Preparation of tertiary amides from carbamoyl chlorides and organocuprates

Laurent Lemoucheux, Thomas Seitz, Jacques Rouden, and Marie-Claire Lasne

Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICaen, Université de

Caen-Basse Normandie, 6 Boulevard du Maréchal Juin, F14050 Caen Cedex, France

rouden@ismra.fr

Supporting Information

General experimental details.

Tetrahydrofuran (THF) was dried and distilled from sodium benzophenone ketyl. Ether was distilled from LiAlH₄ and toluene from sodium. CH_2Cl_2 , Et_3N and carbamoyl chlorides were distilled from CaH_2 before use. Organolithium and Grignard reagent solutions were purchased and titrated before use.¹ GC analyses were performed on a 5% Phenyl methylpolysiloxane column BPX5 (0.32 mm Internal Diameter, 30 m Length, 1 vm Film thickness), with 10 psi of nitrogen as gas carrier.

For Table 1: Amides **4a-e**, **8a-e**, **12a-e**, formamides **5**, **9**, **13**, ureas **6**, **10**, **14** and oxalamides **7**, **11**, **15** which were not commercially available, were synthesized by conventional methods using amines and acids or their derivatives. All purified compounds were analysed by GC: 120 °C for 2 min, 120 °C to 250 °C with 20 °C per min, 250 °C for 6 min 30 sec. Calibration curves were established for each product for GC quantification.

GC-MS analyses were performed on a CP-Sil 8CB Low BLEED column (L: 30 m, D: 0.25 mm) and Electronic Impact was the method used on the MS detector.

¹ For organolithium solutions: Juaristi, E.; Martinez-Richa, A.; Garcia-Rivera, A.; Cruz-Sanchez, J. S. *J. Org. Chem.* **1983**, *48*, 2603-2606. For Grignard reagent solutions: Watson, S. C.; Eastham, J. F. J. Organomet. Chem. **1967**, *9*, 165-168.

General procedure of reactions using cyano-Gilman lithiocuprates (Table 1).

Under a nitrogen atmosphere, the organolithium solution (7.2 mmol, 2.4 equiv) was slowly added to a cold (-30 °C) suspension of CuCN (0.32 g, 3.6 mmol, 1.2 equiv) in THF or Et₂O (30 mL). After 30 min, carbamoyl chloride (3.0 mmol, 1 equiv) was added at -30 °C. The reaction was stirred 2 h at cold temperature or rt (see table 1), quenched with a saturated NH₄Cl solution (2 mL) and dried (MgSO₄). The volume was completed to 100 mL by addition of CH₂Cl₂ and a sample was injected to GC (quantification of products). After addition of a 28% NH₄OH solution (30 mL), stirring was pursued until the color of the solution turned deep blue. The reaction mixture was extracted with CH₂Cl₂, the combined organic layers were dried (MgSO₄) and concentrated to yield crude amides **4**, **8** and **12** which were purified (by flash chromatography or Kugelrohr distillation) when necessary.

General procedure of reactions using cyano-Gilman magnesiocuprates (Table 2).

Under a nitrogen atmosphere, the organomagnesium solution (13.66 mmol, 2.1 equiv) was slowly added to a cold (-30 °C) suspension of CuCN (0.61 g, 6.82 mmol, 1.05 equiv) in Et₂O (60 mL). After 45 min, carbamoyl chloride (6.50 mmol, 1 equiv) was added at -30 °C, the reaction mixture was slowly warmed to rt and stirred 15 h. The reaction were quenched with a saturated NH₄Cl solution (10 mL) and after addition of a 28% NH₄OH solution (20 mL), stirring was pursued until the color of the solution turned deep blue. The reaction mixture was extracted with CH₂Cl₂, the combined organic layers were dried (MgSO₄) and concentrated to yield crude amides **8** which were purified (by flash chromatography or Kugelrohr distillation) when necessary.

	R ³ a n-Bu b s-Bu c t-Bu d Ph e Me	1 × 1 × 2 ×	CI CI $C = NEt_2$ $C = N$ $C = N$	(R ³) ₂ CuLi.LiC THF or Et ₂ C		O X [⊥] R ³ 4a-e 8a-e 12a-e		O X H 5 9 13		0 X X 6 10 14		x 0 0 x 7 11 15				
entry	sm ^a	cuprateb	T (°C)		a	amide (%) ^c		formamide (%) ^c			urea (%)		^c oxalamide (%) ^c			(%) ^c
		R ³	THF	Et ₂ O		THF	Et_2		THF	Et_2		THF	Et_2		THF	Et_2
							0			0			0			0
1	1	<i>n</i> -Bu	-30 to 0	-30 to rt	4a	85	70	5	0	2	6	5	0	7	0	0
2	1	s-Bu	-30 to 0	-30 to 0	4b	90	62	5	0	11	6	0	0	7	0	0
3	1	t-Bu	-30 to 0	-30 to 0	4c	37 ^f	$33^{\rm f}$	5	0	8	6	4	13	7	0	3
4	1	Ph	-30 to rt	-30 to rt	4d	50	70	5	0	0	6	2	16	7	0	0
5	1	Me	-30 to rt	-30 to 0	4 e	90	80	5	0	0	6	0	0	7	0	0
6	2	<i>n</i> -Bu	-30	-30 to 0	8 a	83 ^e	38	9	0	2	10	9	25	11	4	0
7	2	s-Bu	-30 to rt	-30 to rt	8b	50 ^e	33 ^d	9	2	8	10	8	4	11	14	4
8	2	t-Bu	-30	-30 to rt	8c	62 ^e	43 ^d	9	2	5	10	9	6	11	1	4
9	2	Ph	-30	-30 to 0	8d	64	70	9	0	0	10	4	4	11	4	3
10	2	Me	-30	-30 to rt	8e	30	20	9	0	0	10	2	16	11	8	4
11	3	<i>n</i> -Bu	-30	-30 to 0	12a	75	70	13	0	4	14	6	5	15	0	0
12	3	s-Bu	-30 to rt	-30 to rt	12b	75	70	13	0	10	14	1	1	15	1	0
13	3	t-Bu	-30 to 0	-30 to 0	12c	85 ^e	$55^{\rm f}$	13	0	1	14	0	1	15	0	0
14	3	Ph	-30 to 0	-30 to 0	12d	84	83	13	0	0	14	5	5	15	1	0
15	3	Me	-30	-30	12e	70	68	13	0	0	14	1	0	15	0	0

Table 1. Qualitative and quantitative results of the reaction between carbamoyl chlorides and cyano-Gilman reagents

^a Starting material. ^b Cyanocuprate reagents were prepared at –30 °C. Reaction time: 2 h. ^c GC yields. ^d 5-10% unreacted carbamoyl chloride. ^e 10-20% unreacted carbamoyl chloride. ^f 20-40% unreacted carbamoyl chloride.