Supporting Information for

Efficient Palladium-Catalyzed Cross-Coupling of β-chloroalkylidene/arylidene Malonates using Microwave Chemistry

Rajamohan R. Poondra, Peter M. Fischer and Nicholas J. Turner *

School of Chemistry, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK and Cyclacel Ltd, James Lindsay Place, Dundee DD1 5JJ, UK

Contents	
General experimental information	S2
General procedure for cross-coupling reaction	S 3
Characterization data of compound (entry 1)	S 3
Characterization data of compounds (entry 2&3)	S4
Characterization data of compounds (entry 4&5)	S5
Characterization data of compounds (entry 6&7)	S 6
Characterization data of compounds (entry 8&9)	S7
Characterization data of compounds (entry 10&11)	S 8
Characterization data of compounds (entry 12&13)	S 9
Characterization data of compounds (entry 14&15)	S10
¹ H NMR & ¹³ C NMR spectra of compound (entry1)	S11
¹ H NMR & ¹³ C NMR spectra of compound (entry3)	S12
¹ H NMR spectra of compound (entry2)	S13
¹ H NMR & ¹³ C NMR spectra of compound (entry 4)	S14
¹ H NMR spectra of compounds (entry 5&6)	S15
¹ H NMR spectra of compounds (entry 7&8)	S16
¹ H NMR & ¹³ C NMR spectra of compound (entry 9)	S17
¹ H NMR spectra of compounds (entry 10&11)	S18
¹ H NMR & ¹³ C NMR spectra of compound (entry 12)	S19
¹ H NMR & ¹³ C NMR spectra of compound (entry 13)	S20
¹ H NMR & ¹³ C NMR spectra of compound (entry 14)	S21
¹ H NMR & ¹³ C NMR spectra of compound (entry 15)	S22.

General experimental information:

Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. THF was dried and distilled from sodium/benzophenone. K₂CO₃ was purchased dry from commercial suppliers and dried under vacuum at 120 °C for 24h.Thin-Layer Chromatography was performed on precoated plates, silica gel 60 F₂₅₄ and visualizing with ultraviolet light and iodine spray. Flash chromatography on silica gel. All melting points are uncorrected. Infrared spectra were observed as KBr pellets or neat. All ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and DMSO-d₆ solutions using the residual solvent peak as internal reference. Spin multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet) as well as b (broad). Coupling constants (J) are given in hertz. Mass spectra Electro spray and HRMS were obtained.

All microwave irradiation experiments were carried out using the Explorer PLS.TM The reactions were performed in heavy-walled Pyrex tubes (10 ml, 1= 150 mm) sealed with a septum utilizing the standard absorbance level (300 W maximum power). The reaction volume filled not more than ½th of the total volume of the tube. All couplings and other reactions were conducted in the presence of stirring and external cooling.

General Procedure for the Reaction of β -chloro-arylidene/alkylidenemalonates with arylboronic acids:

POPd (1mol %), β-Chloro-alkylidene/arylidenemalonate (1.00 mmol), arylboronic acid (1.50 to 2.00 mmol), and K₂CO₃ (3.00 mmol) were weighed in a microwave tube, equipped with a magnetic stirrer bar, and sealed with a silicon septum. THF (2 to 3 mL) was injected into the tube *via* a syringe and the reaction mixture was subjected to microwave irradiation for 30 min at 100 °C. The reaction vessel was allowed to cool to room temperature and the crude reaction mixture transferred to a separating funnel and diluted with hexane (50mL) and H₂O (15mL). The layers were separated, the organic layer was washed with H₂O (20 mL) and brine (20 mL), dried over MgSO₄, and filtered, and solvents were removed from the filtrate by rotary evaporation. The resulting residue was chromatographed on silica gel using ethyl acetate/hexane as eluant.

2-[1-(3-Chlorophenyl) ethylidene] malonic acid diethyl ester (Entry 1):

2-[1-(3-Chlorophenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd (12 mg, 0.023 mmol, 1% mol), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester (0.5 g, 2.26 mmol), 3-chlorophenyl boronic acid (0.532 g, 3.40 mmol), and K_2CO_3 (0.940 g, 6.80 mmol) in THF (3mL) yielded 0.470 g (70% yield) of the title product as a colorless liquid. $R_f = 0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2982, 1725, 1628, 1563, 1473, 1445, 1228 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.45 (m, 3H), 7.31 (s, 1H), 4.49 (q, J = 7.14 Hz, 2H), 4.20 (q, J = 7.15 Hz, 2H), 2.59 (s, 3H), 1.51 (t, J = 7.13 Hz, 3H), 1.21 (t, J = 7.13 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ 165.5, 164.4, 153.5, 143.1, 134.1, 129.5, 128.3, 126.7, 124.7, 61.8, 22.5, 13.9. HRMS (EI⁺): m/z calculated for $C_{15}H_{17}ClO_4$ 296.0815; found, 296.0813.

2-[1-(3, 5-Difluoro phenyl) ethylidene] malonic acid diethyl ester (Entry 2):

2-[1-(3,5-Difluoro phenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (11.3 mg, 0.02 mmol, 1 % mol), 2-(1-Chloroethylidene)-malonic acid diethyl ester (0.5 g, 2.26 mmol), 3,5-fluorophenyl boronic acid (0.716 g, 4.53 mmol), and K_2CO_3 (0.940g, 6.80 mmol) in THF (3mL) yielded 0.4 g (59 % yield) of the title product as a colorless liquid. R_f = 0.4 (hexane/ethyl acetate = 8:2); IR (Neat): 2984, 1726, 1641, 1620, 1590, 1492, 1446, 1236 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.25 (m, 2H), 7.11 (m, 1H), 4.55 (q, J = 7.12 Hz, 2H), 4.25 (q, J = 7.12 Hz, 2H), 2.57 (s, 3H), 1.58 (t, J = 7.11 Hz, 3H), 1.28 (t, J = 7.12 Hz, 3H). HRMS (EI⁺): m/z calculated for $C_{15}H_{16}F_{2}O_{4}$, 298.1017; found, 298.1020.

2-[1-(3, 5-Dimethyl phenyl) ethylidene] malonic acid diethyl ester (Entry 3):

$$H_3C$$
 OEt O OEt O CH3

2-[1-(3,5-Dimethyl phenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (6 mg, 0.011 mmol, 1 % mol), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester (0.250 g, 1.13 mmol), 3,5-methylphenyl boronic acid (0.255 g, 1.70 mmol), and K_2CO_3 (0.470 g, 3.40 mmol) in THF (2mL) yielded 0.2 g (60 % yield) of the title product as a colorless liquid. R_f = 0.5 (hexane/ethyl acetate = 9:1); IR (Neat): 2981, 1724, 1623, 1445, 1266, 1223 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.11 (s, 1H), 7.01 (s, 2H), 4.43 (q, J = 7.12 Hz, 2H), 4.15 (q, J = 7.13 Hz, 2H), 2.56 (s, 3H), 2.45 (s, 6H) 1.47 (t, J = 7.11 Hz, 3H), 1.15 (t, J = 7.12 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ 166.2, 164.6, 156.0, 141.4, 137.6, 129.9, 125.7, 124.2, 60.8, 22.6, 13.9. HRMS (EI⁺): m/z calculated for $C_{17}H_{12}O_{4}$, 290.1518; found, 290.1520.

2-[1-(4-Methoxyphenyl)-ethylidene]-malonic acid diethyl ester (Entry 4):

2-[1-(4-Methoxyphenyl)-ethylidene]-malonic acid diethyl ester was prepared using the general procedure. POPd, (6 mg, 0.011 mmol, 0.1 % mol), 2-(1-Chloroethylidene)-malonic acid diethyl ester (0.250 g, 1.13 mmol), 4-methoxyphenyl boronic acid (0.258 g, 1.70mmol), and K_2CO_3 (0.470 g, 3.40 mmol) in THF (3mL) yielded 0.210 g (65% yield) of the title product as a colorless liquid. $R_f = 0.5$ (hexane/ethyl acetate = 8:2). ¹H NMR (250 MHz, CDCl₃): δ 7.13 (d, J = 8.48 Hz, 2H), 6.78 (d, J = 8.57 Hz, 2H), 4.50 (q, J = 7.10 Hz, 2H), 3.94 (q, J = 7.10 Hz, 2H), 3.73 (s, 3H), 2.35 (s, 3H), 1.25 (t, J = 7.11 Hz, 3H), 0.97 (t, J = 7.12 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ 166.5, 164.7, 159.7, 155.4, 133.6, 128.1, 125.4, 113.5, 60.8, 55.1, 22.6, 13.9. MS (ES⁺): m/z (relative intensity) 292(M+, 15), 260 (15), 172 (20), 110 (55), 97 (100), 80 (15).

2-[1-(5-Fluoro-2-methoxyphenyl) ethylidene]malonic acid diethyl ester (Entry 5):

2-[1-(5-Fluoro-2-methoxyphenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (11.5 mg, 0.02 mmol, 1 % mol), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester (0.5 g, 2.26 mmol), 2-methoxy-5-fluorophenyl boronic acid (0.770g, 4.53 mmol), and K_2CO_3 (0.940g, 6.80 mmol) in THF (3mL) yielded 0.280 g (66 % yield) of the title product as a colorless liquid. $R_f = 0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2982, 1725, 1637, 1610, 1594, 1465 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.27 (m, 3H), 4.55 (q, J = 7.11 Hz, 2H), 4.27 (q, J = 7.15 Hz, 2H), 4.06 (s, 3H), 2.60 (s, 3H), 1.57 (t, J = 7.15 Hz, 3H), 1.23 (t, J = 7.14 Hz, 3H). HRMS (EI⁺): m/z calculated for $C_{16}H_{19}FO_5$, 310.1217; found 310.1216.

2-[-(3-Nitrophenyl) ethylidene] malonic acid diethyl ester (Entry 6):

$$\begin{array}{c|c} & O \\ & O \\ & O \\ & O \\ \end{array}$$

2-[-(3-Nitrophenyl) ethylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (11.3 mg, 0.02 mmol, 1 % mol), 2-(1-Chloro-ethylidene)-malonic acid diethyl ester (0.5 g, 2.26 mmol), 3-nitrophenyl boronic acid (0.757g, 4.53 mmol), and K_2CO_3 (0.940g, 6.80 mmol) in THF (3mL) yielded 0.3 g (72 % yield) of the title product as a colorless liquid. $R_f = 0.3$ (hexane/ethyl acetate = 9:1); IR (Neat): 2984, 1724, 1631, 1574, 1474, 1446 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 8.12 (m, 1H), 8.05 (s, 1H), 7.48 (m, 2H), 4.25 (q, J = 7.17 Hz, 2H), 3.92 (q, J = 7.13 Hz, 2H), 2.33 (s, 3H), 1.29 (t, J = 7.09 Hz, 3H), 0.97 (t, J = 7.11 Hz, 3H). HRMS (EI⁺): m/z calculated for $C_{15}H_{17}NO_6$, 307.1056; found, 307.1049.

2-(2-Methyl-1-phenylpropylidene) malonic acid diethyl ester (Entry 7):

2-(2-Methyl-1-phenylpropylidene) malonic acid diethyl ester was prepared using the general procedure. POPd, (10 mg, 0.012 mmol, 1 % mol), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester (0.5g, 2.0 mmol), 3-phenyl boronic acid (0.294 g, 2.40 mmol), and K_2CO_3 (0.834 g, 6.03 mmol) in THF (3mL) yielded 0.250 g (71 % yield) of the title product as a colorless liquid. $R_f = 0.4$ (hexane/ethyl acetate = 9:1). ¹H NMR (250 MHz, CDCl₃): δ 7.37 (m, 3H), 7.12 (m, 2H), 4.40 (q, J = 7.14 Hz, 2H), 3.94 (q, J = 7.17 Hz, 2H), 3.57 (m, 1H), 1.40 (t, J = 7.14 Hz, 3H), 1.07 (d, J = 6.84 Hz, 6H), 0.99 (t, J = 7.14 Hz, 3H). MS (ES⁺): m/z (relative intensity) 313 (M+Na, 100), 240 (5), 163 (25).

2-[1-(3-Chlorophenyl)-2-methylpropylidene] malonic acid diethyl ester (Entry 8):

2-[1-(3-Chlorophenyl)-2-methylpropylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (6 mg, 0.012 mmol, 1% mol), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester (0.3g, 1.20 mmol), 3-chlorophenyl boronic acid (0.283 g, 0.181 mmol) K_2CO_3 (0.5 g, 3.62 mmol) in THF (2mL) yielded (0.15 g, 57% yield) of the title product as a colorless liquid. IR (Neat): 2978, 1726, 1624, 1563, 1466, 1446 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.45 (m, 2H), 7.26 (m, 1H), 7.14 (m, 1H), 4.49 (q, J = 3.45 Hz, 2H), 4.07 (q, J = 7.14 Hz, 2H), 3.60 (m, 1H), 1.52 (t, J = 3.74 Hz, 3H), 1.20 (s, 3H), 1.87 (s, 3H), 1.13 (t, J = 7.14 Hz, 3H); HRMS (EI $^+$): m/z calculated for $C_{17}H_{21}ClO_4$ 324.1128; found, 324.1297.

2-[1-(3-Fluoro phenyl)-2-methylpropylidene] malonic acid diethyl ester(Entry 9):

2-[1-(3-Fluoro phenyl)-2-methyl propylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (10 mg, 0.02 mmol, 1 % mol), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester (0.5 g, 2.0 mmol), 3-fluorophenyl boronic acid (0.337 g, 2.40 mmol), and K_2CO_3 (0.834 g, 6.0 mmol) in THF (3mL) yielded 0.340 g (55 % yield) of the title product as a colorless liquid. R_f = 0.6 (hexane/ethyl acetate = 9:1). ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 1H), 7.02 (m, 1H), 6.84 (m, 2H), 4.30 (q, J = 7.13 Hz, 2H), 3.92 (q, J = 7.13 Hz, 2H), 3.46 (m, 1H), 1.04 (d, J = 7.13 Hz, 6H), 0.96 (t, J = 7.14 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ 164.8, 163.8, 161.4, 159.9, 138.3, 129.0, 126.1, 123.6, 115.3, 61.2, 31.9, 20.5, 13.9. MS (ES⁺): m/z (relative intensity) 331(M+, +Na, 5), 300 (40), 198 (18), 130 (100), 73 (10), 61(50).

2-[1-(5-Fluoro-2-methoxyphenyl)-2-methylpropylidene] malonic acid diethyl ester (Entry 10):

2-[1-(5-Fluoro-2-methoxyphenyl)-2-methylpropylidene] malonic acid diethyl ester was prepared using the general procedure. POPd, (10 mg, 0.019 mmol, 1 % mol), 2-(1-Chloro-2-methyl propylidene) malonic acid diethyl ester (0.5 g, 2.0 mmol), 2-methoxy-5-fluorophenyl boronic acid (0.684 g, 4.0 mmol), and K_2CO_3 (0.830 g, 6.0 mmol) in THF (3mL) yielded 0.250 g (52 % yield) of the title product as a colorless liquid. R_f = 0.5 (hexane/ethyl acetate = 9:1); IR (Neat): 2979, 1726, 1628, 1607, 1495, 1465 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.18 (m, 1H), 6.98 (m, 1H), 6.88 (m, 1H), 4.51 (m, 2H), 4.11 (q, J = 7.16 Hz, 2H), 3.96 (s, 3H), 3.57 (m, 1H), 1.35 (t, J = 7.14 Hz, 3H), 1.21 (m, 9H). HRMS (EI⁺): m/z calculated for $C_{18}H_{23}FO_{5}$, 338.1530; found, 338.1528.

2-[(3-Chloro-phenyl)-phenylmethylene] malonic acid diethyl ester (Entry 11):

2-[(3-Chloro-phenyl)-phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, (3.5 mg, 0.0069 mmol, 1% mol), 2-(Chloro-phenyl methylene) malonic acid diethyl ester (0.2 g, 0.707mmol), 3-chlorophenyl boronic acid (0.166 g, 1.06 mmol), and K_2CO_3 (0.293 g, 2.12 mmol) in THF (2mL) yielded 0.14 g (55% yield) of the title product as a colorless liquid. $R_f = 0.5$ (hexane/ethyl acetate = 9:1); IR (Neat): 2982, 1728, 1591, 1472, 1444 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.18 (m, 9H), 4.04(m, 4H), 0.97(m, 6H). HRMS (EI⁺): m/z calculated for $C_{20}H_{19}ClO_4$, 358.0972; found, 358.0975.

2-[(5-Fluoro-2-methoxyphenyl) phenylmethylene] malonic acid diethyl ester (Entry 12):

2-[(5-Fluoro-2-methoxyphenyl) phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, (9 mg, 0.017 mmol 1%mol), 2-(Chlorophenyl methylene) malonic acid diethyl ester (0.5 g, 1.76), 2-methoxy-5-fluorophenyl boronic acid (0.601 g, 3.53 mmol), and K_2CO_3 (0.735 g, 5.31 mmol) in THF (3mL) yielded 0.2 g (50 % yield) of the title product as a colorless liquid. $R_f = 0.5$ (hexane/ethyl acetate = 8.5:1.5); IR (Neat): 2982, 1728, 1619, 1591, 1494 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.17 (m, 6H), 6.72 (m, 2H), 3.97 (m, 4H), 3.59 (s, 3H), 1.01 (m, 6H). ¹³C NMR (63 MHz, CDCl₃): δ 166.0, 164.6, 158.4, 154.6, 152.5, 150.5, 139.5, 130.9, 128.8, 128.1, 126.7, 116.6, 112.1, 60.2, 56.1, 13.6. HRMS (EI⁺): m/z calculated for $C_{21}H_{21}FO_5$, 372.1373; found 372.1368.

2-[phenyl- (3-trifluoromethyl-phenyl)-methylene] malonic acid diethyl ester (Entry 13):

$$Ph$$
 OEt F_3C O

2-[phenyl- (3-trifluoromethyl-phenyl)-methylene] malonic acid diethyl ester was prepared using the general procedure. POPd, (3.5 mg, 0.0070 mmol, 1% mol), 2-(Chloro-phenyl methylene) malonic acid diethyl ester (0.2 g, 0.707 mmol), 3-trifluorophenyl boronic acid (0.161 g, 0.84 mmol), and K_2CO_3 (0.29 g, 2.12 mmol) in THF (2mL) yielded 0.19 g (68% yield) of the title product as a pale brown solid. R_f = 0.3 (hexane/ethyl acetate = 9.5:0.5), mp = 58-59.5 0 C. IR (KBr): 2980, 1721, 1698, 1604, 1444 cm $^{-1}$. 1 H NMR (250 MHz, CDCl₃): δ 7.64 (m, 9H), 4.27(m, 4H), 1.21(m, 6H). 13 C NMR (63 MHz, CDCl₃): δ 153.2, 140.1, 138.5, 131.8, 128.9, 128.4, 128.1, 127.7, 125.1, 76.9, 76.4, 75.9, 60.9, 12.9. HRMS (FAB): m/z calculated for $C_{21}H_{19}F_{3}O_{4}$, 392.1235; found, 392.1346.

2-[(3-Amino-phenyl)-phenylmethylene] malonic acid diethyl ester (Entry 14):

$$\begin{array}{c|c} & O \\ & Ph \\ & O \\ \hline \\ & O \\ \end{array}$$

2-[(3-Amino-phenyl)-phenylmethylene] malonic acid diethyl ester was prepared using the general procedure. POPd, (9 mg, 0.017 mmol, 1% mol), 2-(Chloro-phenyl methylene) malonic acid diethyl ester (0.5g, 1.76 mmol), 3-aminophenyl boronic acid (0.493 g, 2.65 mmol), and K_2CO_3 (0.733 g, 5.30 mmol) in THF (3mL) yielded 0.250 g (60% isolated yield) of the title product as a light brown solid. R_f = 0.5 (hexane/ethyl acetate = 7:3), mp = 73-74 0 C. IR (KBr): 3462, 3372, 2988, 1731, 1597, 1488, 1445 cm $^{-1}$. 1 H NMR (250 MHz, CDCl₃): δ 7.14 (m, 6H), 6.46(m, 2H), 6.37(s, 1H), 4.00(m, 4H), 3.56(bs, 2H), 0.95 (m, 6H). 13 C NMR (63 MHz, CDCl₃): δ 166.0, 165.8, 155.7, 146.0, 141.0, 139.8, 128.9, 127.9, 125.9, 119.3, 115.7, 115.4, 61.0, 13.5. HRMS (FAB): m/z calculated for $C_{20}H_{21}NO_4$, 339.1471; found, 339.1468.

2-[(3-Hydroxy-phenyl)-phenyl methylene] malonic acid diethyl ester (Entry 15):

2-[(3-Hydroxy-phenyl)-phenyl methylene] malonic acid diethyl ester was prepared using the general procedure. POPd, (9 mg, 0.017 mmol, 1% mol), 2-(Chloro-phenyl methylene) malonic acid diethyl ester (0.5 g, 1.76 mmol), 3-hydroxyphenyl boronic acid (0.366 g, 2.65 mmol), and K_2CO_3 (0.733 g, 5.30 mmol) in THF (3mL) yielded 0.380 g (63% yield) of the title product as a white colour solid. R_f = 0.5 (hexane/ethyl acetate = 7:3), mp = 94-95.5 °C. IR (KBr): 3389, 2989, 1707, 1673, 1578, 1444 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ 7.32 (m, 6H), 6.66 (m, 2H), 6.43(s, 1H), 5.70(bs, 1H), 4.14(m, 2H), 1.10(m, 6H). ¹³C NMR (63 MHz, CDCl₃): δ 166.3, 155.6, 141.2, 139.6, 129.2, 129.1, 129.0, 128.0, 121.2, 116.3, 61.2, 13.5. HRMS (FAB): m/z calculated for $C_{20}H_{20}O_{5}$, 340.1311; found, 340.1374.

