Efficient Palladium-Catalyzed Cross-Coupling of β-chloroalkylidene/arylidene Malonates using Microwave Chemistry

Rajamohan R. Poondra, Peter M. Fischer and Nicholas J. Turner *

School of Chemistry, University of Edinburgh, Kings Buildings, West Mains Road,Edinburgh, EH9 3JJ, UK and Cyclacel Ltd, James Lindsay Place, Dundee DD1 5JJ,UK
Contents
General experimental information S2
General procedure for cross-coupling reaction S3
Characterization data of compound (entry 1) S3
Characterization data of compounds (entry 2\&3) S4
Characterization data of compounds (entry 4\&5) S5
Characterization data of compounds (entry 6\&7) S6
Characterization data of compounds (entry 8\&9) S7
Characterization data of compounds (entry 10\&11) S8
Characterization data of compounds (entry 12\&13) S9
Characterization data of compounds (entry 14\&15) S10
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry1) S11
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry3) S12
${ }^{1} \mathrm{H}$ NMR spectra of compound (entry2) S13
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 4) S14
${ }^{1} \mathrm{H}$ NMR spectra of compounds (entry 5\&6) S15
${ }^{1} \mathrm{H}$ NMR spectra of compounds (entry $7 \& 8$) S16
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 9) S17
${ }^{1} \mathrm{H}$ NMR spectra of compounds (entry 10\&11) S18
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 12) S19
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 13) S20
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 14) S21
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra of compound (entry 15) S22

General experimental information:

Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. THF was dried and distilled from sodium/benzophenone. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was purchased dry from commercial suppliers and dried under vacuum at $120{ }^{\circ} \mathrm{C}$ for 24h.Thin-Layer Chromatography was performed on precoated plates, silica gel $60 \mathrm{~F}_{254}$ and visualizing with ultraviolet light and iodine spray. Flash chromatography on silica gel. All melting points are uncorrected. Infrared spectra were observed as KBr pellets or neat. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} and DMSO- d_{6} solutions using the residual solvent peak as internal reference. Spin multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet) as well as b (broad). Coupling constants (J) are given in hertz. Mass spectra Electro spray and HRMS were obtained.

All microwave irradiation experiments were carried out using the Explorer PLS. ${ }^{\text {TM }}$ The reactions were performed in heavy-walled Pyrex tubes ($10 \mathrm{ml}, 1=150 \mathrm{~mm}$) sealed with a septum utilizing the standard absorbance level (300 W maximum power). The reaction volume filled not more than $1 / 4^{\text {th }}$ of the total volume of the tube. All couplings and other reactions were conducted in the presence of stirring and external cooling.

General Procedure for the Reaction of β-chloro-arylidene/alkylidenemalonates with arylboronic acids:

POPd (1mol \%), β-Chloro-alkylidene/arylidenemalonate (1.00 mmol), arylboronic acid (1.50 to 2.00 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.00 \mathrm{mmol})$ were weighed in a microwave tube, equipped with a magnetic stirrer bar, and sealed with a silicon septum. THF (2 to 3 mL) was injected into the tube via a syringe and the reaction mixture was subjected to microwave irradiation for 30 min at $100{ }^{\circ} \mathrm{C}$. The reaction vessel was allowed to cool to room temperature and the crude reaction mixture transferred to a separating funnel and diluted with hexane $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were separated, the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (20 mL), dried over MgSO_{4}, and filtered, and solvents were removed from the filtrate by rotary evaporation. The resulting residue was chromatographed on silica gel using ethyl acetate/hexane as eluant.

2-[1-(3-Chlorophenyl) ethylidene] malonic acid diethyl ester (Entry 1):

2-[1-(3-Chlorophenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd ($12 \mathrm{mg}, 0.023 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.26 \mathrm{mmol}$), 3-chlorophenyl boronic acid (0.532 g , 3.40 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.940 \mathrm{~g}, 6.80 \mathrm{mmol})$ in THF (3 mL) yielded $0.470 \mathrm{~g}(70 \%$ yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate $=9: 1$); IR (Neat): 2982, 1725, 1628, 1563, 1473, 1445, $1228 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.15 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (63 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 165.5,164.4,153.5,143.1,134.1,129.5,128.3,126.7,124.7,61.8$, 22.5, 13.9. $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right): \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{4}, 296.0815$; found, 296.0813.

2-[1-(3, 5-Difluoro phenyl) ethylidene] malonic acid diethyl ester (Entry 2):

F
2-[1-(3,5-Difluoro phenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($11.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.26 \mathrm{mmol}$), 3,5-fluorophenyl boronic acid ($0.716 \mathrm{~g}, 4.53 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.940 \mathrm{~g}, 6.80 \mathrm{mmol})$ in THF (3 mL) yielded 0.4 g (59% yield) of the title product as a colorless liquid. $R_{f}=0.4$ (hexane/ethyl acetate $=8: 2$); IR (Neat): 2984, 1726, 1641, 1620, 1590, 1492, 1446, $1236 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J$ $=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{t}, J=7.11 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.12 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (EI ${ }^{+}$: m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4}$, 298.1017; found, 298.1020 .

2-[1-(3, 5-Dimethyl phenyl) ethylidene] malonic acid diethyl ester (Entry 3):

2-[1-(3,5-Dimethyl phenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($6 \mathrm{mg}, 0.011 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)malonic acid diethyl ester ($0.250 \mathrm{~g}, 1.13 \mathrm{mmol}$), 3,5-methylphenyl boronic acid ($0.255 \mathrm{~g}, 1.70 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.470 \mathrm{~g}, 3.40 \mathrm{mmol})$ in THF (2 mL) yielded 0.2 g (60% yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate $=$ 9:1); IR (Neat): 2981, 1724, 1623, 1445, 1266, $1223 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.13 \mathrm{~Hz}$, 2H), 2.56 ($\mathrm{s}, 3 \mathrm{H}$), $2.45(\mathrm{~s}, 6 \mathrm{H}) 1.47(\mathrm{t}, J=7.11 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.12 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.2,164.6,156.0,141.4,137.6,129.9,125.7,124.2$, 60.8, 22.6, 13.9. HRMS (EI^{+}): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4}, 290.1518$; found, 290.1520 .

2-[1-(4-Methoxyphenyl)-ethylidene]-malonic acid diethyl ester (Entry 4):

2-[1-(4-Methoxyphenyl)-ethylidene]-malonic acid diethyl ester was prepared using the general procedure. POPd, ($6 \mathrm{mg}, 0.011 \mathrm{mmol}, 0.1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester ($0.250 \mathrm{~g}, 1.13 \mathrm{mmol}$), 4-methoxyphenyl boronic acid ($0.258 \mathrm{~g}, 1.70 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.470 \mathrm{~g}, 3.40 \mathrm{mmol})$ in THF (3 mL) yielded $0.210 \mathrm{~g}\left(65 \%\right.$ yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate $=8: 2$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{~d}, \mathrm{~J}=8.48 \mathrm{~Hz}$, 2 H), 6.78 (d, $J=8.57 \mathrm{~Hz}, 2 \mathrm{H}$), 4.50 (q, $J=7.10 \mathrm{~Hz}, 2 \mathrm{H}$), $3.94(\mathrm{q}, \mathrm{J}=7.10 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.11 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.12 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,164.7,159.7,155.4,133.6,128.1,125.4,113.5$, 60.8, 55.1, 22.6, 13.9. MS (ES ${ }^{+}$): m/z (relative intensity) 292(M+, 15), 260 (15), 172 (20), 110 (55), 97 (100), 80 (15).

2-[1-(5-Fluoro-2-methoxyphenyl) ethylidene]malonic acid diethyl ester (Entry 5):

F
2-[1-(5-Fluoro-2-methoxyphenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($11.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.26 \mathrm{mmol}$), 2-methoxy-5-fluorophenyl boronic acid ($0.770 \mathrm{~g}, 4.53 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.940 \mathrm{~g}, 6.80 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ yielded 0.280 g (66% yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2982, 1725, 1637, 1610, 1594, $1465 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{q}, J=7.11 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=$ $7.15 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06 ($\mathrm{s}, 3 \mathrm{H}$), 2.60 ($\mathrm{s}, 3 \mathrm{H}$), 1.57 (t, J = $7.15 \mathrm{~Hz}, 3 \mathrm{H}$), 1.23 (t, J = 7.14 Hz , 3H). HRMS (EI^{+}): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FO}_{5}, 310.1217$; found 310.1216.

2-[-(3-Nitrophenyl) ethylidene] malonic acid diethyl ester (Entry 6):

2-[-(3-Nitrophenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($11.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-ethylidene)malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.26 \mathrm{mmol}$), 3-nitrophenyl boronic acid (0.757 g , $4.53 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.940 \mathrm{~g}, 6.80 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ yielded $0.3 \mathrm{~g}(72 \%$ yield) of the title product as a colorless liquid. $R_{f}=0.3$ (hexane/ethyl acetate $=9: 1$); IR (Neat): 2984, 1724, 1631, 1574, 1474, $1446 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.12 (m, 1H), 8.05 (s, 1H), 7.48 (m, 2H), 4.25 (q, $J=7.17 \mathrm{~Hz}, 2 \mathrm{H}$), 3.92 (q, $J=7.13$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.33 (s, 3H), 1.29 (t, $J=7.09 \mathrm{~Hz}, 3 \mathrm{H}$), 0.97 (t, $J=7.11 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (EI ${ }^{+}$): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{6}$, 307.1056; found, 307.1049.

2-(2-Methyl-1-phenylpropylidene) malonic acid diethyl ester (Entry 7):

2-(2-Methyl-1-phenylpropylidene) malonic acid diethyl ester was prepared using the general procedure. POPd, ($10 \mathrm{mg}, 0.012 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.0 \mathrm{mmol}$), 3-phenyl boronic acid ($0.294 \mathrm{~g}, 2.40 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.834 \mathrm{~g}, 6.03 \mathrm{mmol})$ in THF (3 mL) yielded 0.250 g (71% yield) of the title product as a colorless liquid. $R_{f}=0.4$ (hexane/ethyl acetate $=$ 9:1). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37$ ($\mathrm{m}, 3 \mathrm{H}$), $7.12(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{q}, J=7.17 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=$ $6.84 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z}$ (relative intensity) $313(\mathrm{M}+$ Na, 100), 240 (5), 163 (25).

2-[1-(3-Chlorophenyl)-2-methylpropylidene] malonic acid diethyl ester (Entry 8):

2-[1-(3-Chlorophenyl)-2-methylpropylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($6 \mathrm{mg}, 0.012 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-2methyl propylidene) malonic acid diethyl ester ($0.3 \mathrm{~g}, 1.20 \mathrm{mmol}$), 3-chlorophenyl boronic acid ($0.283 \mathrm{~g}, 0.181 \mathrm{mmol}$) $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.62 \mathrm{mmol})$ in THF (2 mL) yielded ($0.15 \mathrm{~g}, 57 \%$ yield) of the title product as a colorless liquid. IR (Neat): 2978, 1726, 1624, 1563, 1466, $1446 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=3.45 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{t}, J=3.74 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS $\left(\mathrm{EI}^{+}\right)$: m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClO}_{4}, 324.1128$; found, 324.1297.

2-[1-(3-Fluoro phenyl)-2-methylpropylidene] malonic acid diethyl ester(Entry 9):

2-[1-(3-Fluoro phenyl)-2-methyl propylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($10 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.0 \mathrm{mmol}$), 3fluorophenyl boronic acid ($0.337 \mathrm{~g}, 2.40 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.834 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF (3 mL) yielded 0.340 g (55% yield) of the title product as a colorless liquid. $R_{f}=$ 0.6 (hexane/ethyl acetate $=9: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.02$ (m, 1H), $6.84(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{q}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~m}$, 1 H), 1.04 (d, $J=7.13 \mathrm{~Hz}, 6 \mathrm{H}$), $0.96(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.8,163.8,161.4,159.9,138.3,129.0,126.1,123.6,115.3,61.2,31.9,20.5,13.9$. MS (ES ${ }^{+}$): m/z (relative intensity) 331(M+, +Na, 5), 300 (40), 198 (18), 130 (100), 73 (10), 61(50).

2-[1-(5-Fluoro-2-methoxyphenyl)-2-methylpropylidene] malonic acid diethyl ester (Entry 10):

2-[1-(5-Fluoro-2-methoxyphenyl)-2-methylpropylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($10 \mathrm{mg}, 0.019 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 2.0 \mathrm{mmol}$), 2-methoxy-5-fluorophenyl boronic acid ($0.684 \mathrm{~g}, 4.0 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.830 \mathrm{~g}, 6.0$ mmol) in THF (3 mL) yielded 0.250 g (52 \% yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2979, 1726, 1628, 1607, 1495, $1465 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H})$, 4.51 (m, 2H), 4.11 (q, $J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.21 (m, 9H). HRMS (EI^{+}): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{FO}_{5}, 338.1530$; found, 338.1528 .

2-[(3-Chloro-phenyl)-phenylmethylene] malonic acid diethyl ester (Entry 11):

2-[(3-Chloro-phenyl)-phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($3.5 \mathrm{mg}, 0.0069 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2 -(Chlorophenyl methylene) malonic acid diethyl ester ($0.2 \mathrm{~g}, 0.707 \mathrm{mmol}$), 3-chlorophenyl boronic acid ($0.166 \mathrm{~g}, 1.06 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.293 \mathrm{~g}, 2.12 \mathrm{mmol}$) in THF (2 mL) yielded $0.14 \mathrm{~g}\left(55 \%\right.$ yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2982, 1728, 1591, 1472, $1444 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta 7.18$ (m, 9H), 4.04(m, 4H), 0.97(m, 6H). HRMS (EI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{4}$, 358.0972; found, 358.0975.

2-[(5-Fluoro-2-methoxyphenyl) phenylmethylene] malonic acid diethyl ester

 (Entry 12):

2-[(5-Fluoro-2-methoxyphenyl) phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($9 \mathrm{mg}, 0.017 \mathrm{mmol} 1 \% \mathrm{~mol}$), 2-(Chlorophenyl methylene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 1.76$), 2-methoxy-5-fluorophenyl boronic acid ($0.601 \mathrm{~g}, 3.53 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.735 \mathrm{~g}, 5.31 \mathrm{mmol}$) in THF (3 mL) yielded 0.2 g (50% yield) of the title product as a colorless liquid. $R_{f}=0.5$ (hexane/ethyl acetate $=8.5: 1.5$); IR (Neat): 2982, 1728, 1619, 1591, $1494 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta 7.17$ (m, 6H), 6.72 (m, 2H), 3.97 (m, 4H), 3.59 (s, 3H), 1.01 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,164.6,158.4,154.6,152.5,150.5$, 139.5, 130.9, 128.8, 128.1, 126.7, 116.6, 112.1, 60.2, 56.1, 13.6. HRMS (EI ${ }^{+}$): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FO}_{5}$, 372.1373; found 372.1368.

2-[phenyl- (3-trifluoromethyl-phenyl)-methylene] malonic acid diethyl ester (Entry 13):

2-[phenyl- (3-trifluoromethyl-phenyl)-methylene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($3.5 \mathrm{mg}, 0.0070 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(Chloro-phenyl methylene) malonic acid diethyl ester ($0.2 \mathrm{~g}, 0.707 \mathrm{mmol}$), 3trifluorophenyl boronic acid ($0.161 \mathrm{~g}, 0.84 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.29 \mathrm{~g}, 2.12 \mathrm{mmol})$ in THF (2 mL) yielded 0.19 g (68% yield) of the title product as a pale brown solid. $R_{f}=$ 0.3 (hexane/ethyl acetate $=9.5: 0.5$), $\mathrm{mp}=58-59.5^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 2980,1721,1698$, $1604,1444 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~m}, 9 \mathrm{H}), 4.27(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2,140.1,138.5,131.8,128.9,128.4,128.1$, 127.7, 125.1, 76.9, 76.4, 75.9, 60.9, 12.9. HRMS (FAB): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4}$, 392.1235; found, 392.1346.

2-[(3-Amino-phenyl)-phenylmethylene] malonic acid diethyl ester (Entry 14):

2-[(3-Amino-phenyl)-phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($9 \mathrm{mg}, 0.017 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(Chloro-phenyl methylene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 1.76 \mathrm{mmol}$), 3-aminophenyl boronic acid ($0.493 \mathrm{~g}, 2.65 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.733 \mathrm{~g}, 5.30 \mathrm{mmol})$ in THF (3 mL) yielded 0.250 g (60% isolated yield) of the title product as a light brown solid. $R_{f}=0.5$ (hexane/ethyl acetate $=7: 3$), $\mathrm{mp}=73-74{ }^{\circ} \mathrm{C}$. IR (KBr): 3462, 3372, 2988, 1731, 1597, 1488, 1445 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}$, $4 \mathrm{H}), 3.56(\mathrm{bs}, 2 \mathrm{H}), 0.95(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,165.8,155.7$, 146.0, 141.0, 139.8, 128.9, 127.9, 125.9, 119.3, 115.7, 115.4, 61.0, 13.5. HRMS (FAB): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}, 339.1471$; found, 339.1468.

2-[(3-Hydroxy-phenyl)-phenyl methylene] malonic acid diethyl ester (Entry 15):

2-[(3-Hydroxy-phenyl)-phenyl methylene] malonic acid diethyl ester was prepared using the general procedure. POPd, ($9 \mathrm{mg}, 0.017 \mathrm{mmol}, 1 \% \mathrm{~mol}$), 2-(Chloro-phenyl methylene) malonic acid diethyl ester ($0.5 \mathrm{~g}, 1.76 \mathrm{mmol}$), 3-hydroxyphenyl boronic acid ($0.366 \mathrm{~g}, 2.65 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.733 \mathrm{~g}, 5.30 \mathrm{mmol})$ in THF (3 mL) yielded 0.380 g (63% yield) of the title product as a white colour solid. $R_{f}=0.5$ (hexane/ethyl acetate $=7: 3$), $\mathrm{mp}=94-95.5^{\circ} \mathrm{C}$. IR (KBr): 3389, 2989, 1707, 1673, 1578, $1444 \mathrm{~cm}^{-1}$. ${ }^{1}{ }^{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{bs}, 1 \mathrm{H})$, 4.14(m, 2H), 1.10(m, 6H). ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,155.6,141.2,139.6$, 129.2, 129.1, 129.0, 128.0, 121.2, 116.3, 61.2, 13.5. HRMS (FAB): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}, 340.1311$; found, 340.1374.

$』$

Entry 13, Table 1

Jan245. Mu1095, shrocas. cliste. ©CC13. Positios: 21. arx250
E

