Supporting Information for:

Unprecedented Reversible Migration of Amide to Schiff Base Ligands Attached to Tin: Latent Single-Site Initiators for Lactide Polymerization.

Nonsee Nimitsiriwat, Vernon C. Gibson*, Edward L. Marshall, Mark R.J. Elsegood and Sophie H. Dale

Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.

and

Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.

Contents

	page
General Experimental	S3
Preparation of Tin(II) Complexes	S3
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH-N-2-OMeC_6H_4]SnNMe_2(1a)$	S3
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH-N-2-SPhC_6H_4]SnNMe_2(2a)$	S4
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH-N-2-PPh_2C_6H_4]SnNMe_2$ (3a)	S5
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-OMeC_6H_4]SnCl (1b)$	S 6
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-SPhC_6H_4]SnCl (2b)$	S6
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-PPh_2C_6H_4]SnCl(3b)$	S 7
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-OMeC_6H_4]SnOCMePh_2$ (1c)	S 8
$[3,5-{}^{t}Bu_{2}-2-(O)C_{6}H_{2}CH=N-2-SPhC_{6}H_{4}]SnOCMePh_{2} (2c)$	S9
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-PPh_2C_6H_4]SnOCMePh_2$ (3c)	S9
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH-N-2-OMeC_6H_4]SnNEt_2(1a')$	S9
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-OMeC_6H_4]SnN^{i}Pr_2$	S10
$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-OMeC_6H_4]SnN(TMS)_2$	S11
General Polymerization Procedure	S12
Fig. S1: 2D-HMBC NMR spectrum of 3a (400 MHz, 298K, C ₆ D ₆)	S13
Fig. S2: ¹ H NMR spectra (250MHz, 298 K, C_6D_6) of the reaction between 1a and	S14
<i>rac</i> -LA (10 eq.)	
Fig. S3: ${}^{1}H$ / ${}^{13}C$ HETCOR spectrum (400MHz, 298K, C ₆ D ₆) of the reaction between 1a	S15
and <i>rac</i> -LA (10 eq.)	
Fig. S4: ¹ H NMR spectra (250MHz, 298K, C_6D_6) of the reactions between (a) 1a' and	S16
Me ₂ NH (10 eq.) and (b) $1a$ and Et ₂ NH (10 eq.)	
Fig. S5: Plots of $ln{[LA]_0/[LA]_t}$ as a function of time for 1a-3a	S17
Table 1: Polymerization data for rac-LA polymerizations initiated by 1a-3a	S18
Fig. S6: Plots of M_n vs conversion for <i>rac</i> -LA polymerization initiated by 1a-3a	S19
Fig. S7: ¹ H-NMR spectrum of PLA prepared using 3a	S20
Fig. S8: MALDI-TOF mass spectrum of PLA prepared using 3a	S21
Fig. S9: ¹ H-NMR spectrum of the methine region of PLA prepared using 3a	S22
Fig. S10: Molecular structure and crystal data for 3a	S23

General Experimental

Air-sensitive reactions were performed using standard Schlenk and vacuum line techniques. Diethyl ether was distilled from Na/benzophenone. Pentane, heptane and toluene were dried by passing through a cylinder filled with commercially available Q-5 catalyst (13 % Cu(II) oxide on Al₂O₃. *rac*-Lactide (Aldrich) was sublimed 3 times prior to use. n-BuLi (Fisher Scentific), anhydrous SnCl₂, LiNMe₂, KN(TMS)₂ (Aldrich) were used without further purification. Salicylaldimines were synthesised according to literature procedures.¹ Tin bis(amines) were prepared using the modifications of existing methods.² NMR spectra were recorded on Bruker AC-250 MHz, DRX-400 MHz or AM-500 MHz spectrometers at 293 K. Mass spectra were recorded on either a VG Autospec or a VG Platform II spectrometer. Elemental analyses were performed by the microanalytical services of the Chemistry department of London Metropolitan University and University of London. Gel permeation chromatography (GPC) was performed using Viscotex Trisec software connected to a Knauer differential refractometer. Samples were injected onto two linear 10 micron columns using chloroform as eluent at a flow rate of 1 ml min⁻¹ at room temperature. Molecular weights are quoted relative to polystyrene standards.

Preparation of Tin(II) Complexes

[3,5-^tBu₂-2-(O)C₆H₂CH-N-2-OMeC₆H₄]SnNMe₂ (1a)

A solution of $3,5^{-t}Bu_2-2-(OH)C_6H_2CH=N-2-OMeC_6H_4$ (0.506 g, 1.49 mmol) in diethyl ether (30 mL) was added dropwise to a solution of Sn[NMe_2]_2 (0.309 g, 1.50 mmol) in diethyl ether chilled to -78 °C. The mixture was then stirred for 4 hr at room temperature after which the volatile components were removed under reduced pressure. The crude product was recrystallized by allowing a saturated diethyl ether solution to stand at room temperature for several days to give **1a** as yellow crystals. Yield 0.392 g, 52 %. Found C,

57.66; H, 6.71; N, 5.62. C₂₄H₃₄N₂O₂Sn requires C, 57.51; H, 6.84; N, 5.59. MS (EI): m/z458 [M-NMe₂]⁺. ¹H-NMR (C₆D₆): δ 7.50 (d, 1H, ⁴*J*(HH) 2.5 Hz, 4-C₆H₂), 6.89 (d, 1H, ⁴*J*(HH) 2.7 Hz, 6-C₆H₂), 6.88 (td, 1H, ³*J*(HH) 6.3 Hz, ⁴*J*(HH) 1.4 Hz, 5-C₆H₄), 6.55 (dd, 1H, ³*J*(HH) 6.4 Hz, ⁴*J*(HH) 1.5 Hz, 3-C₆H₄), 6.46 (td, 1H, ³*J*(HH) 6.1 Hz, ⁴*J*(HH) 1.5 Hz, 4-C₆H₄), 6.33 (dd, 1H, ³*J*(HH) 6.6 Hz, ⁴*J*(HH) 1.4 Hz, 6-C₆H₄), 5.55 (s, 1H, HC-N), 3.25 (s, 3H, OCH₃), 2.07 (br, 6H, N(CH₃)₂), 1.67 (s, 9H, 3-C(CH₃)₃), 1.37 (s, 9H, 5-C(CH₃)₃). ¹³C-NMR: δ 155.44 (1-C₆H₂), 150.78 (2-C₆H₄), 141.56 (1- C₆H₄), 138.00 (3- C₆H₂), 137.36 (5-C₆H₂), 126.54 (2-C₆H₂), 125.79 (6- C₆H₂), 124.55 (4- C₆H₂), 122.22 (5- C₆H₄), 114.65 (4-C₆H₄), 113.20 (3-C₆H₄), 109.82 (6-C₆H₄), 89.13 (HC-N), 54.32 (OCH₃), 42.68 (br, 2C resonances, N(CH₃)₂), 35.52 (3-C(CH₃)₃), 34.07 (5-C(CH₃)₂), 32.04 (5-C(CH₃)₃), 29.93 (3-C(CH₃)₃). ¹¹⁹Sn-NMR (C₆D₆): δ -165.96.

[3,5-^tBu₂-2-(O)C₆H₂CH-N-2-SPhC₆H₄]SnNMe₂(2a)

This complex was synthesised using the procedure outlined for **1a** but with 3,5-^tBu₂-2-(OH)C₆H₂CH=N-2-SPhC₆H₄ (2.021 g, 4.84 mmol) and Sn[NMe₂]₂ (1.005 g, 4.86 mmol). The crude product was recrystallized by allowing a saturated diethyl ether solution to stand at room temperature for several days to give **2a** as yellow crystals. Yield 1.381 g, 49 %. Found C, 60.18; H, 6.35; N, 4.71. C₂₉H₃₆N₂OSSn requires C, 60.12; H, 6.25; N, 4.84. MS (CI(NH₃)): m/z 536 [M-NMe₂]⁺. ¹H-NMR (C₆D₆): δ 7.54 (d, 1H, ⁴*J*(HH) 2.6 Hz, 4-C₆H₂), 7.31 (dd, 1H, ³*J*(HH) 6.1 Hz, ⁴*J*(HH) 1.6 Hz, 6-C₆H₄), 7.10 (td, 1H, ³*J*(HH) 7.2 Hz, ⁴*J*(HH) 1.7 Hz, 5-C₆H₄), 6.99-6.96 (m, 2H, C₆H₅S), 6.90-6.79 (m, 4H, 4-C₆H₂+C₆H₅S), 6.66 (d, 1H, ³*J*(HH) 7.7 Hz, 3-C₆H₄), 6.36 (td, 1H, ³*J*(HH) 7.5 Hz, ⁴*J*(HH) 1.1 Hz, 4-C₆H₄), 5.38 (s, 1H, HC-N), 1.94 (s, 3H, N(C H₃)₂), 1.80 (s, 3H, N(C H₃)₂), 1.66 (s, 9H, 3-C(CH₃)₃), 1.40 (s, 9H, 5-C(CH₃)₃). ¹³C-NMR: δ 155.92 (2-C₆H₂), 154.86 (1-

<u>C</u>₆H₄), 138.63 (6-<u>C</u>₆H₄), 138.52 (3-<u>C</u>₆H₂), 137.37 (5-<u>C</u>₆H₂), 131.80 (5-<u>C</u>₆H₄), 129.46 (3-<u>C</u>₆H₅S), 129.46 (5-<u>C</u>₆H₅S), 126.67 (2- <u>C</u>₆H₅S), 126.67 (6- <u>C</u>₆H₅S), 125.99 (4- <u>C</u>₆H₅S), 125.93 (6-<u>C</u>₆H₂), 124.78 (4-<u>C</u>₆H₂), 115.75 (4- <u>C</u>₆H₄), 114.20 (3- <u>C</u>₆H₄), 88.42 (H <u>C</u>-N), 43.65 (N(<u>C</u>H₃)₂), 40.62 (N(<u>C</u>H₃)₂), 35.55 (3- <u>C</u>(CH₃)₃), 34.11 (5- <u>C</u>(CH₃)₂), 32.07 (5-C(<u>C</u>H₃)₃), 29.97 (3-C(<u>C</u>H₃)₃). ¹¹⁹Sn-NMR (C₆D₆): δ -222.30.

$[3,5^{+}Bu_{2}-2-(O)C_{6}H_{2}C_{6}H_{2}O_{6}H_{2}O_{6}H_{4}]Sn^{+}Me_{2}$ (3a)

This complex was synthesised using the procedure outlined for 1a but with 3,5-^tBu₂-2-(OH)C₆H₂CH=N-2-PPh₂C₆H₄ (1.315 g, 2.66 mmol) and Sn[NMe₂]₂ (0.551 g, 2.66 mmol). The crude product was recrystallized by allowing a saturated toluene solution to stand at room temperature for several days to give **3a** as yellow crystals. Yield 1.204 g, 69 %. Found C, 64.27; H, 6.38; N, 4.33 C₃₅H₄₁N₂OPSn requires C, 64.14; H, 6.31; N, 4.27. MS (EI) *m/z* 612 [M-NMe₂]⁺. ¹H-NMR (C₆D₆): δ 7.60 (d, 1H, ⁴J(HH) 2.6 Hz, 4- $C_{6}H_{2}$), 7.47-7.42 (m, 2H, ($C_{6}H_{5}$)₂P), 7.22-7.12 (m, 4H, C $_{6}H_{4}$ + ($C_{6}H_{5}$)₂P), 7.02-7.00 (m, 2H, (C₆<u>H</u>₅)₂P), 6.94 (d, 1H, ⁴*J*(HH) 2.6 Hz, 6-C₆<u>H</u>₂), 6.93-6.86 (m, 4H, C₆<u>H</u>₄+ (C₆<u>H</u>₅)₂P), 6.75 (t, 1H, ${}^{3}J(HH)$ 7.2 Hz, C₆H₄), 6.41 (tt, 1H, ${}^{3}J(HH)$ 7.0 Hz, ${}^{4}J(HH)$ 1.1 Hz, C₆H₄), 5.46 (s, 1H, <u>H</u>C-N), 2.08 (s, 3H, N(C<u>H</u>₃)₂), 1.93 (s, 3H, N(C <u>H</u>₃)₂), 1.74 (s, 9H, 3- $C(CH_3)_3$, 1.41 (s, 9H, 5- $C(CH_3)_3$). ¹³C-NMR: δ 156.58 (1- C_6H_2), 138.53 (3- C_6H_2), 136.80 (5-<u>C</u>₆H₂), 134.51, 134.38, 133.61, 133.46, 131.59, 129.74, 129.30, 129.18, 129.11, 128.73, 128.65 (12 C resonances, $1-\underline{C}_{6}H_{4}$, $2-\underline{C}_{6}H_{4}+(\underline{C}_{6}H_{5})_{2}P$), 128.26 (3/6- $\underline{C}_{6}H_{4}$), 127.78 $(6/3-\underline{C}_{6}H_{4}), 126.50 (6-\underline{C}_{6}H_{2}), 126.35 (2-\underline{C}_{6}H_{2}), 124.43 (4-\underline{C}_{6}H_{2}), 115.70 (4/5-\underline{C}_{6}H_{4}),$ 114.83 (5/4-<u>C</u>₆H₄), 87.10 (H<u>C</u>-N), 43.80 (N(<u>C</u>H₃)₂), 40.87 (N(<u>C</u>H₃)₂), 35.68 (3-<u>C</u>(CH₃)₃), 34.09 (5-C(CH₃)₂), 32.11 (5-C(CH₃)₃), 30.12 (3-C(CH₃)₃). ¹¹⁹Sn-NMR (C₆D₆): δ-270.99 $(d, {}^{1}J(SnP) 1444 Hz).$

[3,5-^tBu₂-2-(0)C₆H₂CH=N-2-OMeC₆H₄]SnCl (1b)

2.5 M n-BuLi (1.87 ml, 4.68 mmol) was slowly added into a solution of 3,5-^tBu₂-2-(OH)C₆H₂CH=N-2-OMeC₆H₄ (1.515 g, 4.46 mmol) in toluene (60 ml) cooled to 0 °C. The reaction was stirred at room temperature for 3 hr and then added dropwise to a suspension of SnCl₂ (0.876 g, 4.62 mmol) in toluene (20 ml) chilled to -78 °C. The reaction mixture was allowed to stir for 18 hr whilst warming to room temperature. The yellow solution was filtered and the volatiles removed under reduced pressure. The crude product was recrystallized by cooling a hot heptane solution from 70 °C to room temperature to give 1b as yellow needles. Yield 1.086 g, 49 %. Found C, 53.54; H, 5.81; N, 2.91. C₂₂H₂₈NO₂SnCl requires C, 53.64; H, 5.74; N, 2.84. MS (EI): *m/z* 493 [M]⁺. ¹H-NMR (C_6D_6): δ 7.84 (d, 1H, 4J (HH) 2.6 Hz, 4- C_6H_2), 7.61 (s, 1H, <u>H</u>C=N), 6.90 (td, 1H, ³*J*(HH) 6.1 Hz, ⁴*J*(HH) 1.6 Hz, 4-C₆H₄), 6.87 (d, 1H, ⁴*J*(HH) 2.5 Hz, 6-C₆H₂), 6.65 (td, 1H, ³*J*(HH) 6.5 Hz, ⁴*J*(HH) 1.2 Hz, 5-C₆H₄), 6.37 (dd, 1H, ³*J*(HH) 6.3 Hz, ⁴*J*(HH) 1.5 Hz, 3-C₆H₄), 6.31 (dd, 1H, ³*J*(HH) 7.2 Hz, ⁴*J*(HH) 1.1 Hz, 6-C₆H₄), 3.28 (s, 3H, OC H₃, 1.74 (s, 9H, 3-C(C<u>H</u>₃)₃), 1.30 (s, 9H, 5-C(C<u>H</u>₃)₃). ¹³C-NMR: δ 166.81 (H <u>C</u>=N), 163.72 (2-C₆H₂), 151.82 (2-C₆H₄), 142.14 (3-C₆H₂), 138.97 (5-C₆H₂), 137.26 (1-C₆H₄), 132.55 (4-<u>C</u>₆H₂), 130.78 (6-<u>C</u>₆H₂), 128.37 (4- <u>C</u>₆H₄), 122.33 (3- <u>C</u>₆H₄), 122.24 (5- <u>C</u>₆H₄), 120.44 (1-<u>C</u>₆H₂), 111.72 (6-<u>C</u>₆H₄), 54.71 (O<u>C</u>H₃), 35.70 (3-<u>C</u>(CH₃)₃), 34.16 (5-<u>C</u>(CH₃)₂), 31.50 (5- $C(\underline{C}H_3)_3$, 30.11 (3- $C(\underline{C}H_3)_3$). ¹¹⁹Sn-NMR (C₆D₆): δ -377.20.

$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-SPhC_6H_4]SnCl (2b)$

This complex was synthesised using the procedure outlined for **1b** but with 2.5 M n-BuLi (1.52 ml, 3.78 mmol), $3,5^{-t}Bu_2-2$ -(OH)C₆H₂CH=N-2-SPhC₆H₄ (1.502 g, 3.60 mmol), and

SnCl₂ (0.689 g, 3.63 mmol). The crude product was recrystallized by cooling a hot heptane solution from 70 °C to room temperature to give **2b** as yellow needles. Yield 1.319 g, 64 %. Found C, 57.19; H, 5.47; N, 2.42. $C_{27}H_{30}NOSSnCl$ requires C, 56.82; H, 5.30; N, 2.45. MS (EI): m/z 571 [M]⁺. ¹H-NMR (C₆D₆): δ 7.81 (d, 1H, ⁴*J*(HH) 2.6 Hz, 4-C₆H₂), 7.44 (s, 1H, HC=N), 7.13-6.73 (several m, 9H, C₆H₄+C₆H₅S), 6.75 (d, 1H, ⁴*J*(HH) 2.3 Hz, 6-C₆H₂), 1.68 (s, 9H, 3-C(CH₃)₃), 1.30 (s, 9H, 5-C(C H₃)₃). ¹³C-NMR: δ 169.15 (HC=N), 162.14 (2-C₆H₂), 147.98, 134.52, 132.90, 131.60, 130.05, 129.66, 129.51, 127.93, 125.31 (9c resonances, C₆H₄+C₆H₅S), 142.08 (5-C₆H₂), 139.14 (3-C₆H₂), 132.93 (4-C₆H₄), 130.77 (6-C₆H₂), 120.08 (1- C₆H₂), 35.64 (3- C(CH₃)₃), 34.13 (5- C(CH₃)₂), 31.45 (5-C(CH₃)₃), 30.00 (3-C(CH₃)₃). ¹¹⁹Sn-NMR (C₆D₆): δ -353.71.

$[3,5^{-t}Bu_2-2-(O)C_6H_2CH=N-2-PPh_2C_6H_4]SnCl (3b)$

This complex was synthesised using the procedure outlined for **1b** but with 2.5 M n-BuLi (0.88 ml, 2.191 mmol), 3,5^{-t}Bu₂-2-(OH)C₆H₂CH=N-2-PPh₂C₆H₄ (1.030 g, 2.09 mmol), and SnCl₂ (0.390 g, 2.059 mmol). The product was recrystallized by layering a toluene solution with pentane at room temperature for several days to give **3b** as yellow crystals. Yield 1.022 g, 76 %. Found C, 61.04; H, 5.58; N, 2.02. C₃₃H₃₅NOPSnCl requires C, 61.28; H, 5.45; N, 2.17. MS (CI(NH₃)): m/z 647 [M]⁺. ¹H-NMR (C₆D₆): δ 7.79 (d, 1H, ⁴*J*(HH) 2.6 Hz, 4-C₆H₂), 7.60 (s, 1H, HC=N), 7.28 (m, 4H, (C ₆H₅)₂P), 7.08 (m, 1H, 3/6-C₆H₄), 6.96 (m, 1H, 4/5-C₆H₂), 6.95-6.89 (m, 6H, (C₆H₅)₂P), 6.85 (td, 1H, ³*J*(HH) 6.3 Hz, ⁴*J*(HH) 0.9 Hz, 4/5-C₆H₄), 6.77 (br, 1H, 3/6-C₆H₄), 6.61 (d, 1H, ⁴*J*(HH) 2.6 Hz, 6-C₆H₂), 1.71 (s, 9H, 3-C(CH₃)₃), 1.23 (s, 9H, 5-C(CH₃)₃). ¹³C-NMR: δ 169.16 (H C=N), 162.97 (2-C₆H₂), 154.42 (1-C₆H₄), 159.20, 134.41, 134.24, 131.08, 129.63, 129.02, 128.94, 124.58 (8C resonances, C₆H₅)₂P), 142.10 (3-C₆H₄), 138.69 (5-C₆H₄), 133.80 (3/6-C₆H₄),

132.70 (4- $\underline{C}_{6}H_{2}$), 131.57 (4/5- $\underline{C}_{6}H_{2}$), 130.33 (6- $\underline{C}_{6}H_{2}$), 127.78 (5/4- $\underline{C}_{6}H_{4}$), 124.60 (3/6- $\underline{C}_{6}H_{4}$), 120.46 (1- $\underline{C}_{6}H_{2}$), 35.69 (3- $\underline{C}(CH_{3})_{3}$), 34.06 (5- $\underline{C}(CH_{3})_{2}$), 31.41 (5- $C(\underline{C}H_{3})_{3}$), 30.09 (3- $C(\underline{C}H_{3})_{3}$).

[3,5-^tBu₂-2-(0)C₆H₂CH=N-2-OMeC₆H₄]SnOCMePh₂ (1c)

A solution of Ph₂MeCOH (0.200 g, 1.01 mmol) in toluene (30 ml) was added dropwise into a solution of 1a (0.501 g, 1.00 mmol) in toluene (30 ml) chilled to -78 °C. The reaction was stirred at room temperature for 4 hr and volatiles were removed under reduced pressure. The crude product was recrystallized by allowing a saturated heptane solution to stand at -30 °C for several days to give 1c as yellow crystals. Yield 0.319 g, 49 %. Found C, 65.92; H, 6.17; N, 2.06. C₃₆H₄₁NO₃Sn requires C, 66.07; H, 6.32; N, 2.14. MS (EI): m/z 655 [M]⁺. ¹H-NMR (C₆D₆): δ 7.84 (d, 1H, ⁴J(HH) 2.6 Hz, 4-C₆H₂), 7.75 (s, 1H, HC=N), 7.43-7.37 (m, 4H, OCMe(C_6H_5)₂), 7.12-6.98 (m, 4H, OCMe($C_{6}H_{5}$)₂), 6.96 (d, 1H, ⁴*J*(HH) 2.6 Hz, 6- $C_{6}H_{2}$), 6.92 (td, 1H, ³*J*(HH) 7.0 Hz, ${}^{4}J(\text{HH})$ 1.5 Hz, 4-C₆H₄, 6.67 (td, 1H, ${}^{3}J(\text{HH})$ 6.6 Hz, ${}^{4}J(\text{HH})$ 1.0 Hz, 5-C₆H₄), 6.52 (dd, 1H, ³*J*(HH) 6.3 Hz, ⁴*J*(HH) 1.5 Hz, 3-C₆H₄), 6.33 (dd, 1H, ³*J*(HH) 6.5 Hz, ⁴*J*(HH) 0.7 Hz, 6-C₆H₄), 3.00 (s, 3H, OCH₃), 1.97 (s, 3H, OC(CH₃)Ph₂), 1.70 (s, 9H, 3-C(CH₃)₃), 1.39 (s, 9H, 5-C(CH₃)₃). ¹³C-NMR: δ 166.44 (HC=N), 164.06 (2- C₆H₂), 154.92 (1-OCMe(C₆H₅)₂), 153.95, 126.98, 126.88, 125.93, 125.81 (5 C resonances, OCMe(C₆H₅)₂), 152.10 (2- \underline{C}_6H_4), 141.84 (3- \underline{C}_6H_2), 138.06 (5- \underline{C}_6H_2), 137.81 (1- \underline{C}_6H_4), 131.73 (4- \underline{C}_6H_2), 130.27 (6- $\underline{C}_{6}H_{2}$), 128.24 (4- $\underline{C}_{6}H_{4}$), 123.35 (3- $\underline{C}_{6}H_{4}$), 121.87 (5- $\underline{C}_{6}H_{4}$), 120.85 (1- $\underline{C}_{6}H_{2}$), 111.30 (6-C₆H₄), 77.22 (OC(CH₃)Ph₂), 54.42 (O CH₃), 35.71 (3- C(CH₃)₃), 34.40 (5-<u>C</u>(CH₃)₂), 34.18 (OC(<u>C</u>H₃)Ph₂), 31.64 (5-C(<u>C</u>H₃)₃), 30.03 (3-C(<u>C</u>H₃)₃). ¹¹⁹ Sn-NMR (C₆D₆): δ -378.53.

Compounds **2c and 3c** were synthesised in NMR tubes from the reaction of an appropriate tin dimethylamide complex and Ph_2MeCOH and the product was characterised by ¹H-NMR only.

[3,5-^tBu₂-2-(O)C₆H₂CH=N-2-SPhC₆H₄]SnOCMePh₂ (2c)

¹H-NMR (C₆D₆): δ 7.81 (d, 1H, ⁴*J*(HH) 2.6 Hz, 4-C₆<u>H</u>₂), 7.54 (s, 1H, <u>H</u>C=N), 7.13-6.85 (several m, 19H, C₆<u>H</u>₄+C₆<u>H</u>₅S+OCMe(C₆<u>H</u>₅)₂+6-C₆<u>H</u>₂), 1.92 (s, 3H, OC(C <u>H</u>₃)Ph₂), 1.68 (s, 9H, 3-C(C<u>H</u>₃)₃), 1.30 (s, 9H, 5-C(C<u>H</u>₃)₃).

[3,5-^tBu₂-2-(0)C₆H₂CH=N-2-PPh₂C₆H₄]SnOCMePh₂ (3c)

¹H-NMR (C₆D₆): δ 7.75 (d, 1H, ⁴*J*(HH) 2.5 Hz, 4-C₆H₂), 7.57 (s, 1H, <u>H</u>C=N), 7.47, 7.21-6.87 (several m, 24H, C₆H₄+(C₆H₅)₂P+OCMe(C₆H₅)₂), 6.58 (d, 1H, ⁴*J*(HH) 2.5 Hz, 6-C₆H₂), 1.97 (s, 3H, OC(C<u>H</u>₃)Ph₂), 1.67 (s, 9H, 3-C(C<u>H</u>₃)₃), 1.35 (s, 9H, 5-C(C<u>H</u>₃)₃).

[3,5-^tBu₂-2-(O)C₆H₂CH-N-2-OMeC₆H₄]SnNEt₂ (1a')

A solution of LiNEt₂ (0.234 g, 2.95 mmol) in diethyl ether (30 ml) was added dropwise in to a suspension of SnCl₂ (0.280 g, 1.48 mmol) in diethyl ether (20 ml) chilled to -78 °C. The mixture was stirred for 1 hr at room temperature. This solution was then cooled to -78 °C and was added dropwise with a solution of 3,5-^tBu₂-2-(OH)C₆H₂CH=N-2-OMeC₆H₄ (0.501 g, 1.48 mmol) in diethyl ether (30 mL). The mixture was stirred for another 2 hr at room temperature after which the volatile components were removed under reduced pressure. The crude product was recrystallized by allowing a saturated diethyl ether solution to stand at 5 °C for 18 hr to give **1a'** as yellow crystals. Yield 0.217 g, 52 %. ¹H-NMR (C₆D₆): δ 7.49 (d, 1H, ⁴*J*(HH) 1.5 Hz, 4-C₆H₂), 6.91 (d, 1H, ⁴*J*(HH) 1.5 Hz, 6-C₆<u>H</u>₂), 6.89 (td, 1H, ³*J*(HH) 7.5 Hz, ⁴*J*(HH) 1.1 Hz, 5-C₆<u>H</u>₄), 6.53 (dd, 1H, ³*J*(HH) 6.8 Hz, ⁴*J*(HH) 1.1 Hz, 3-C₆<u>H</u>₄), 6.47 (td, 1H, ³*J*(HH) 6.8 Hz, ⁴*J*(HH) 1.2 Hz, 4-C₆<u>H</u>₄), 6.35 (d, 1H, ³*J*(HH) 6.8 Hz, 6-C₆<u>H</u>₄), 5.79 (s, 1H, <u>H</u>C-N), 3.26 (s, 3H, OC <u>H</u>₃), 3.15 (br, 1H, N(C<u>H</u>₂CH₃)₂), 2.81 (br, 1H, N(C<u>H</u>₂CH₃)₂), 2.57 (br, 2H, N(C <u>H</u>₂CH₃)₂), 1.67 (s, 9H, 3-C(C<u>H</u>₃)₃), 1.38 (s, 9H, 5-C(C<u>H</u>₃)₃), 0.72 (br, 3H, N(CH $_{2}$ C<u>H</u>₃)₂), 0.53 (br, 3H, N(CH $_{2}$ C<u>H</u>₃)₂), 1.37 (br, 3H, N(CH $_{2}$ C<u>H</u>₃)₂), 1.50.79 (2-<u>C</u>₆H₄), 141.50 (1-<u>C</u>₆H₄), 138.09 (5-<u>C</u>₆H₂), 137.22 (3- <u>C</u>₆H₂), 126.04 (6- <u>C</u>₆H₂), 124.28 (4- <u>C</u>₆H₂), 122.23 (5-<u>C</u>₆H₄), 114.43 (4-<u>C</u>₆H₄), 112.90 (3- <u>C</u>₆H₄), 109.77 (6- <u>C</u>₆H₄), 85.06 (H <u>C</u>-N), 54.28 (O<u>C</u>H₃), 43.27 (N(<u>C</u>H₂CH₃)₂), 40.25 (N(<u>C</u>H₂CH₃)₂), 35.53 (3- <u>C</u>(CH₃)₃), 34.07 (5-<u>C</u>(CH₃)₂), 32.03 (5-C(<u>C</u>H₃)₃), 29.95 (3-C(<u>C</u>H₃)₃), 10.97 (N(CH $_{2}$ CH₃)₂), 8.37 (N(CH₂<u>C</u>H₃)₂).¹¹⁹Sn-NMR (C₆D₆): δ-171.99.

[3,5-^tBu₂-2-(0)C₆H₂CH=N-2-OMeC₆H₄]SnNⁱPr₂

This complex was synthesised using the procedure outlined for **1a'** but with LiN¹Pr2 (0.514 g, 4.80 mmol), SnCl2 (0.455 g, 2.40 mmol) and 3,5-^tBu₂-2-(OH)C₆H₂CH=N-2-OMeC₆H₄ (0.810 g, 2.386 mmol). ¹H-NMR (C₆D₆): δ 7.69 (d, 1H, ⁴*J*(HH) 2.6 Hz, 4/6-C₆H₂), 7.57 (s, 1H, <u>H</u>C=N), 6.94 (td, 1H, ³*J*(HH) 7.5 Hz, ⁴*J*(HH) 1.7 Hz, 4/5-C₆H₄), 6.79 (d, 1H, ⁴*J*(HH) 2.7 Hz, 4/6-C₆H₂), 6.70 (td, 1H, ³*J*(HH) 7.7 Hz, ⁴*J*(HH) 1.2 Hz, 4/5-C₆H₄), 6.60 (dd, 1H, ³*J*(HH) 7.7 Hz, ⁴*J*(HH) 1.8 Hz, 3/6-C₆H₄), 6.40 (dd, 1H, ³*J*(HH) 8.2 Hz, ⁴*J*(HH) 1.1 Hz, 3/6-C₆H₄), 3.91 (sept, 2H, ³*J*(HH) 6.6 Hz, N(CH(CH₃)₂), 3.27 (s, 3H, OC<u>H₃</u>), 1.68 (s, 9H, 3-C(C<u>H₃</u>)₃), 1.42 (d, 6H, ³*J*(HH) 6.5 Hz, N(CH(C <u>H₃</u>)₂), 1.32 (s, 9H, 5-C(C<u>H₃</u>)₃), 0.97 (d, 6H, ³*J*(HH) 6.6 Hz, N(CH(C<u>H₃</u>)₂).

[3,5-^tBu₂-2-(0)C₆H₂CH=N-2-OMeC₆H₄]SnN(SiMe₃)₂

This complex was synthesised using the procedure outlined for **1a** but with 3,5-¹Bu₂-2-(OH)C₆H₂CH=N-2-OMeC₆H₄ (1.052 g, 3.10 mmol) and Sn[N(SiMe₃)₂]₂ (1.362 g, 3.10 mmol). The crude product was recrystallized by allowing a saturated diethyl ether solution to stand at room temperature overnight to give the product as red-orange crystals. Yield 1.265 g, 68 %. Found C, 55.57; H, 7.63; N, 2.22. C₂₈H₄₆NO₂Si₂Sn requires C, 55.72; H, 7.68; N, 2.32. MS (+ve CI): *m/z* 485 [M-N(SiMe₃)₂+H]⁺, 475 [M-N(SiMe₃)₂+HH]₄⁺. ¹H-NMR (C₆D₆): δ 7.70 (d, 1H, ⁴*J*(HH) 2.4 Hz, 4-C₆H₂), 7.48 (s, 1H, HC=N), 6.94 (m, 1H, 3/4/5/6-C₆H₄), 6.78 (d, 1H, ⁴*J*(HH) 2.4 Hz, 6-C ₆H₂), 6.70 (d, 1H, ³*J*(HH) 4.0 Hz, 3/4/5/6-C₆H₄), 6.70 (d, 1H, ³*J*(HH) 4.0 Hz, 3/4/5/6-C₆H₄), 3.32 (s, 3H, OCH₃), 1.66 (s, 9H, 3-C(C H₃)₃), 1.30 (s, 9H, 5-C(CH₃)₃), 0.31 (s, 18H, N(Si(CH₃)₃)₂). ¹³C-NMR: δ 167.58 (HC=N), 163.79 (1-C₆H₂), 130.22 (6-C₆H₄), 142.75 (3-C₆H₂), 138.05 (5-C₆H₂), 137.92 (2-C₆H₂), 131.85 (4-C₆H₂), 130.22 (6-C₆H₂), 128.03,123.57, 121.90, 111.53 (3/4/5/6-C₆H₄), 120.48 (1-C₆H₄), 55.03 (OCH₃), 35.50 (3-C(CH₃)₃), 34.06 (5-C(CH₃)₂), 31.47 (5-C(CH₃)₃), 30.15 (3-C(CH₃)₃), 6.04 (N(Si(CH₃)₃)₂). ¹¹⁹Sn-NMR (C₆D₆): δ -149.91.

General Polymerization Procedure.

To an ampoule charged with *rac*-lactide (0.4036 g, 2.80 mmol) and the tin complex (0.0028 mmol), was added toluene (10 ml). The reaction was stirred at 60 °C and samples were taken at pre-selected reaction times. The reaction was quenched with 1 drop of methanol and the conversion was determined by ¹H-NMR spectroscopy. After the solvent was removed under reduced pressure the residue was dissolved in a small amount of chloroform and the polymer then precipitated by addition of excess cold acidic methanol. After drying *in vacuo* for 18 hr, the molecular weight and PDI were determined by gel permeation chromatography.

References

- 1. Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; White, A. J. P.; Williams,
- D.J. Dalton Trans., 2002, 415-422.
- 2. Foley, P.; Zeldin, M. Inorg. Chem., 1975, 14, 2264.

Fig. S1. 2D-HMBC NMR spectrum of **3a** (400 MHz, 298 K, C_6D_6) showing the coupling between the NMe₂ protons and the saturated carbon centre (formerly the imino- C_{α}).

Fig. S2. ¹H NMR spectra (250MHz, 298 K, C₆D₆) of the reaction between **1a** and 10 equivalents *rac*-lactide after (a) 15 mins and (b) 40 hr at room temperature showing the regeneration of imine resonances (s = solvent, * = free ligand).

Fig. S3. ¹H / ¹³C HETCOR spectrum (400MHz, 298K, C_6D_6) of the reaction between **1a** and *rac*-LA (10 eq.) showing correlation of the regenerated imine resonances (* = free ligand).

Fig. S4. ¹H NMR spectra (250MHz, 298K, C_6D_6) of the reactions between (a) **1a'** and 10 equivalents Me₂NH and (b) **1a** and 10 equivalents of Et₂NH.

Fig. S5. Plots of $\ln\{[LA]_0/[LA]_t\}$ as a function of time for polymerization of *rac*-LA initiated by **1a-3a** ([LA]/[Sn]=100, [LA]=0.28 M/L, toluene, 60 °C).

Initiators	Time	Conversion ^b	$M_{ m n}^{\ c}$	PDI^{c}	k _{app}
	(min)	(%)			(\min^{-1})
1 a	15	22	4 500	1.09	0.0236
	45	58	12 800	1.09	
	60	71	14 900	1.12	
	120	91	18 600	1.29	
2a	15	17	5 010	1.09	0.0263
	50	64	14 500	1.15	
	70	81	16 000	1.20	
	120	95	19 100	1.27	
3 a	20	22	7 200	1.06	0.0284
	40	60	11 100	1.18	
	60	80	15 700	1.19	
	110	94	20 400	1.25	

Table 1 Polymerization data for *rac*-lactide polymerizations initiated by 1a-3a^a.

^{*a*} Polymerisations carried out at 60 °C in toluene; [LA]:[Sn] = 100:1; [LA] = 0.28 M. ^{*b*} Determined by ¹H-NMR, integration of methine resonances of LA and PLA (CDCl3, 250 MHz). ^{*c*} Determined by gel permeation chromatography, calibrated with PS standards in CHCl₃.

Fig. S6 Plots of PLA M_n as a function of conversion for polymerization of *rac*-LA initiated by **1a-3a** ([LA]/[Sn]=100, [LA]=0.28 M/L, toluene, 60 °C; _ = calculated M_n , _ = observed M_n as measured using gel permeation chromatography).

Fig. S7. ¹H-NMR spectrum (250 MHz, 298 K, CDCl₃) of PLA prepared from polymerization of *rac*-LA initiated by **3a** at 94 % conversion showing resonances for the amide chain termini ([LA]/[Sn]=100, [LA]=0.28 M/L, toluene, 60 °C).

Fig. S8. MALDI-TOF mass spectrum of PLA prepared from polymerization of *rac*-LA initiated by **3a** at 95% conversion ([LA]/[Sn]=20, [LA]=0.28 M/L, toluene, 60 °C; spectrum recorded in reflection mode using 2,5-dihydroxybenzoic acid (DHBA) as the matrix). The presence of methoxy-end capped signals (labelled B) arise from transesterification following termination of the polymerization by the addition of methanol.

Fig. S9. Homonuclear decoupled ¹H-NMR spectrum (500 MHz, 298 K, CDCl₃) of the methine region of PLA prepared from polymerization of *rac*-LA initiated by **3a** at 94% conversion ([LA]/[Sn]=100, [LA]=0.28 M/L, toluene, 60 °C).

Fig. S10. Molecular structure of **3a** (70% probability ellipsoids). Hydrogen atoms omitted for clarity.

Crystal data and structure refinement for **3a**.

Identification code	vg12	
Chemical formula	$C_{35}H_{41}N_2OPSn$	
Formula weight	655.36	
Temperature	150(2) K	
Radiation, wavelength	ΜοΚα, 0.71073 _	
Crystal system, space group	triclinic, $P\overline{1}$	
Unit cell parameters	a = 10.1598(3) Å	$\alpha = 75.595(2)^{\circ}$
	b = 11.7014(4) Å	$\beta = 78.587(2)^{\circ}$
	c = 15.3667(5) Å	$\gamma = 67.167(2)^{\circ}$
Cell volume	1620.22(9) Å ³	
Z	2	
Calculated density	1.343 g/cm^3	

Absorption coefficient µ F(000) Crystal colour and size Reflections for cell refinement Data collection method θ range for data collection Index ranges Completeness to $\theta = 26.00$ Intensity decay Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Weighting parameters a, b Data / restraints / parameters Final R indices $[F^2 > 2\sigma]$ R indices (all data) Goodness-of-fit on F² Largest and mean shift/su Largest diff. peak and hole

 0.867 mm^{-1} 676 Colourless, $0.50 \times 0.35 \times 0.22 \text{ mm}^3$ 12153 (θ range 2.19 to 28.95°) Bruker SMART 1000 CCD diffractometer ω rotation with narrow frames 1.92 to 28.95° h -13 to 13, k -15 to 15, l -19 to 20 99.1 % 0% 14462 7502 ($R_{int} = 0.0088$) 7104 semi-empirical from equivalents 0.671 and 0.832 direct methods Full-matrix least-squares on F² 0.0233, 0.7493 7502 / 0 / 369 R1 = 0.0190, wR2 = 0.0484R1 = 0.0206, wR2 = 0.04931.044 0.001 and 0.000 0.472 and -0.402 e $^{-3}$