Stereoselective Synthesis of Multisubstituted Butadienes through Directed Mizoroki–Heck Reaction and Homo-Coupling Reaction of Vinyl(2-pyridyl)silane

Kenichiro Itami,* Yousuke Ushiogi, Toshiki Nokami, Youichi Ohashi, and Jun-ichi Yoshida*

Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

General. ¹H and ¹³C NMR spectra were recorded on Varian GEMINI-2000 (¹H 300 MHz, ¹³C 75 MHz), Varian MERCURYplus-400 (¹H 400 MHz, ¹³C 100 MHz), and JEOL A-500 (¹H 500 MHz, ¹³C 125 MHz) spectrometers in CDCl₃. UV/Vis spectra were recorded on Shimadzu UV-2500 spectrophotometer. Fluorescence spectra were recorded on Horiba Jobin Yvon SPEX FluoroMax-3 spectrofluorometer. IR spectra were recorded on Shimadzu FTIR-8100 spectrophotometer. EI and CI mass spectra were recorded on JMS-SX102A spectrometer. FAB mass spectra were recorded on JMS-HX110A spectrometer. Gel permeation chromatography was carried out with Japan Analytical Industry LC-918. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Pd[P(*t*-Bu)₃]₂ and P(*t*-Bu)₃ were purchased from Strem Chemicals, Inc. and used as received. Dimethyl(2-pyridyl)(vinyl)silane (**1**) was prepared according to our previously reported procedure.¹

Synthesis of Alkenyl(2-pyridyl)silanes 2 except 2i.

To a solution of Pd₂(dba)₃·CHCl₃ (2.6 mg, 2.5 μ mol) and tri-2-furylphosphine (2.3 mg, 0.01 mmol) in THF (1.5 mL) were added iodobenzene (112 mg, 0.55 mmol), dimethyl(2-pyridyl)vinylsilane (1) (82 mg, 0.50 mmol), and triethylamine (61 mg, 0.60 mmol) at room temperature under argon and the reaction mixture was stirred at 50 °C for 24 h. After cooling to room temperature, toluene (5 mL) was added to the reaction mixture. This mixture was extracted with 1 N aq HCl (6 x 10 mL). The combined aqueous phase was neutralized by adding NaHCO₃ and then was extracted with EtOAc (3 x 30 mL). Drying over Na₂SO₄ and removal of the solvents under reduced pressure afforded **2a** (118 mg, 99%) as pale yellow oil.

2a: 93% yield from **1** and iodobenzene. ¹H NMR (300 MHz, CDCl₃) δ 0.50 (s, 6H), 6.65 (d, *J* = 19.2 Hz, 1H), 7.02 (d, *J* = 19.2 Hz, 1H), 7.21 (ddd, *J* = 6.9, 4.8, 2.1 Hz, 1H), 7.26-7.36 (m, 3H), 7.44–7.49 (m, 2H), 7.54–7.62 (m, 2H), 8.81 (dt, *J* = 5.1, 1.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –3.4, 122.9, 126.1, 126.6, 128.3, 128.6, 129.5, 134.1, 138.2, 145.9, 150.4, 167.0. IR (neat) 2959, 1605, 1574, 1495, 1449, 1418, 1246 cm⁻¹. HRMS (EI) *m*/*z* calcd for C15H17NSi: 239.1131, found 239.1122. Anal. Calcd for C15H17NSi: C, 75.26; H, 7.16; N, 5.85. Found: C, 75.49; H, 7.25; N, 5.83.

(1) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2000, 122, 12013.

2b: 71% yield from **1** and 4'-iodoacetophenone. ¹H NMR (400 MHz, CDCl₃) δ 0.52 (s, 6H), 2.59 (s, 3H), 6.80 (d, *J* = 19.2 Hz, 1H), 7.03 (d, *J* = 19.2 Hz, 1H), 7.20–7.23. (m, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.53–7.62 (m, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 8.79–8.81 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –3.1, 26.7, 122.9, 126.5, 128.5, 129.3, 129.9, 134.0, 136.3, 142.2, 144.3, 150.1, 166.0, 197.2. HRMS (EI) *m*/*z* calcd for C₁₇H₁₉NOSi: 281.1236, found: 281.1237.

2c: 92% yield from **1** and 2-iodothiophene. ¹H NMR (300 MHz, CDCl₃) δ 0.48 (s, 6H), 6.36 (d, *J* = 18.6 Hz, 1H), 6.97 (dd, *J* = 4.8, 3.6 Hz, 1H), 7.00 (dd, *J* = 3.6, 1.7 Hz, 1H), 7.09 (d, *J* = 18.6 Hz, 1H), 7.19 (dm, *J* = 4.8 Hz, 1H), 7.22 (ddd, *J* = 7.5, 4.8, 1.8 Hz, 1H), 7.55 (ddd, *J* = 7.5, 1.8, 1.1 Hz, 1H), 7.61 (td, *J* = 7.5, 1.8 Hz, 1H), 8.80 (ddd, *J* = 4.8, 1.8, 1.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –3.3, 122.9, 125.1, 125.5, 126.1, 127.4, 129.5, 134.1, 138.2, 144.9, 150.2, 166.5. IR (neat) 1595, 1574, 1559, 1246 cm⁻¹. HRMS (EI) *m*/*z* calcd for C₁₃H₁₅NSSi: 245.0694, found 245.0694. Anal. Calcd for C₁₃H₁₅NSSi: C, 63.62; H, 6.16; N, 5.71. Found: C, 63.33; H, 6.19; N, 5.50.

2d: 72% yield from **1** and 3-iodothiophene. ¹H NMR (400 MHz, CDCl₃) δ 0.50 (s, 6H), 6.42 (d, *J* = 18.8 Hz, 1H), 7.01 (d, *J* = 18.8 Hz, 1H), 7.18–7.25 (m, 3H), 7.29–7.31 (m, 1H), 7.53–7.59 (m, 2H), 8.79–8.81 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –3.0, 122.7, 123.0, 124.8, 125.4, 125.7, 129.2, 133.8, 139.3, 141.7, 150.0, 166.6. HRMS (EI) *m*/*z* calcd for C1₃H₁₅NSSi: 245.0694, found: 245.0693.

2e: 97% yield from **1** and 4-iodoanisole. ¹H NMR (300 MHz, CDCl₃) δ 0.49 (s, 6H), 3.80 (s, 3H), 6.48 (d, *J* = 18.9 Hz, 1H), 6.86 (d, *J* = 9.0 Hz, 2H), 6.97 (s, *J* = 18.9 Hz, 1H), 7.17–7.21 (m, 1H), 7.41 (d, *J* = 9.3 Hz, 2H), 7.53–7.61 (m, 2H), 8.79–8.81 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –3.2, 55.2, 113.8, 122.7, 123.0, 127.8, 129.4, 131.0, 134.0, 145.2, 150.2, 159.7, 167.1. HRMS (EI) *m*/*z* calcd for C₁₆H₁₉NOSi: 269.1236, found: 269.1237.

Synthesis of Alkenyl(2-pyridyl)silane 2i.

A mixture of Pd₂(dba)₃·CHCl₃ (106.6 mg, 0.10 mmol), P(*t*-Bu)₃ (40.5 mg, 0.20 mmol), **1** (889.5 mg, 5.5 mmol), 4-bromo-*N*,*N*-dimethylaniline (1.00 g, 5.0 mmol), and Et₃N (1.01 g, 10.0 mmol) in dioxane (5 mL) was stirred at 50 °C for 18 h. After cooling to room temperature, catalyst and salts were removed by filtration through a short gel pad (EtOAc/CHCl₃). The filtrate was evaporated, and the residue was subjected to silica gel chromatography (hexane/EtOAc = 5/2) to afford **2i** (1.16 g, 82%) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.51 (s, 6H), 2.98 (s, 6H), 6.36 (d, *J* = 18.4 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 18.8 Hz, 1H), 7.22–7.25 (m, 1H), 7.36 (d, *J* = 8.8 Hz, 2H), 7.58–7.62 (m, 2H), 8.80–8.81 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –2.8, 40.5, 112.0, 119.8, 122.5, 126.7, 127.5, 129.3, 133.8, 145.7, 149.9, 150.4, 167.4. HRMS (EI) *m*/z calcd for C₁₇H₂₂N₂Si: 282.1552, found: 282.1546.

One-Pot Synthesis of Alkenyl(2-pyridyl)silanes 3 from 1 and Aryl Bromides.

A mixture of $Pd_2(dba)_3$ ·CHCl₃ (9.8 mg, 9.5 µmol), $P(t-Bu)_3$ (3.6 mg, 0.02 mmol), **1** (47.6 mg, 0.29 mmol), 4-bromoanisole (120.5 mg, 0.64 mmol), and Et₃N (121.4 mg, 1.20 mmol) in dioxane (1 mL) was stirred at 80 °C for 3 h. After cooling to room temperature, catalyst and salts were removed by filtration through a short gel pad (EtOAc/CHCl₃). The filtrate was evaporated, and the residue was subjected to silica gel chromatography (hexane/EtOAc = 5/2) to afford **3ee** (99.3 mg, 91%) as pale yellow oil.

(s, 6H), 6.55 (s, 1H), 7.10–7.19 (m, 3H), 7.22–7.36 (m, 8H), 7.37–7.45 (m, 1H), 7.53 (td, J = 7.5, 1.8 Hz, 1H), 8.78 (dm, J = 5.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ –2.0, 122.5, 126.34, 126.35, 127.3, 127.4, 127.8, 128.0, 129.3, 129.6, 133.9, 142.3, 142.9, 150.0, 158.8, 167.8. IR (neat) 3058, 2957, 1574, 1489, 1443, 1418, 1246 cm⁻¹. HRMS (EI) *m*/*z* calcd for C₂₁H₂₁NSi: 315.1443, found 315.1444.

3aa: 99% yield from **1** and bromobenzene. ¹H NMR (300 MHz, CDCl₃) δ 0.16

3bb: 79% yield from **1** and 4'-bromoacetophenone. ¹H NMR (400 MHz, CDCl₃) δ 0.22 (s, 6H), 2.58 (s, 3H), 2.61 (s, 3H), 6.72 (s, 1H), 7.17–7.21 (m, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.32–7.36 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.51–7.55 (m, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 8.73–8.75 (m, 1H). ¹³C NMR (125MHz, CDCl₃) δ –2.1, 26.57, 26.58, 122.7, 127.3, 128.0, 128.2, 129.2, 129.7, 130.6, 134.0, 136.22, 136.23, 146.4, 146.5, 150.0, 156.3, 166.7, 197.50, 197.55. HRMS (EI) *m*/*z* calcd for C₂₅H₂₅NO₂Si: 399.1655, found: 399.1656.

3dd: 72% yield from **1** and 3-bromothiophene. ¹H NMR (300 MHz, CDCl₃) δ 0.19 (s, 6H), 6.46 (s, 1H), 6.87 (d, *J* = 1.2 Hz, 1H), 6.90 (dd, *J* = 2.7, 1.5 Hz, 1H), 7.05 (dd, *J* = 3.0, 1.5 Hz, 1H), 7.15–7.26 (m, 3H), 7.31 (dd, *J* = 5.1, 1.5 Hz, 1H), 7.42 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.55 (td, *J* = 7.5, 1.7 Hz, 1H), 8.76 (dq, *J* = 4.5, 1.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ –2.2, 122.5, 123.6, 123.9, 124.9, 125.4, 125.5, 126.0, 129.0, 129.2, 133.9, 142.5, 144.9, 148.0, 150.0, 167.8. HRMS (EI) *m*/*z* calcd for C₁₇H₁₇NS₂Si: 327.0572, found 327.0573.

3ee: 91% yield from **1** and 4-bromoanisole. ¹H NMR (400 MHz, CDCl₃) δ 0.20 (s, 6H), 3.75 (s, 3H), 3.78 (s, 3H), 6.38 (s, 1H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 7.11–7.14 (m, 1H), 7.26 (d, *J* = 9.2 Hz, 2H), 7.41–7.43 (m, 1H), 7.47–7.50 (m, 1H), 8.74–8.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –1.7, 55.0, 55.1, 112.9, 113.0, 122.1, 123.4, 128.4, 128.9, 130.5, 133.5, 134.7, 135.7, 149.6, 157.7, 158.7, 159.1, 167.9. HRMS (EI) *m*/*z* calcd for C₂₃H₂₅NO₂Si:375.1655, found: 375.1654.

3ff: 72% yield from **1** and 1-bromo-4-fluorobenzene. ¹H NMR (300 MHz, CDCl₃) δ 0.19 (s, 6H), 6.46 (s, 1H), 6.88–6.97 (m, 4H), 7.02–7.07 (m, 2H), 7.15–7.27 (m, 3H), 7.35–7.38 (m, 1H), 7.51–7.56 (m, 1H), 8.74–8.76 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –2.0, 114.8 (d, *J*_{C-F} = 21.6 Hz), 114.9 (d, *J*_{C-F} = 21.7 Hz), 122.7, 126.8, 129.0, 129.2 (d, *J*_{C-F} = 9.2 Hz), 131.2 (d, *J*_{C-F} = 8.0 Hz), 134.1, 138.0 (d, *J*_{C-F} = 3.5 Hz), 139.0 (d, *J*_{C-F} = 3.5 Hz), 150.0, 156.6, 162.3 (d, *J*_{C-F} = 244.9 Hz), 162.7 (d, *J*_{C-F} = 247.1 Hz), 167.4. HRMS (EI) *m*/*z* calcd for C₂₁H₁₉F₂NSi:351.1255, found: 351.1255.

Synthesis of Alkenyl(2-pyridyl)silanes 3 from 2 and Aryl Bromides.

A mixture of **2b** (279.6 mg, 1.00 mmol), 4-bromoanisole (96.4 mg, 1.05 mmol), triethylamine (1.01 g, 10.0 mmol), Pd₂(dba)₃·CHCl₃ (26.0 mg, 0.025 mmol), and P(*t*-Bu)₃ (11.5 mg, 0.05 mmol) in dry dioxane (1.5 mL) was stirred at 80 °C for 2 h under argon. After cooling the reaction mixture to room temperature, the catalyst and salts were removed by filtration through a short silica gel pad (EtOAc). The filtrate was evaporated, and the residue was chromatographed on silica gel (hexane/EtOAc) to afford **3be** (272.7 mg, 73%) as pale yellow oil.

3be: 73% yield from **2b** and 4-bromoanisole. ¹H NMR (300 MHz, CDCl₃) δ 0.16 (s, 6H), 2.60 (s, 3H), 3.78 (s, 3H), 6.47 (s, 1H), 6.73 (d, *J* = 9.3 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.13–7.22 (m, 1H), 7.34–7.37 (m, 1H), 7.40–7.53 (m, 1H), 7.81 (d, *J* = 8.7 Hz, 2H), 8.72–8.74 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –1.9, 26.6, 52.2, 113.4, 122.6, 125.0, 127.9, 128.5, 129.2, 129.8, 134.0, 134.9, 136.0, 147.6, 149.9, 157.0, 159.6, 167.4, 197.7. HRMS (EI) *m*/*z* calcd for C₂₄H₂₅NO₂Si: 387.1655, found: 387.1655.

3eb: 63% yield from **2e** and 4'-bromoacetophenone. ¹H NMR (400 MHz, CDCl₃) δ 0.21 (s, 6H), 2.58 (s, 3H), 3.82 (s, 3H), 6.58 (s, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 7.16–7.19 (m, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.36–7.42 (m, 1H), 7.52–7.56 (m, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 8.75–8.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –1.8, 26.7, 55.3, 113.3, 122.5, 127.5, 127.9, 129.0, 129.1, 130.6, 133.8, 133.9, 136.0, 147.6, 149.9, 157.3, 159.1, 167.3, 197.3. HRMS (EI) *m*/*z* calcd for C₂₄H₂₅NO₂Si: 387.1655, found: 387.1656.

3eg: 61% yield from **2e** and 4-bromobenzonitrile. ¹H NMR (400 MHz, CDCl₃) δ 0.21 (s, 6H), 3.82 (s, 3H), 6.58 (s, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 7.17–7.20 (m, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.37–7.40 (m, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.52–7.57 (m, 1H), 8.74–8.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –1.8, 55.3, 111.0, 113.4, 118.8, 122.6, 127.9, 129.1, 130.2, 130.6, 131.7, 133.3, 133.9, 147.4, 149.8, 156.5, 159.2, 167.0. HRMS (EI) *m*/*z* calcd for C₂₃H₂₂N₂OSi: 370.1501, found: 370.1495.

3eh: 39% yield from **2e** and 1-bromo-4-nitrobenzene. ¹H NMR (400 MHz, CDCl₃) δ 0.23 (s, 6H), 3.82 (s, 3H), 6.64 (s, 1H), 6.79 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 7.18–7.21 (m, 1H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.38–7.45 (m, 1H), 7.53–7.58 (m, 1H), 8.10 (d, *J* = 9.2 Hz, 2H), 8.75–8.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –1.8, 55.3, 113.4, 122.6, 123.1, 128.0, 129.1, 130.6, 131.2, 133.2, 134.0, 146.9, 149.3, 149.8, 156.2, 159.3, 166.9. HRMS (EI) *m*/*z* calcd for C₂₂H₂₂N₂O₃Si: 390.1400, found: 390.1401.

3ib: 86% yield from **2i** and 4'-bromoacetophenone. ¹H NMR (400 MHz, CDCl₃) δ 0.23 (s, 6H), 2.55 (s, 3H), 2.94 (s, 6H), 6.47 (s, 1H), 6.57 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 7.12–7.16 (m, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.43–7.45 (m, 1H), 7.50–7.54 (m, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 8.75–8.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –1.7, 26.6, 40.4, 111.4, 122.3, 127.5, 127.6, 127.7, 129.0, 129.3, 130.2, 133.6, 135.7, 148.3, 149.7, 149.8, 158.0, 167.7, 197.2. HRMS (EI) *m*/*z* calcd for C₂₅H₂₈N₂OSi: 400.1971, found: 400.1972.

Synthesis of Alkenyl(2-pyridyl)silane 3ab.

A mixture of Pd[P(*t*-Bu)₃]₂ (30.7 mg, 0.06 mmol), triethylamine (202.4 mg, 2.0 mmol), **1** (167.4 mg, 1.03 mmol), and bromobenzene (158.5 mg, 1.01 mmol) in dioxane (1.2 mL) was stirred at 60 °C for 5 h under argon. To this mixture were added 4'-bromoacetophenone (236.2 mg, 1.19 mmol), triethylamine (506.0 mg, 5.0 mmol), and dioxane (1.2 mL) the resultant mixture was further stirred at 80 °C for 2 h. After cooling the reaction mixture to room temperature, the catalyst and salts were removed by filtration through a short silica gel pad (EtOAc). The subjection of the crude mixture to silica gel chromatography (hexane/EtOAc = 5/2) afforded **3ab** (241.3 mg, 68%) as pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 0.18 (s, 6H), 2.58 (s, 3H), 6.66 (s, 1H), 7.08–7.10 (m, 2H), 7.16–7.20 (m, 1H), 7.23–7.32 (m, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.36–7.40 (m, 3H), 7.52–7.56 (m, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 8.75–8.77 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ –2.2, 26.4, 122.5, 127.3, 127.6, 127.9, 128.0, 129.1, 129.35, 129.38, 133.8, 136.0, 141.4, 147.1, 149.9, 157.5, 167.2, 197.4. HRMS (EI) *m/z* calcd for C₂₃H₂₃NOSi: 357.1549, found: 357.1548.

Typical Procedure for CuI/CsF-Mediated Homo-Coupling Reaction of Alkenyl(2-pyridyl)silanes (2 and 3).

A mixture of **3bb** (120.5 mg, 0.30 mmol), CuI (69.1 mg, 0.36 mmol), and CsF (68.7 mg, 0.45 mmol) in dry CH₃CN (3.0 mL) was stirred at room temperature for 3 h under argon. Catalyst and salts were removed by filtration through a short gel pad (EtOAc/CHCl₃). The filtrate was evaporated, and the residue was subjected to gel permeation chromatography (CHCl₃) to afford **5bb** as pale yellow solid (49.3 mg, 62%).

4a:² >99% yield from **2a**. ¹H NMR (300 MHz, CDCl₃) δ 6.68 (dd, *J* = 18.9, 7.2 Hz, 2H), 6.98 (dd, *J* = 18.9, 7.2 Hz, 2H), 7.20-7.50 (m, 10H). UV/Vis (CHCl₃): λ_{max} = 333 nm. FL (CHCl₃): λ_{max} = 381 nm.

4b:³ 47% yield from **2b**. ¹H NMR (400 MHz, CDCl₃) δ 2.61 (s, 6H), 6.76 (dd, J = 18.9, 7.2 Hz, 2H), 7.07 (dd, J = 18.9, 7.2 Hz, 2H), 7.51 (d, J = 8.4 Hz, 4H), 7.92 (d, J = 8.4 Hz, 4H). UV/Vis (CHCl₃): λ_{max} = 368 nm. FL (CHCl₃): λ_{max} = 425 nm.

4c:⁴ 70% yield from **2c**. ¹H NMR (400 MHz, CDCl₃) δ 6.67–6.80 (m, 4H), 6.95–7.05 (m, 4H), 7.17 (dd, *J* = 4.8, 1.6 Hz, 2H). UV/Vis (CHCl₃): λ_{max} = 363 nm. FL (CHCl₃): λ_{max} = 430 nm.

4d:⁵ 46% yield from **2d**. ¹H NMR (400 MHz, CDCl₃) δ 6.60–6.80 (m, 4H), 7.18 (dd, *J* = 4.0, 2.4 Hz, 2H), 7.25–7.30 (m, 4H). UV/Vis (CHCl₃): λ_{max} = 322 nm. FL (CHCl₃): λ_{max} = 394 nm.

⁽²⁾ Wang, Z.; Zhang, G.; Guzei, I.; Verkade, J. G. J. Org. Chem. 2001, 66, 3521.

⁽³⁾ Mitsudo, T.; Fischetti, W.; Heck, R. F. J. Org. Chem. 1984, 49, 1640.

⁽⁴⁾ Frère, P.; Raimundo, J.-M.; Blanchard, P.; Delaunay, J.; Richomme, P.; Sauvajol, J.-L.; Orduna, J.; Garin, J.; Roncali, J. J. Org. Chem. 2003, 68, 7254.

⁽⁵⁾ Leznoff, C. C.; Lilie, W.; Manning, C. Can. J. Chem. 1974, 52, 132.

5aa:⁶ 58% yield from **3aa**. ¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, 2H), 7.05-7.20 (m, 20H). UV/Vis (CHCl₃): λ_{max} = 348 nm. FL (CHCl₃): λ_{max} = 449 nm.

5bb: 62% yield from **3bb**. ¹H NMR (400 MHz, CDCl₃) δ 2.58 (s, 6H), 2.68 (s, 6H), 6.84 (s, 2H), 7.21 (d, *J* = 8.4 Hz, 4H), 7.41 (d, *J* = 8.4 Hz, 4H), 7.84 (d, *J* = 8.4 Hz, 4H), 8.05 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 26.6, 26.7, 127.6, 127.8, 128.5, 128.6, 130.8, 136.3, 136.7, 143.7, 144.0, 145.7, 197.3, 197.6. HRMS (EI) *m*/*z* calcd for C₃₆H₃₀O₄: 526.2144, found: 526.2144. UV/Vis (CHCl₃): λ_{max} = 381 nm. FL (CHCl₃): λ_{max} = 480 nm.

5dd: 38% yield from **3dd**. ¹H NMR (400 MHz, CDCl₃) δ 6.86 (s, 2H), 6.96–6.97 (m, 2H), 7.09–7.10 (m, 2H), 7.12–7.13 (m, 2H), 7.23–7.25 (m, 2H), 7.33–7.34 (m, 2H), 7.38–7.40 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 122.7, 125.0, 125.1, 125.3, 126.1, 129.7, 133.1, 139.8, 144.1. HRMS (EI) *m*/*z* calcd for C₂₀H₁₄S₄: 381.9978, found: 381.9980. UV/Vis (CHCl₃): λ_{max} = 353 nm. FL (CHCl₃): λ_{max} = 435 nm.

5ee:⁶ 63% yield from **3ee**. ¹H NMR (300 MHz, CDCl₃) δ 3.78 (s, 6H), 3.86 (s, 6H), 6.65 (s, 2H), 6.78 (d, *J* = 9.6 Hz, 4H), 6.94 (d, *J* = 8.7 Hz, 4H), 7.11 (d, *J* = 8.7 Hz, 4H), 7.24 (d, *J* = 9.6 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 55.31, 55.32, 113.35, 113.39, 124.5, 128.7, 131.7, 132.4, 135.5, 141.9, 158.6, 158.7. UV/Vis (CHCl₃): λ_{max} = 365 nm. FL (CHCl₃): λ_{max} = 448 nm.

5ff: 51% yield from **3ff**. ¹H NMR (400 MHz, CDCl₃) δ 6.63 (s, 2H), 6.91–6.97 (m, 4H), 7.08–7.15 (m, 8H), 7.24–7.29 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 115.2 (d, *J*_{C-F} = 21.7 Hz), 115.4 (d, *J*_{C-F} = 20.5 Hz), 125.6, 129.2 (d, *J*_{C-F} = 8.0 Hz), 132.2 (d, *J*_{C-F} = 8.0 Hz), 135.5 (d, *J*_{C-F} = 3.4 Hz), 138.3 (d, *J*_{C-F} = 3.5 Hz), 142.2, 162.3 (d, *J*_{C-F} = 246.0 Hz), 162.4 (d, *J*_{C-F} = 247.1 Hz). HRMS (EI) *m*/*z* calcd for C₂₈H₁₈F₄: 430.1345, found: 430.1351. UV/Vis (CHCl₃): λ_{max} = 345 nm. FL (CHCl₃): λ_{max} = 435 nm.

5ab: 61% yield from **3ab**. ¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, 6H), 6.88 (s, 2H), 7.25 (d, *J* = 9.2 Hz, 4H), 7.29–7.31 (m, 4H), 7.41–7.47 (m, 6H), 7.82 (d, *J* = 8.8 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 26.9, 127.9, 128.1, 128.4, 128.6, 128.8, 130.9, 136.2, 139.2, 144.6, 147.0, 197.8. HRMS (EI) *m*/*z* calcd for C₃₂H₂₆O₂: 442.1933, found: 442.1933. UV/Vis (CHCl₃): $\lambda_{max} = 376$ nm. FL (CHCl₃): $\lambda_{max} = 472$ nm.

5ab

⁽⁶⁾ Feit, B.-A.; Buzhansky, L. J. Chem. Soc., Perkin Trans. 1 2000, 1777.

5be: 56% yield from **3be**. ¹H NMR (300 MHz, CDCl₃) δ 2.66 (s, 6H), 3.78 (s, 6H), 6.65 (s, 2H), 6.78 (d, *J* = 8.7 Hz, 4H), 7.05 (d, *J* = 8.7 Hz, 4H), 7.42 (d, *J* = 8.1 Hz, 4H), 8.01 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 26.7, 55.3, 113.7, 124.8, 128.3, 128.8, 130.9, 134.3, 136.2, 142.5, 145.2, 159.4, 197.8. HRMS (EI) *m*/*z* calcd for C₃₄H₃₀O₄: 502.2144, found: 502.2145. UV/Vis (CHCl₃): λ_{max} = 389 nm. FL (CHCl₃): λ_{max} = 499 nm.

5eb: 50% yield from **3eb**. ¹H NMR (300 MHz, CDCl₃) δ 2.56 (s, 6H), 3.87 (s, 6H), 6.84 (s, 2H), 6.96 (d, *J* = 8.4 Hz, 4H), 7.23 (d, *J* = 8.1 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 4H), 7.83 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 26.5, 55.3, 113.8, 127.6, 127.9, 128.2, 131.2, 131.8, 135.8, 143.7, 147.3, 159.3, 197.5. HRMS (EI) *m*/*z* calcd for C₃₄H₃₀O₄: 502.2144, found: 502.2146. UV/Vis (CHCl₃): λ_{max} = 391 nm. FL (CHCl₃): λ_{max} = 500 nm.

 O_2N

5eg: 63% yield from **3eg**. ¹H NMR (400 MHz, CDCl₃) δ 3.88 (s, 6H), 6.80 (s, 2H), 6.97 (d, *J* = 8.8 Hz, 4H), 7.20 (d, *J* = 8.8 Hz, 4H), 7.27 (d, *J* = 8.4 Hz, 4H), 7.52 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 110.6, 113.9, 118.8, 127.7, 128.1, 130.4, 131.6, 131.8, 143.3, 146.7, 159.3. HRMS (EI) *m*/*z* calcd for C₃₂H₂₄N₂O₂: 468.1838, found: 468.1838. UV/Vis (CHCl₃): λ_{max} = 383 nm. FL (CHCl₃): λ_{max} = 490 nm.

5eh: 24% yield from **3eh**. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 6H), 6.85 (s, 2H), 6.98 (d, *J* = 8.8 Hz, 4H), 7.21 (d, *J* = 8.8 Hz, 4H), 7.32 (d, *J* = 8.4 Hz, 4H), 8.09 (d, *J* = 8.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 114.0, 123.4, 128.3, 130.3, 131.7, 143.5, 146.7, 148.7, 159.5. HRMS (EI) *m*/*z* calcd for C₃₀H₂₄N₂O₆: 508.1634, found: 508.1635. UV/Vis (CHCl₃): λ_{max} = 417 nm. FL (CHCl₃): λ_{max} = 593 nm.

ЪМе

 NO_2

5eh

5ib: 48% yield from **3ib**. ¹H NMR (400 MHz, CDCl₃) δ 2.58 (s, 6H), 3.03 (s, 12H), 6.74 (d, *J* = 8.0 Hz, 4H), 6.85 (s, 2H), 7.18 (d, *J* = 8.4 Hz, 4H), 7.32 (d, *J* = 8.4 Hz, 4H), 7.82 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 26.7, 40.5, 111.7, 127.4, 128.0, 128.1, 128.3, 131.6, 135.5, 143.5, 148.1, 149.8, 197.3. HRMS (EI) *m*/*z* calcd for C₃₆H₃₆N₂O₂: 528.2777, found: 528.2775. UV/Vis (CHCl₃): λ_{max} = 322 nm. FL (CHCl₃): λ_{max} = 578 nm.

Typical Procedure for the Stoichiometric Reaction of 2a and CuX (X = I, Br, Cl).

To a solution of CuI (193 mg, 1.01 mmol) in dry CH₃CN (10 mL) was added **2a** (239.4 mg, 1.00 mmol) at room temperature. After stirring the resultant mixture at room temperature for 3 h (yellow solid gradually deposited), the mixture was filtered. The resultant solid was washed with CH₃CN (10 mL) and dried under reduced pressure to afford **7** (**X** = **I**) (436.6 mg, >99% yield) as yellow solid.

7 (**X** = **I**): ¹H NMR (400 MHz, CDCl₃) δ 0.49 (s, 6H), 5.81 (d, *J* = 18.8 Hz, 1H), 6.87 (d, *J* = 18.8 Hz, 1H), 7.04 (ddd, *J* = 7.2, 4.8, 1.2 Hz, 1H), 7.34–7.42 (m, 3H), 7.46 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.58 (td, *J* = 7.6, 1.6 Hz, 1H), 7.66 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.80 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –2.6, 124.1, 127.6, 127.8, 128.2, 128.4, 128.9, 134.9, 137.3, 150.4, 167.2. LRMS (FAB) *m*/*z* 733 (bridged dimer – I), 541 (bridged dimer – CuI₂), 302 (monomer – I).

7 (X = Br): ¹H NMR (400 MHz, CDCl₃) δ 0.49 (s, 6H), 5.37 (d, *J* = 16.8 Hz, 1H), 6.64 (d, *J* = 16.8 Hz, 1H), 6.95–7.20 (br, 1H), 7.30–7.45 (m, 4H), 7.50–7.70 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ –3.0, 92.0, 120.8, 124.8, 127.7, 127.9, 128.1, 128.6, 129.1, 135.5, 137.8, 150.4. LRMS (FAB) *m*/*z* 685 (bridged dimer – Br), 541 (bridged dimer – CuBr₂), 302 (monomer – Br).

7 (X = Cl): ¹H NMR (400 MHz, CDCl₃) δ 0.62 (brs, 6H), 3.00–5.00 (br, 1H), 6.20–6.80 (m, 2H), 6.80–8.00 (m, 7H), 8.20–9.20 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –3.9, 119.6 (br), 125.8, 126.0, 127.5, 127.8, 137.4, 141.4 (br). LRMS (FAB) *m*/*z* 541 (bridged dimer – CuCl₂).

Copper complex 8 was obtained in quantitative yield using the similar procedure.

8: ¹H NMR (400 MHz, CDCl₃) δ 0.47 (s, 6H), 2.41 (s, 3H), 5.73 (d, *J* = 18.4 Hz, 1H), 6.86 (d, *J* = 18.4 Hz, 1H), 6.94 (ddd, *J* = 7.6, 5.2, 1.2 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.44 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.57 (td, *J* = 7.6, 1.2 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.70 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ –2.8, 21.5, 101.5 (br), 124.0, 127.9, 128.8, 129.2, 131.8 (br), 134.7, 134.9, 138.1, 150.7, 167.5. LRMS (FAB) *m*/z 886 (M for bridged dimer), 759 (bridged dimer – I), 569 (bridged dimer – CuI₂).

X-ray data for 8: C₁₆H₁₉NSiICu (monomer unit), M = 443.87, triclinic, space group *P*-1 (No. 2), a = 8.5498(5) Å, b = 14.413(1) Å, c = 14.731(2) Å, $\alpha = 89.934(4)^{\circ}$, $\beta = 90.007(6)^{\circ}$, $\gamma = 82.093(2)^{\circ}$, V = 1797.9(2) Å³, Z = 5, $D_c = 2.050$ g/cm³, $\mu = 37.37$ cm⁻¹. Intensity data were measured on a Rigaku RAXIS imaging plate area detector with graphite-monochromated Mo-K α radiation. The data were collected at 23 ± 1 °C to a maximum 20 value of 54.8°. A total of 15634 reflections were collected. The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. The final cycle of full-matrix least-squares refinement on F was based on 6446 observed reflections (I > 3.00 σ (I)) and 400 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of R = 0.041 ($R_w = 0.068$). All calculations were performed using the CrystalStructure crystallographic software package.

Typical Procedure for the Stoichiometric Reaction of 7 and CsF.

A mixture of 7 (X = I) (218.6 mg, 0.51 mmol) and CsF (93.3 mg, 0.61 mmol) in dry CH₃CN (3 mL) was stirred at room temperature for 3 h. Salts were removed by filtration through a short gel pad (EtOAc). Removal of the solvent under reduced pressure afforded the crude 4a. The yield of 4a was determined to be >99% by GC analysis using *n*-pentadecane as an internal standard.

13C NMR (125 MHz, CDCI3) of 3aa

13C NMR (125 MHz, CDCI3) of 3bb

13C NMR (100 MHz, CDCI3) of 5eg

S32

13C NMR (100 MHz, CDCI3) of 5eh

289.97

716.77 ---

