Supporting Information

In situ Disorder-Order Transformation in Synthetic Gallosilicate Zeolites with the NAT Topology

Suk Bong Hong,^{*,†} Song-Ho Lee,[†] Chae-Ho Shin,[‡] Ae Ja Woo,[§] Luis J. Alvarez,[□] Claudio M. Zicovich-Wilson,[⊥] and Miguel A. Camblor[#]

[†]Division of Chemical Engineering, Hanbat National University, Taejon 305-719, Korea, [‡]Department of Chemical Engineering, Chungbuk National University, Chungbuk 361-763, Korea, [§]Department of Science Education, Ewha Womans University, Seoul 120-750, Korea, ^IInstituto de Matématicas (U. Cuernavaca), Universidad Nacional Autónoma de Mexico, 62210 Cuernavaca (Mor), Mexico, ¹Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca (Mor), Mexico, and [#]Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas Campus Cantoblanco, 28049 Madrid, Spain

Table 1S. Fractional Atomic Coordinates of the Asymmetric Units of the Four Optimized Periodic Models Considered for *Ab Initio* Calculations (ω_1 , τ_1 , τ_2 , τ_3 ; See Table 1 and Text). In All Cases, the Primitive Cell Choice, with Parameters: a = b = c = 9.90788 Å, $\alpha = \beta = 96.4919^{\circ}$, and $\gamma = 140.7032^{\circ}$, Has Been Considered.

Model ω_1			
atom	x	у	Z
Si	-0.0607	0.0112	0.1981
Ga	-0.1842	-0.4955	-0.4342
Si	-0.4885	-0.4885	0.0000
0	0.1663	0.1027	0.2022
0	-0.4380	0.2621	0.4077
0	0.3626	-0.0152	0.1307
0	-0.2819	-0.2644	0.1442
0	0.0672	-0.2860	-0.4830
Na	0.3605	0.2879	0.4404

Model τ_1

atom	x	у	Z.
Si	-0.0627	0.0101	0.1892
Ga	-0.2046	0.4973	-0.4386
Si	-0.5000	-0.5000	0.0000
Si	0.2500	-0.2500	-0.5000
0	0.1032	0.0088	0.1764
0	-0.4666	0.2450	0.4209
0	0.3536	-0.0035	0.1121
0	-0.3267	-0.2548	0.1216
0	0.0453	-0.3012	0.4975
Na	0.1799	0.0008	0.4235
) Na	0.0453 0.1799	-0.3012 0.0008	0.4975 0.4235

Model	τ_2
-------	----------

atom	X	у	Z
Ga	-0.0812	0.0099	0.1766
Si	-0.1655	-0.2605	-0.1737
Si	-0.2434	0.1690	-0.3261
Si	0.4995	0.0829	0.3107
Si	0.4931	0.4874	-0.0026
0	0.0983	0.0063	0.1760
0	-0.1644	-0.0932	-0.1561
0	-0.2673	0.3151	-0.3011
0	-0.3412	0.0733	0.2991
0	0.3750	0.0216	0.1466
0	-0.1250	0.2010	-0.1740
0	-0.2233	-0.3668	-0.3380
0	-0.3816	-0.2852	0.1104
0	-0.3622	-0.4636	-0.1080
0	-0.4960	-0.0997	-0.4035
0	0.3044	-0.1225	0.3735
Na	0.3460	-0.3923	0.2194

Model τ_3			
atom	X	у	Z
Si	-0.0880	0.0004	0.1779
Si	-0.1554	-0.4782	-0.4148
Si	-0.2209	0.2023	-0.3188
Si	0.2356	0.0534	0.0781
Ga	0.4852	0.4852	0.0000
Ga	0.2715	-0.2285	-0.5000
0	0.1411	0.0952	0.1778
0	-0.3901	0.2880	0.4549
0	-0.1026	0.4473	-0.2997
0	0.0124	-0.1896	-0.0503
0	0.3772	0.0503	0.1742
0	-0.2034	-0.3718	-0.3329
0	-0.3088	-0.2654	0.1581
0	0.0564	-0.2850	-0.4678
0	-0.4873	0.0176	-0.3422
0	0.4012	0.2433	0.0007
Na	0.4213	0.1567	-0.2275

				ć										
Si multiolicity	average	structural		²⁹ Si	δ (ppm	(average	structural		29 Si	δ (ppm)		
site mumpucuy	$\angle T$ -0- T^a	unit	$\delta_{\mathrm{prel}}{}^{\mathrm{b,c}}$	$\delta_{\mathrm{pre2}}^{\mathrm{c,d}}$	$\delta_{ m obs}{}^{ m e}$	$\Delta \delta_1^{\rm f}$	$\Delta \delta_2{}^{ m g}$	∠T-0-T ^h	unit	$\delta_{ m pre1}^{ m b,c}$	$\delta_{ m pre2}^{ m c,d}$	$\delta_{ m obs}{}^{ m e}$	$\Delta \delta_1^{\rm f}$	$\Delta \delta_2{}^{ m g}$
Si_2 8	142.5	$Si_2(4AI)$	-85.4	-86.3				142.4	$Si_2(4AI)$	-85.3	-86.2			
		$Si_2(3AI)$	-91.0	-91.3					$Si_2(3AI)$	-90.9	-91.2			
		$Si_2(2AI)$	-96.6	-96.3	-95.2	1.4	1.1		$Si_2(2AI)$	-96.5	-96.2	-95.2	1.3	1.0
		$Si_2(1AI)$	-102.2	-101.3					$Si_2(1AI)$	-102.1	-101.2			
		$Si_2(0AI)$	-107.8	-106.3					$Si_2(0AI)$	-107.7	-106.2			
Si_1 16	136.8	$Si_1(4AI)$	-81.1	-81.6				137.0	$Si_1(4AI)$	-81.3	-81.8			
		$Si_1(3AI)$	-86.7	-86.6	-87.6	-1.1	-1.0		$Si_1(3AI)$	-86.9	-86.8	-87.6	-0.7	-0.8
		$Si_1(2AI)$	-92.3	-91.6					$Si_1(2AI)$	-92.5	-91.8			
		$Si_1(1AI)$	-97.9	-96.6					$Si_1(1AI)$	-98.1	-96.8			
		$Si_1(0AI)$	-103.5	-101.6					$Si_1(0AI)$	-103.7	-101.8			
^a Average T-O-T	angles in e	degrees fron	the crys	tallograp	ohic data	reporte	ed by A	rtioli et al.	(Acta Crys	t. 1984, (C40, 1658	3). ^b Pred	icted cl	nemical
shifts from the <i>i</i>	iverage T-(D-T angles u	sing the e	equation	of Ram	das and	Klinow	skii (Natui	e 1984, 30	8, 521). ^c	The T' ₁ s	ites with	a mult	iplicity
of 16 are assum	ied to be e	xclusively o	ccupied b	y Al atc	oms. ^d Pr	edicted	chemic:	al shifts fro	om the aver	age T-O	-T angles	using t	he equa	tion of

vs the Isotopic Chemical Shifts Predicted from the Average T-O-T Angles Taken in the Crystallographic Data for Two Table 2S. Experimental ²⁹Si NMR Chemical Shifts of a Completely Ordered Aluminosilicate Natrolite in the Orthorhombic Symmetry

Radeglia and Engelhardt (*Chem. Phys. Lett.* **1985**, *114*, 28). ^eExperimental chemical shifts reported by Neuhoff et al. (*Am. Mineral.* **2002**, *87*, 1307). ^f $\Delta \delta_1 = \delta_{obs} - \delta_{pre1}$. ^g $\Delta \delta_2 = \delta_{obs} - \delta_{pre2}$. ^hAverage T-O-T angles in degrees from the crystallographic data reported by Meneghinello et al. (*Microporous Mesoporous Mater.* **1999**, 30, 89). ľ

L	
Z	
losilicate	AR
Gal	Z
Six	IAS
the	Sil
m 1	<mark>y</mark> 29
fre	ed b
nces	ulat
onal	alcı
Res	OS C
R	Zati
È	ja F
[AS	Si/C
Ξ	eir
29 S	$\mathbf{T}\mathbf{h}$
the	and
$\mathbf{0f}$	NS :
ties	3 da
ensi	3-2
Int	for
ive	S
elat	150
d R	l at
an	ared
hifts	rep
l SI	ls P ₁
nica	irial
hen	Iate
S. C	Z
63	
Tabl	

line ID ^a	NAT-1	50-3	NAT-	150-5	NAT-1	50-7	NAT-1	50-10	NAT-1	50-14	NAT-15	50-23
	ð, ppm	I, %	ð, ppm	I, %	ð, ppm	<i>I</i> , %	δ, ppm	I, %	ð, ppm	I, %	ð, ppm	I, %
A	-74.3	1.6	-74.5	1.6	-74.3	1.5	-74.3	0.7	-74.3	0.7	-74.3	1.1
В	-79.1	10.7	-78.9	8.7	-78.0	9.5	-78.7	5.7	-78.6	2.8	-78.6	1.9
C	-82.0	4.4	-81.9	3.7	-81.7	7.8	-82.0	5.0	-82.0	4.2	-82.0	5.2
D	-84.7	30.0	-84.6	37.0	-83.7	35.4	-84.3	42.6	-84.3	55.5	-84.3	53.5
Щ	-88.3	15.3	-88.1	11.7	-87.4	12.1	-87.6	11.3	-87.0	5.8	-87.0	6.7
ц	-91.0	11.0	-91.0	7.4	-91.0	7.4	-91.0	7.2	-91.0	4.2	-91.0	4.8
IJ	-94.2	14.9	-94.4	17.0	-93.7	16.8	-94.1	20.1	-94.1	23.0	-94.1	23.6
Н	-98.4	8.5	-98.4	7.6	-98.0	7.5	-98.0	5.6	-97.5	2.8	-97.5	1.9
I	-101.5	3.6	-101.5	5.3	-101.5	2.0	-101.3	1.8	-101.3	1.0	-101.3	1.3
Si/Gannr.1-42d	1.7	5	1.7	81	1.6	6	I		I		I	
Si/Ganmr, Fdd2 ^c	1.51 (1	1.55)	1.53 (1.58)	1.46 (1.59)	1.49 (1.55)	1.47 (1.57)	1.47 (1	.57)
$I_{\rm D}/I_{\rm G}^{\rm q}$	2.0	-	2.1	8	2.1	6	2.1	2	2.4	1	2.2	L
$Si/Ga_{nmr,D+G}^{e}$	1.5	0	1.4	61	1.4	6	1.4	61	1.4	×	1.4	6
^a Line ID's are	the same as	those give	ven in Figu	re 7 or Ta	ble 3. ^b The 5	Si/Ga ratio	calculated fr	om the tet	ragonal assig	gnments o	f their ²⁹ Si M	AS NMR

NMR data. The values for NAT-150-10, NAT-150-14, and NAT-150-23 were not calculated here, since the XRD patterns of these three materials were not indexable as tetragonal. ^oThe Si/Ga ratio calculated according to the orthorhombic assignments of their NMR data. The values in parentheses are the Si/Ga ratio determined by elemental analysis. ^dThe relative intensity ratio of line D to Line G that are assigned to Si₁(3Ga) and Si₂(2Ga) species in the orthorhombic model, respectively. ^oThe Si/Ga ratio calculated using lines D and G only based on the orthorhombic assumption.

Si/Ga	ordered		disor	dered	
51/0a	1.50	1.50	1.53	1.55	1.58
T_1	0.00	0.44	0.43	0.43	0.43
T'_1	1.00	0.44	0.44	0.43	0.43
T_2	0.00	0.25	0.24	0.23	0.21

Table 4S.Fractional Occupation of Ga in the Different
Nonequivalent T-sites for the Ordered and
Disordered Simulated Structures

n // Si/Go	ordered		disor	dered	
<i>n</i> // SI/Ga	1.50	1.50	1.53	1.55	1.58
0	0.0	1.94	1.95	1.94	1.92
1	0.0	21.53	22.46	23.13	23.90
2	100.0	76.29	75.34	74.67	73.90

 Table 55. Percentages of 4-Rings Composed only of T₁ Sites with nGa

 Atoms for the Ordered and Disordered Simulated Structures^a

^a The very low percentage (< 0.3%) for the presence of 3 Ga atoms per 4-ring in each disordered structure, yielding violations of Loewenstein's rule, is not included.

- Figure 1S. (a) ⁷¹Ga and (b) ²³Na MAS NMR spectra of the NAT-150-3 (bottom) and NAT-150-23 (top) materials recorded at 150 °C. Spinning side bands are marked by asterisks.
- Figure 2S. ²⁹Si MAS NMR spectra of (a) NAT-150-3, (b) NAT-150-5, (c) NAT-150-7, (d) NAT-150-10, (e) NAT-150-14, and (f) NAT-150-23 materials: experimental (top); simulated (middle); deconvoluted components (bottom). The best-simulated spectrum was obtained when the experimental one for each gallosilicate material is deconcoluted into 9 components denoted (from left to right) as lines A-I.
- **Figure 3S**. Si(*n*Ga) populations as a function of the orthorhombic distortion. The populations calculated for the "disordered" model derived by *Monte Carlo* sampling (Si/Ga = 1.58) are shown at $\delta_0 = 0.000$, while those corresponding to the ordered model are arbitrarily depicted at $\delta_0 = 0.029$. The rest of values correspond to the experimental ones obtained from the orthorhombic assignment of the ²⁹Si MAS NMR data. The square, diamond, and circle denote T₁, T₂, and total T (T₁ + T₂) populations, respectively.

Figure 1S

Figure 2S

Figure 3S