C}), 124.2(\mathrm{C}), 123.5(\mathrm{CH}), 121.7$ $(\mathrm{CH}), 120.7(\mathrm{C}), 108.2(\mathrm{CH}), 26.1\left(\mathrm{CH}_{3}\right)$.

1-Methyl-3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one 8e

According to GP 3 with $\mathbf{6 a}(207 \mathrm{mg}, 0.47 \mathrm{mmol}$) in DMF (5 mL) and KOt - $\mathrm{Bu}(63 \mathrm{mg}, 0.56$ mmol) and p-tolylaldehyde ($1.12 \mathrm{~g}, 9.4 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) $\mathbf{8 e}(50 \mathrm{mg}, 43 \%)$ was obtained as a mixture of isomers (cis:trans $=1: 2.3$) which were separated. cis-Isomer: M.p. $134^{\circ} \mathrm{C}$. IR (KBr): 1677s, 1626w, 1606m, 1470w, 1385w, 1337w, $1089 m, 1042 m, 736 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(d, J=8.0,2 \mathrm{H}, \mathrm{CH}) ; 7.50(d, J$ $=5.1,1 \mathrm{H}, \mathrm{CH}) ; 7.49(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.28-7.23(m, 3 \mathrm{H}, \mathrm{CH}) ; 7.03\left(d d, J_{1}=J_{2}=7.6,1 \mathrm{H}\right.$, CH); 6.79 ($d, J=7.8,1 \mathrm{H}, \mathrm{CH}$); $3.26\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$); $2.40\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 166.1 (C), $142.1(\mathrm{C}), 141.1(\mathrm{C}), 137.2(\mathrm{CH}), 132.1(\mathrm{CH}), 129.4(\mathrm{C}), 129.0(\mathrm{CH})$, $128.4(\mathrm{CH}), 125.0(\mathrm{C}), 124.5(\mathrm{C}), 121.7(\mathrm{CH}), 118.7(\mathrm{CH}), 107.7(\mathrm{CH}), 25.9\left(\mathrm{CH}_{3}\right), 21.6$ $\left(\mathrm{CH}_{3}\right)$. MS (EI): $249\left(100,[\mathrm{M}]^{+}\right), 248(43), 158(30) . \mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}\left([\mathrm{M}]^{+}\right)$: 249.1154. Found: 249.1158.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.69(d, J=7.6,1 \mathrm{H}$, $\mathrm{CH}) ; 7.60(d, J=7.8,2 \mathrm{H}, \mathrm{CH})$; 7.27-7.22 ($m, 3 \mathrm{H}, \mathrm{CH}$); $6.88\left(d d, J_{1}=J_{2}=7.6,1 \mathrm{H}, \mathrm{CH}\right)$; $6.78(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.26\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.41\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 168.2 (C), 143.8 (C), 139.5 (C), $137.0(\mathrm{CH}), 131.7$ (C), $129.1(\mathrm{CH}), 128.9$ (CH), $128.8(\mathrm{CH}), 126.1(\mathrm{C}), 122.3(\mathrm{CH}), 121.3(\mathrm{CH}), 120.9(\mathrm{C}), 107.7(\mathrm{CH}), 25.7\left(\mathrm{CH}_{3}\right), 21.2$ $\left(\mathrm{CH}_{3}\right)$.

3-(4-Methoxy-benzylidene)-1-methyl-1,3-dihydro-indol-2-one $8 f$

According to GP 3 with $\mathbf{6 a}(177 \mathrm{mg}, 0.40 \mathrm{mmol})$ in DMF (5 mL) and KOt - $\mathrm{Bu}(54 \mathrm{mg}, 0.48$ mmol) and anisaldehyde ($0.98 \mathrm{~mL}, 8.0 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 8f ($55 \mathrm{mg}, 52 \%$) was obtained as a mixture of isomers (cis:trans $=1: 1.9$) which were separated. cis-Isomer: IR (film): 3436br, 1699s, 1601s, 1512s, 1469s, 1380m, 1252s, 1175s, 1099s, 1030s, 834s, 777s. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.40(d, J=9.0,2 \mathrm{H}, \mathrm{CH}) ; 7.52$ $(d, J=1.0,1 \mathrm{H}, \mathrm{CH}) ; 7.48(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.26\left(d d d, J_{1}=J_{2}=7.7, J_{3}=1.0,1 \mathrm{H}, \mathrm{CH}\right) ; 7.03-$ $6.94(m, 3 \mathrm{H}, \mathrm{CH}) ; 6.79(d, J=8.0,1 \mathrm{H}, \mathrm{CH}) ; 3.87\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.28\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.6 (C), 141.9 (C), $137.0(\mathrm{CH}), 134.4$ (CH), 131.4 (C), 128.1 (CH), 127.1 (C), 124.9 (C), 123.6 (C), 121.6 (CH), 118.4 (CH), 113.8 (CH), 107.7 (CH), 55.4 $\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 265$ (100, $\left.[\mathrm{M}]^{+}\right), 222$ (15), 165 (25). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right):$265.1103. Found: 265.1104.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.75(d, J=7.1,1 \mathrm{H}$, $\mathrm{CH}) ; 7.64(d, J=8.8,2 \mathrm{H}, \mathrm{CH}) ; 7.30-7.23(m, 1 \mathrm{H}, \mathrm{CH}) ; 7.05-6.82(m, 4 \mathrm{H}, \mathrm{CH}) ; 3.87(s, 3 \mathrm{H}$, OCH_{3}); $3.28\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.9(\mathrm{C}), 160.8(\mathrm{C}), 144.0(\mathrm{C})$, $137.4(\mathrm{CH}), 132.2(\mathrm{CH}), 129.3(\mathrm{CH}), 127.3(\mathrm{C}), 125.4(\mathrm{C}), 122.4(\mathrm{CH}), 121.7(\mathrm{CH}), 121.4$ (C), $114.0(\mathrm{CH}), 108.1(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right)$.

3-(2-Bromo-benzylidene)-1-methyl-1,3-dihydro-indol-2-one 8g

According to GP 3 with $\mathbf{6 a}(158 \mathrm{mg}, 0.36 \mathrm{mmol}$) in DMF (5 mL) and KOt - $\mathrm{Bu}(48 \mathrm{mg}, 0.43$ $\mathrm{mmol})$ and 2-bromobenzaldehyde ($0.62 \mathrm{~mL}, 5.4 \mathrm{mmol}$) were added. After purification by FC (pentane/MTBE 4:1) 8g ($65 \mathrm{mg}, 58 \%$) was obtained as a mixture of isomers (cis:trans $=$ 1:3.6) which were separated. cis-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28\left(d d, J_{1}=7.8\right.$, $\left.J_{2}=1.5,1 \mathrm{H}, \mathrm{CH}\right) ; 7.75(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.65-7.04(m, 6 \mathrm{H}, \mathrm{CH}) ; 7.74(d, J=7.8,1 \mathrm{H}, \mathrm{CH})$; $3.23\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans-Isomer: IR (film): 1702s, 1607s, 1468s, 1378s, 1336s, 1256m, 1099s, 1026m, 734s. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81$ ($s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$); 7.73-7.64 ($m, 2 \mathrm{H}, \mathrm{CH}$); 7.43-7.23 ($m, 4$ $\mathrm{H}, \mathrm{CH}) ;$ 6.83-6.79 ($m, 2 \mathrm{H}, \mathrm{CH}$); $3.28\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.8(\mathrm{C})$, 144.4 (C), 135.6 (C), $135.4(\mathrm{CH}), 133.1(\mathrm{CH}), 130.9(\mathrm{CH}), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 128.5$ (C), $127.1(\mathrm{CH}), 124.0(\mathrm{C}), 122.8(\mathrm{CH}), 121.7(\mathrm{CH}), 120.8(\mathrm{C}), 107.9(\mathrm{CH}), 26.6\left(\mathrm{CH}_{3}\right)$. MS (EI): 315 ($3,[\mathrm{M}]^{+}$), 234 (100), 219 (14). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{81} \mathrm{BrNO}\left([\mathrm{M}]^{+}\right)$: 315.0083. Found: 315.0090.

1-Methyl-3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one 8h

According to GP 3 with $\mathbf{6 a}(129 \mathrm{mg}, 0.29 \mathrm{mmol}$) in DMF (5 mL) and KOt - $\mathrm{Bu}(39 \mathrm{mg}, 0.35$ mmol) and o-tolylaldehyde ($0.51 \mathrm{~mL}, 4.4 \mathrm{mmol}$). After purification by FC (pentane/MTBE $4: 1) \mathbf{8 h}(28 \mathrm{mg}, 38 \%)$ was obtained as a mixture of isomers (cis:trans $=1: 6)$ which were separated. cis-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(d, J=6.3,1 \mathrm{H}, \mathrm{CH}) ; 7.75(s, 1$ $\mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.54(d, J=7.6,1 \mathrm{H}, \mathrm{CH}) ; 7.33-7.22(m, 4 \mathrm{H}, \mathrm{CH}) ; 7.06\left(d d, J_{1}=J_{2}=7.6,1 \mathrm{H}\right.$, $\mathrm{CH}) ; 6.82(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.23\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.41\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
trans-Isomer: IR (Film): 1710s, 1605s, 1467s, 1376m, 1336w, 774s, 752s, 735s. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.55(d, J=7.6,1 \mathrm{H}, \mathrm{CH}) ; 7.34-7.22(m, 5 \mathrm{H}$, CH); 6.85-6.80 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$); $3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.35\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$,
CDCl_{3}): 168.0 (C), 143.9 (C), 137.1 (C), 136.1 (CH), 134.1 (C), $130.3(\mathrm{CH}), 129.4(\mathrm{CH})$, 129.1 (CH), 128.3 (CH), 127.7 (C), 125.5 (CH), 122.7 (CH), 121.6 (CH), 121.1 (C), 107.8 (CH), $25.9\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 249\left(80,[\mathrm{M}]^{+}\right), 232$ (100), 205 (22), 124 (20). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 249.1154$. Found: 249.1152.

1-Methyl-3-pyridin-4-ylmethylene-1,3-dihydro-indol-2-one 9

According to GP 3 with $\mathbf{6 a}(195 \mathrm{mg}, 0.44 \mathrm{mmol}$) in DMF (5 mL) and KOt - $\mathrm{Bu}(60 \mathrm{mg}, 0.53$ $\mathrm{mmol})$ and 4-pyridincarboxaldehyde $(0.74 \mathrm{~mL}, 7.8 \mathrm{mmol})$. After purification by FC (pentane/MTBE 4:1) 9 ($50 \mathrm{mg}, 48 \%$) was obtained as a mixture of isomers (cis:trans $=1: 2.3$), which could not be separated. Both isomers: IR (Film): 2930w, 1706s, 1607s, 1488m, 1469s, $1414 m, 1379 m, 1338 m, 1125 m, 1102 m, 742 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.72(d, J=$ $6.8,2 \mathrm{H}, \mathrm{CH}) ; 8.00\left(d d, J_{1}=4.5, J_{2}=1.5,1 \mathrm{H}, \mathrm{CH}\right) ; 7.54(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.51-7.29(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}) ;$ 6.92-6.79 ($m, 2 \mathrm{H}, \mathrm{CH}$); 3.28, $3.24\left(2 s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 167.6$ (C), $150.3(\mathrm{CH}), 149.9(\mathrm{CH}), 144.7$ (C), 143.0 (C), 142.9 (C), 140.5 (C), $132.8(\mathrm{CH}), 132.6$ $(\mathrm{CH}), 130.9(\mathrm{CH}), 130.1(\mathrm{CH}), 124.6(\mathrm{CH}), 123.0(\mathrm{CH}), 122.9(\mathrm{CH}), 122.1(\mathrm{CH}), 121.9(\mathrm{CH})$, $119.6(\mathrm{CH}), 108.4(\mathrm{CH}), 108.1(\mathrm{CH}), 26.1\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 236\left(100,[\mathrm{M}]^{+}\right), 207$ (12), 158 (74), 118 (55), 77 (10), 51 (13). HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ ([M] ${ }^{+}$): 236.0950. Found: 236.0950.

3-Benzylidene-5-methoxy-1-methyl-1,3-dihydro-indol-2-one 10

According to GP 3 with $\mathbf{6 b}(213 \mathrm{mg}, 0.45 \mathrm{mmol})$ in DMF (5 mL) and KOt - $\mathrm{Bu}(61 \mathrm{mg}, 0.54$ mmol) and benzaldehyde ($0.69 \mathrm{~mL}, 6.8 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 10 ($78 \mathrm{mg}, 65 \%$) was obtained as a mixture of isomers (cis:trans $=1: 3.1$) which were separated. cis-Isomer: IR (film): $3070 w, 2942 w, 2833 w, 1694 s, 1652 m, 1593 m, 1512 m$, $1439 \mathrm{~m}, 1383 \mathrm{~s}, 1345 \mathrm{~m}, 1284 \mathrm{~s}, 1230 \mathrm{~m}, 1098 \mathrm{~m}, 1042 \mathrm{~s}, 760 \mathrm{~s}, 455 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.23(d, J=7.6,2 \mathrm{H}, \mathrm{CH}) ; 7.43(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.38-7.36(m, 3 \mathrm{H}, \mathrm{CH}) ; 7.05(d$, $J=2.4,1 \mathrm{H}, \mathrm{CH}) ; 6.77\left(d d, J_{1}=8.3, J_{2}=2.5,1 \mathrm{H}, \mathrm{CH}\right) ; 6.64(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.78(s, 3$ $\mathrm{H}, \mathrm{OCH}_{3}$); 3.18 ($s, 3 \mathrm{H}, \mathrm{NCH}_{3}$). ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $166.0(\mathrm{C}), 155.7(\mathrm{C}), 137.1$ $(\mathrm{CH}), 136.5(\mathrm{C}), 133.8(\mathrm{C}), 130.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.2(\mathrm{CH}), 127.0(\mathrm{C}), 125.3(\mathrm{C}), 114.0$ (CH), $108.2(\mathrm{CH}), 105.9(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 303\left(100,[\mathrm{M}]^{+}\right)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right):$265.1103. Found: 265.1099.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ;$ 7.56-7.55 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$); 7.43-7.35 ($m, 3 \mathrm{H}, \mathrm{CH}$); $7.16(d, J=2.4,1 \mathrm{H}, \mathrm{CH}) ; 6.83\left(d d, J_{1}=8.5, J_{2}=2.7,1 \mathrm{H}, \mathrm{CH}\right) ; 6.64$ $(d, J=8.3,1 \mathrm{H}, \mathrm{CH}) ; 3.61\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.19\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

3-Benzylidene-7-methoxy-1-methyl-1,3-dihydro-indol-2-one 11

According to GP 3 with $\mathbf{6 d}(151 \mathrm{mg}, 0.32 \mathrm{mmol})$ in DMF (5 mL) and KOt - $\mathrm{Bu}(43 \mathrm{mg}, 0.39$ mmol) and benzaldehyde ($0.48 \mathrm{~mL}, 4.8 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 11 ($36 \mathrm{mg}, 42 \%$) was obtained as a mixture of isomers (cis:trans $=1: 2.6$) which were separated. cis-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}) ; 7.52(s, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C})$; 7.45-7.40 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$); $7.18\left(d d, J_{1}=7.1, J_{2}=1.5,1 \mathrm{H}, \mathrm{CH}\right) ; 6.98\left(d d, J_{1}=12.4, J_{1}\right.$ $=11.3,1 \mathrm{H}, \mathrm{CH}) ; 6.84\left(d d, J_{1}=12.4, J_{2}=1.5,1 \mathrm{H}, \mathrm{CH}\right) ; 3.86\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.55(s, 3 \mathrm{H}$, NCH_{3}.
trans-Isomer: IR (film): 1702s, 1608m, 1459m, 1446m, 1331m, 1254s, 1126s, 1071s, 1049s, $694 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.64-7.59$ ($m, 2 \mathrm{H}, \mathrm{CH}$); 7.50$7.39(m, 3 \mathrm{H}, \mathrm{CH}) ; 7.22(d, J=1.8,1 \mathrm{H}, \mathrm{CH}) ; 6.87-6.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}) ; 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $3.56\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.7(\mathrm{C}), 145.5(\mathrm{C}), 137.4(\mathrm{CH}), 135.1$ (C), $129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.6(\mathrm{CH}), 127.6(\mathrm{C}), 126.8(\mathrm{C}), 122.6(\mathrm{C}), 122.1(\mathrm{CH}), 115.9$ $(\mathrm{CH}), 113.9(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 265\left(100,[\mathrm{M}]^{+}\right), 222(19), 152(21), 77$ (12). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\left([M]^{+}\right): ~ 265.1103$. Found: 265.1109.

3-Benzylidene-4-methoxy-1-methyl-1,3-dihydro-indol-2-one 12a and 3-Benzylidene-6-methoxy-1-methyl-1,3-dihydro-indol-2-one 12b

According to GP 3 with $\mathbf{6 c}(216 \mathrm{mg}, 0.46 \mathrm{mmol})$ in DMF (5 mL) and KOt - $\mathrm{Bu}(62 \mathrm{mg}, 0.55$ mmol) and benzaldehyde ($0.80 \mathrm{~mL}, 8.0 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 12a and 12b ($106 \mathrm{mg}, 87 \%$, ratio 1.4:1) were obtained (the regioisomers were separated). 12a was obtained as a mixture of isomers (cis:trans $=5: 1$). 12a: cis-Isomer: M.p. $125{ }^{\circ} \mathrm{C}$. IR (KBr): 2931m, 1692s, 1608s, 1473s, 1451m, 1264s, 1068s, 750s, 689s. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , CDCl_{3}): $\delta=8.13(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 8.12(m, 2 \mathrm{H}, \mathrm{CH}) ; 7.42-7.34(m, 3 \mathrm{H}, \mathrm{CH}) ; 7.22(d, J=8.0$, $1 \mathrm{H}, \mathrm{CH}) ; 6.66(d, J=8.6,1 \mathrm{H}, \mathrm{CH}) ; 6.49(d, J=7.1,1 \mathrm{H}, \mathrm{CH}) ; 3.99\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.25(s$, $3 \mathrm{H}, \mathrm{NCH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 156.0(\mathrm{C}), 143.8(\mathrm{C}), 141.4(\mathrm{CH}), 134.9(\mathrm{C}), 131.5$ $(\mathrm{CH}), 130.6(\mathrm{C}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 127.9(\mathrm{CH}), 126.5(\mathrm{C}), 126.9(\mathrm{C}), 105.3(\mathrm{CH})$,
$101.2(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 265\left(100,[\mathrm{M}]^{+}\right), 222(20), 188(45), 165(32)$, 102 (15), 91 (28). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right)$: 265.1103. Found: 265.1093.
trans-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=7.95(s, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.38-7.25(m, 6 \mathrm{H}, \mathrm{CH})$; 6.66-6.51 ($m, 2 \mathrm{H}, \mathrm{CH}$); $3.45\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.25\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

12b: Tentatively assigned as cis-Isomer: IR (film): 2935m, 1708s, 1620s, 1505m, 1466s, $1382 s, 1259 s, 1229 s, 1107 s, 1057 m, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(s, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}) ; 7.63(d, J=8.3,2 \mathrm{H}, \mathrm{CH}) ; 7.56(d, J=9.0,1 \mathrm{H}, \mathrm{CH}) ; 7.48-7.41(m, 3 \mathrm{H}, \mathrm{CH}) ; 6.40-$ $6.37(m, 2 \mathrm{H}, \mathrm{CH}) ; 3.83\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.26\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 161.5 (C), 146.0 (C), 135.4 (C), $134.1(\mathrm{CH}), 131.5(\mathrm{C}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.5(\mathrm{CH})$, $127.8(\mathrm{C}), 126.8(\mathrm{C}), 123.9(\mathrm{CH}), 105.8(\mathrm{CH}), 95.8(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}):$ 265 (100, $[\mathrm{M}]^{+}$), 222 (17), 142 (24), 131 (30), 77 (16). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ $\left([M]^{+}\right):$265.1103. Found: 265.1098.

3-Benzyl-4-methoxy-1-methyl-1,3-dihydro-indol-2-one 13a

12a ($41 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$, then $\mathrm{Pd} / \mathrm{C}(10 \%)$ was added. After stirring for 18 h under an H_{2}-atmosphere at normal pressure, the reaction mixture was filtered. Removal of the solvents afforded 13a ($26 \mathrm{mg}, 62 \%$) as a white solid. IR ($\mathrm{KBr)}$: $2931 m, 1710 s, 1608 s, 1474 s, 1455 m, 1318 m, 1262 s, 1061 s, 751 s, 702 s .{ }^{1} H-N M R(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.27(s, 1 \mathrm{H}, \mathrm{CH}) ; 7.15\left(d d, J_{1}=J_{2}=8.3,1 \mathrm{H}, \mathrm{CH}\right) ; 7.06-7.05(m, 2 \mathrm{H}, \mathrm{CH})$; 6.97-6.95 ($m, 2 \mathrm{H}, \mathrm{CH}$); $6.59(d, J=8.6,1 \mathrm{H}, \mathrm{CH}) ; 6.27(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 3.91(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ; 3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC}(=\mathrm{O})) ; 3.47\left(d d, J_{1}=13.4, J_{2}=5.3,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.37\left(d d, J_{1}=13.2\right.$, $J_{2}=4.4,1 \mathrm{H}, \mathrm{CH}_{2}$); $2.99\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.3(\mathrm{C}), 155.9(\mathrm{C})$, 145.6 (C), $137.4(\mathrm{C}), 129.4(\mathrm{CH}), 127.6(\mathrm{CH}), 126.1(\mathrm{CH}), 114.0(\mathrm{C}), 105.8(\mathrm{CH}), 101.2$ $(\mathrm{CH}), 96.0(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 46.2(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 267\left(41,[\mathrm{M}]^{+}\right)$, 176 (100), 133 (23), 105 (11), 91 (34), 65 (20). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ ([M] ${ }^{+}$): 267.1259. Found: 267.1267.

3-Benzyl-6-methoxy-1-methyl-1,3-dihydro-indol-2-one 13b

12b ($43 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$, then $\mathrm{Pd} / \mathrm{C}(10 \%)$ was added. After stirring for 18 h under an H_{2}-atmosphere at normal pressure, the reaction mixture was filtered. Removal of the solvents afforded 13b ($34 \mathrm{mg}, 78 \%$) as an oil.

IR (film): $3437 b r, 1712 s, 1626 s, 1600 m, 1506 m, 1455 m, 1378 s, 1259 m, 1230 m, 910 s, 700 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29-7.15(m, 5 \mathrm{H}, \mathrm{CH}) ; 6.57(d, J=8.0,1 \mathrm{H}, \mathrm{CH}) ; 6.39$ $\left(d \mathrm{x} d, J_{1}=12.7, J_{2}=2.5,1 \mathrm{H}, \mathrm{CH}\right) ; 6.34(d, J=2.2,1 \mathrm{H}, \mathrm{CH}) ; 3.78\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.65(d \mathrm{x} d$, $\left.J_{1}=9.8, J_{2}=4.4,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.46\left(d \mathrm{x} d, J_{1}=13.7, J_{2}=4.4,1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.13\left(s, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; $2.80\left(d \mathrm{x} d, J_{1}=13.4, J_{2}=9.5,1 \mathrm{H}, \mathrm{CHC}(=\mathrm{O})\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.7(\mathrm{C}), 160.1$ (C), $145.5(\mathrm{C}), 138.1(\mathrm{C}), 129.4(\mathrm{CH}), 128.4(\mathrm{CH}), 126.5(\mathrm{CH}), 125.1(\mathrm{CH}), 120.3(\mathrm{C}), 105.8$ $(\mathrm{CH}), 96.0(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 46.5(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): 267\left(15,[\mathrm{M}]^{+}\right)$, 176 (100), 133 (10), 91 (22), 65 (8). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ ([M] ${ }^{+}$): 267.1259. Found: 267.1262.

1-Benzyl-3-benzylidene-1,3-dihydro-indol-2-one 14

According to GP 3 with $\mathbf{6 f}(146 \mathrm{mg}, 0.28 \mathrm{mmol}$) in DMF (5 mL) and KOt-Bu ($38 \mathrm{mg}, 0.34$ mmol) and benzaldehyde ($0.42 \mathrm{~mL}, 4.2 \mathrm{mmol}$). After purification by FC (pentane/MTBE 4:1) 14 ($31 \mathrm{mg}, 35 \%$) was obtained as a mixture of isomers (cis:trans $=1: 4.2$) which were separated. cis-Isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.32$ ($m, 2 \mathrm{H}, \mathrm{CH}$); 7.61-7.04 ($m, 12$ $\mathrm{H}, \mathrm{CH}) ; 6.73(d, J=7.7,1 \mathrm{H}, \mathrm{CH}) ; 5.00\left(s, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$.
trans-Isomer: IR (film): $3399 w, 1705 s, 1607 s, 1481 m, 1467 s, 1384 s, 1352 s, 1179 s, 778 m$, $748 s, 698 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 7.67-7.62(m, 2 \mathrm{H}, \mathrm{CH})$; 7.49-7.42 ($m, 3 \mathrm{H}, \mathrm{CH}$); 7.34-7.25 ($m, 6 \mathrm{H}, \mathrm{CH}$); 7.16-7.11 ($m, 1 \mathrm{H}, \mathrm{CH}$); $6.84\left(d d d, J_{1}=J_{2}=\right.$ $\left.7.6, J_{3}=1.3,1 \mathrm{H}, \mathrm{CH}\right) ; 6.72(d, J=7.8,1 \mathrm{H}, \mathrm{CH}) ; 5.01\left(s, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 168.5 (C), 143.4 (C), $137.5(\mathrm{CH}), 136.0(\mathrm{C}), 135.0(\mathrm{C}), 129.7(\mathrm{CH}), 129.5(\mathrm{CH})$, $129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{C}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 122.8(\mathrm{CH}), 121.8$ $(\mathrm{CH}), 121.3(\mathrm{C}), 109.5(\mathrm{CH}), 44.2\left(\mathrm{CH}_{2}\right)$. MS (EI): 311 (34, [M] $\left.{ }^{+}\right), 165$ (16), 91 (100). HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 311.1310$. Found: 311.1313.

Literature

[1] D. V. Patel, R. J. Schmidt, S. A. Biller, E. M. Gordon, S. S. Robinson and V. Manne, J. Med. Chem. 1995, 38, 2906.
[2] J. C. Birnbaum, B. Busche, Y. Lin, W. J. Shaw and G. E. Fryxell, Chem. Commun. 2002, 1374.
[3] J. Berluenga, A. M. Bayón and G. Asensio, Chem. Commun. 1983, 1109.
[4] J. Berluenga, A. M. Bayón and G. Asensio, Chem. Commun. 1984, 1334.
[5] S. R. Khan, A. Mhaka, R. Pili and J. T. Isaacs, Bioor. Med. Chem. Let. 2001, 11, 451.

