The Synthesis of Chiral **b**³-Aminoxy Peptides

Dan Yang, *, $^{*, \dagger}$, ‡ Yu-Hui Zhang, † Bing Li, † and Dan-Wei Zhang ‡

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China and Department of Chemistry, Fudan University, Shanghai 200433, China

Supporting Information

Contents

1. Preparation and Characterization Data for Compounds 1-46	.S2	-S18
2. Determination of Optical Purity of 13 and 14 by ¹ H NMR Spectroscopy	.S19	-S22
3. Determination of Enantiomeric Excess of 27 by HPLC		
4. ¹ H and ¹³ C NMR Spectral Copies of New Compounds	.S24	\$87

General methods. All reagents and solvents for reactions were of analytical grade and were dried and distilled if necessary. ¹H and ¹³C NMR spectra were recorded at 300 or 400 MHz for protons and at 75.5 or 100.0 MHz for carbons on DPX 300 or 400 Fourier Transform Spectrometers. Infrared spectra were obtained on a FT-IR spectrometer. Melting points were determined with a microscope and were uncorrected. Optical rotations were measured on a polarmeter. Mass spectra were recorded with a mass spectrometer for both low resolution and high-resolution mass spectra.

Compounds 1–5 were prepared according to our previous work.¹

Characterization data for 1. The NMR data is identical to that previously reported.¹

Characterization data for 2. A white solid; m.p. 62–64 °C; $[\alpha]^{20}_{D} = +70.9^{\circ}$ (*c* 1.02, CHC_b); ¹H NMR (300 MHz, CDC_b) δ 7.86 (s, 1H), 7.77 (d, *J* = 7.4 Hz, 2H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 2H), 4.46 (d, *J* = 7.0 Hz, 2H), 4.33 (dd, *J* = 4.2, 7.4 Hz, 1H), 4.25 (t, *J* = 7.0 Hz, 1H), 1.94–1.84 (m, 1H), 1.74–1.64 (m, 2H), 1.50 (s, 9H), 0.99 (d, *J* = 6.7 Hz, 3H), 0.95 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (67.94 MHz, CDC_b) δ 171.4, 156.8, 143.5, 141.3, 127.8, 127.1, 125.1, 120.0, 82.8, 82.2, 67.6, 46.9, 39.8, 28.1, 24.6, 23.1, 21.8; IR (CH₂CL₂) 3379 (br, N–H), 1737 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m/z* 425 (M⁺, 1), 179 (30), 178 (100); HRMS (EI, 20 eV) calcd for C₂₅H₃₁NO₅ (M⁺) 425.2202, found 425.2202.

Characterization data for 3. A white solid; m.p. 78–80 °C; $[\alpha]^{20}{}_{D} = +64.1^{\circ}$ (*c* 1.02, CHCb); ¹H NMR (300 MHz, CDCb) δ 7.91 (s, 1H), 7.37–7.29 (m, 5H), 5.19 (d, J = 12.1 Hz, 1H), 5.13 (d, J = 12.1 Hz, 1H), 4.31 (dd, J = 4.0, 9.6 Hz, 1H), 1.96–1.85 (m, 1H), 1.70–1.52 (m, 2H), 1.47 (s, 9H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H); ¹³C NMR (75.47 MHz, CDCb) δ 171.4, 156.9, 135.5, 128.6, 128.4, 128.4, 82.8, 82.1, 67.5, 39.8, 28.1, 24.6, 23.1, 21.6; IR (CH₂Cb) 3378 (br, N–H), 1755 (C=O), 1735 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m/z* 337 (M⁺, 6), 107 (20), 106 (16), 91 (100); HRMS (EI, 20 eV) calcd for C₁₈H₂₇NO₅ (M⁺) 337.1889, found 337.1891.

Characterization data for 4. A colorless liquid; $[\alpha]^{20}{}_{D} = +68.9^{\circ}$ (*c* 1.01, CHC_b); ¹H NMR (300 MHz, CDC_b) δ 7.86 (s, 1H), 7.41–7.33 (m, 5H), 5.22 (d, *J* = 12.1 Hz, 1H), 5.17 (d, *J* = 12.1 Hz, 1H), 4.14 (d, *J* = 9.6 Hz, 1H), 2.21–2.10 (m, 1H), 1.51 (s, 9H), 1.08 (d, *J* = 7.0 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (75.47 MHz, CDC_b) δ 170.4, 156.9, 135.6, 128.6, 128.4, 128.3, 88.6, 82.0, 67.4, 30.3, 28.1, 18.6, 17.3; IR (CH₂Cl₂) 3380 (br, N–H), 1732 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 324 (M⁺+1, 27), 314 (36), 268 (81), 224 (13), 106 (27), 91 (100); HRMS (EI, 20 eV) calcd for C₁₇H₂₅NO₅ (M⁺) 323.1733, found 323.1725.

Characterization data for 5. A colorless oil; $[\alpha]^{20}{}_{D} = +100.9^{\circ}$ (*c* 1.10, CH₂Cl₂); ¹H NMR (270 MHz, CDCl₃) δ 8.00 (s, 1H), 4.25–4.13 (m, 2H), 4.09 (d, *J* = 4.9 Hz, 1H), 2.19–2.07 (m, 1H), 1.50 (s, 9H), 1.28 (t, *J* = 6.9 Hz. 3H), 1.07 (d, *J* = 6.9 Hz, 3H), 0.99 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (67.80 MHz, CDCl₃) δ 170.2, 157.2, 88.5, 81.8, 61.7, 30.3, 28.1, 18.6, 17.3, 14.4; IR (CH₂Cl₂) 3382 (br, N–H), 1733 (C=O) cm⁻¹; FABMS 262 (M⁺ + 1).

Preparation of 6. A solution of compound **1** (500 mg, 1.50 mmol) in dichloromethane (4 mL) in an ice bath was treated with trifluroacetic acid (4 mL). After stirring at room temperature for 1 h, the reaction mixture was concentrated under vacuum, and azeotroped with toluene. Then dry THF (10 mL) was added and the solution was cooled to -25 °C under N₂. Et₃N (229 µL, 1.65 mmol) and ethyl chloroformate (158 µL, 1.65 mmol) were added subsequently with stirring while the temperature was kept below -20 °C. After 15 min, a freshly prepared diazomethane solution in dry ether was added until the yellow color of the solution persisted. The mixture was allowed to warm up to 0 °C and stirring was continued for 3 h. Acidification with dilute acetic acid or citric acid and addition of an equal volume of ether were followed by washing the organic layer with water, saturated NaHCO₃ and brine. Drying over Na₂SO₄ and evaporation yielded the crude diazoketone, which was further purified by flash chromatography (30% EtOAc in *n*-Hexane) to give a light yellow solid **6** (312 mg, 69% yield). M.p. 70–71 °C; $[\alpha]^{20}_{D} = +$ 113.5° (c 1.12, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.85–7.68 (m, 4H), 6.44 (s, 1H), 4.84 (dd, *J* = 4.2, 9.1 Hz, 1H), 2.12–2.01 (m, 1H), 1.90–1.80 (m, 1H), 1.70–1.59 (m, 1H), 1.09 (d, *J* = 6.5 Hz, 3H), 1.00 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃) δ 194.3, 164.0, 135.2, 129.1, 124.1, 89.8, 54.3, 41.6, 24.9, 23.5, 22.2; IR (CH₂Cl₂) 2113 (CH=N₂), 1793 (C=O), 1737 (C=O) cm⁻¹; FABMS 302 (M⁺ + 1).

Preparation of 7. Following the procedure for the preparation of **6**, **7** was obtained from **2** as a light yellow solid (63% yield). M.p. 113–114 °C; $[α]^{20}_D = +99.3^\circ$ (*c* 1.27, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.74 (s, 1H), 7.56 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 5.70 (s, 1H), 4.51 (d, *J* = 6.7 Hz, 2H), 4.31 (dd, *J* = 6.8, 9.7 Hz, 1H), 4.22 (t, *J* = 6.6 Hz, 1H), 1.93–1.84 (m, 1H), 1.64–1.59 (m, 1H), 1.49–1.40 (m, 1H), 0.96 (d, *J* = 7.0 Hz, 3H), 0.94 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃) δ 194.6, 157.1, 143.3, 141.3, 127.9, 127.2, 124.9, 120.1, 87.8, 67.6, 53.5, 46.9, 40.3, 24.6, 23.2, 21.9; IR (CH₂Cl₂) 3366 (br, N–H), 1758 (C=O), 1733 (C=O) cm⁻¹; FABMS 394 (M⁺ + 1).

Preparation of 8. Following the procedure for the preparation of 6, 8 was obtained from 3 as a light yellow solid (58% yield). M.p. 69–70 °C; $[\alpha]^{20}{}_{D} = +195.4^{\circ}$ (*c* 1.01, CHC_b); ¹H NMR (300 MHz, CDC_b) δ 7.76 (s, 1H), 7.39–7.33 (m, 5H), 5.76 (s, 1H), 5.17 (s, 2H), 4.32 (dd, *J* = 4.0, 9.7 Hz, 1H), 1.91–1.84 (m, 1H), 1.66–1.58 (m, 1H), 1.48–1.40 (m, 1H), 0.95 (d, *J* = 2.8 Hz, 3H), 0.92 (d, *J* = 2.9 Hz, 3H); ¹³C NMR (75.47 MHz, CDC_b) δ 194.8, 157.2, 135.2, 128.7, 128.6,

128.4, 87.9, 67.8, 53.2, 40.4, 24.6, 23.1, 21.7; IR (CH₂Cb) 3374 (br, N–H), 2112 (CH=N₂), 1757 (C=O) cm⁻¹; FABMS 306 (M⁺ + 1).

Preparation of 9. Following the procedure for the preparation of **6**, **9** was obtained from **4** as a light yellow oil (68% yield). $[α]^{20}_{D} = + 86.3^{\circ}$ (*c* 1.01, CHCl₃); ¹H NMR (300 MHz, CDCl₃)δ 7.69 (s, 1H), 7.38–7.33 (m, 5H), 5.79 (s, 1H), 5.16 (s, 2H), 4.04 (d, *J* = 5.6 Hz, 1H), 2.08–2.01 (m, 1H), 1.02 (d, *J* = 6.7 Hz, 3H), 0.99 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃)δ 194.2, 157.2, 135.3,128.6, 128.6, 128.4, 94.1, 67.8, 54.1, 30.8, 18.8, 17.6; IR (CH₂Cl₂) 3367 (br, N–H), 2112 (CH=N₂), 1756 (C=O) cm⁻¹; APCI-MS 291 (M⁺).

Preparation of 10. Following the procedure for the preparation of **6**, **10** was obtained from **5** as a light yellow liquid (65% yield). $[α]^{20}_{D} = +144.4^{\circ}$ (*c* 0.99, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (s, 1H), 5.84 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.05 (d, *J* = 5.6 Hz, 1H), 2.09–2.03 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 6.7 Hz, 6H); ¹³C NMR (75.47 MHz, CDCl₃) δ 194.4, 157.5, 94.0, 62.2, 54.1, 30.8, 18.8, 17.6, 14.4; IR (CH₂Cl₂) 3377 (br, N-H), 2112 (CH=N₂), 1756 (C=O), 1725 (C=O) cm⁻¹.

Preparation of 12. A solution of diazoketone **6** (300 mg, 1.00 mmol) in THF (10 mL) and H₂O (1 mL) at -20 °C was added a solution of CF₃COOAg (24 mg, 0.11 mmol) in Et₃N (402 µL, 2.9 mmol) under N₂ with exclusion of light. After 3 h, ether was added and the mixture was extracted with sat. NaHCO₃ solution. The organic phase was dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography (30% EtOAc in *n*-Hexane) to give **12** as a white solid (169 mg, 69% yield). M.p. 87–88 °C; ¹H NMR (300 MHz, CDC[§]) δ 7.89 (dd, *J* = 3.2, 5.5 Hz, 2H), 7.79 (dd, *J* = 3.2, 5.4 Hz, 2H), 7.30 (dt, *J* = 7.5, 15.6 Hz, 1H), 6.08 (d, *J* = 15.7 Hz, 1H), 2.22 (t, *J* = 6.9 Hz, 2H), 1.89–1.80 (m, 1H), 0.97 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (75.47 MHz,

CDCb) δ 161.3, 161.1, 154.0, 133.7, 127.9, 122.9, 115.4, 41.1, 26.7, 21.4; IR (CH₂Cb₂) 1732 (C=O), 1650 (C=C) cm⁻¹; LRMS (EI, 70 eV) *m/z* 247 (M⁺+2, 2), 163 (12), 111 (100); HRMS (EI, 70 eV) calcd for C₁₄H₁₅NO₃ (M⁺) 245.1052, found 245.1061.

Preparation of 13. A solution of diazoketone **8** (285 mg, 0.93 mmol) in THF (9 mL) was stirred at -78 °C, then a solution of PhCOOAg (23 mg, 0.10 mmol) in Et₃N (387 μL, 2.79 mmol) was added under N₂ with exclusion of light. After 24 h, ether was added to dilute the solution, which was then extracted with sat. NaHCO₃ solution. The organic phase was dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography (30% EtOAc in *n*-Hexane) to give **13** as a white solid (176 mg, 68% yield). M.p. 79–80 °C; $[\alpha]^{20}_{D} = +19.1^{\circ}$ (*c* 0.99, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.46–7.33 (m, 5H), 5.34 (s, 2H), 4.65–4.58 (m, 1H), 2.90 (dd, *J* = 6.6, 16.7 Hz, 1H), 2.63 (dd, *J* = 9.8, 16.7 Hz, 1H), 1.84–1.81 (m, 2H), 1.58–1.50 (m, 1H), 0.96 (d, *J* = 6.0 Hz, 3H),), 0.94 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 167.7, 147.8, 134.7, 128.6, 128.5, 78.0, 68.7, 41.9, 39.9, 24.8, 22.7, 22.5; IR (CH₂Cl₂) 1793 (C=O), 1746 (C=O) cm⁻¹; FABMS 278 (M⁺ + 1); HRMS (EI, 20 eV) calcd for C₁₅H₁₉NO₄ (M⁺) 277.1314, found 277.1285.

Preparation of 14. Following the procedure for the preparation of **13**, **14** was obtained from **9** as a white solid (64% yield). M.p. 70–71 °C; $[\alpha]^{20}_{D} = +21.6^{\circ}$ (*c* 0.99, CHC_β); ¹H NMR (300 MHz, CDCl₃) δ 7.46–7.31 (m, 5H), 5.34 (s, 2H), 4.27 (dt, *J* = 7.2, 10.0 Hz, 1H), 2.82 (dd, *J* = 7.0, 16.8 Hz, 1H), 2.72 (dd, *J* = 10.0, 16.8 Hz, 1H), 2.04–1.93 (m, 1H), 1.04 (d, *J* = 6.7 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (67.94 MHz, CDC_β) δ 167.7, 147.7, 134.7, 128.6, 128.4, 83.8, 68.7, 37.1, 31.1, 18.2, 17.5; IR (CH₂Cl₂) 1791 (C=O), 1746 (C=O) cm⁻¹; FABMS 264 (M⁺ + 1); HRMS (EI, 20 eV) calcd for C₁₄H₁₇NO₄ (M⁺) 263.1158, found 263.1181.

Preparation of 15. Following the procedure for the preparation of **13**, **15** was obtained from **10** as a colorless liquid (98% yield). $[\alpha]^{20}{}_{D} = +14.3^{\circ}$ (c 1.50, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 4.37 (q, J = 7.1 Hz, 2H), 4.28 (dt, J = 7.2, 10.0 Hz, 1H), 2.84 (dd, J = 7.0, 16.8 Hz, 1H), 2.73 (dd, J = 10.0, 16.9 Hz, 1H), 2.06–1.94 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H); ¹³C NMR (67.80 MHz, CDCl₃) δ 167.4, 147.5, 83.6, 63.5, 37.0, 30.9, 18.1, 17.4, 14.2; IR (CH₂Cl₂) 1789 (C=O), 1747 (C=O) cm⁻¹; LRMS (EI, 20 eV) m/z 201 (M⁺, 2), 129 (50), 97 (29), 86 (100); HRMS (EI, 20 eV) calcd for C₉H₁₅NO₄ (M⁺) 201.1001, found 201.0977.

Preparation of 16. To a solution of diazoketone **7** (112 mg, 0.29 mmol) and *iso*-butylamine (42.7 μL, 0.43 mmol) in THF (8 mL) at -78 °C were added PhCOOAg (20 mg, 0.09 mmol) and Et₃N (115 μL, 0.83 mmol) under N₂ with exclusion of light. After 3 h, ether was added to dilute the solution, which was then extracted with sat. NaHCO₃ solution. The organic phase was dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (30% EtOAc in *n*-Hexane) to give **16** as a colorless oil (74 mg, 58% yield). $[\alpha]^{20}_{D} = + 21.2^{\circ}$ (*c* 1.00, CHCI₃); ¹H NMR (270 MHz, CDCI₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.68 (s, 1H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.42 (s, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 4.53 (dd, *J* = 6.8, 10.7 Hz, 1H), 4.50 (dd, *J* = 6.7, 10.7 Hz, 1H), 4.23 (t, *J* = 6.6 Hz, 1H), 4.10–4.06 (m, 1H), 3.13 (dt, *J* = 6.7, 15.2 Hz, 1H), 3.04 (dt, *J* = 6.7, 13.0 Hz, 1H), 2.55 (dd, *J* = 2.8, 15.2 Hz, 1H), 2.34 (dd, *J* = 6.7, 15.2 Hz, 1H), 1.84–1.80 (m, 1H), 1.79–1.70 (m, 1H), 1.60–1.55 (m, 1H), 1.38–1.32 (m, 1H), 0.92 (d, *J* = 6.6 Hz, 3H), 0.91 (d, *J* = 6.7 Hz, 6H), 0.89 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (125.77 MHz, CDCI₃) δ 170.2, 158.5, 143.4, 143.3, 141.4, 127.9, 127.2, 124.9, 124.9, 120.1, 82.2, 67.7, 47.1, 47.1, 41.1, 40.3, 28.4, 24.8, 22.8, 22.6, 20.2; IR (CH₂CI₂) 3439 (br, N–H), 3350 (br, N–H),

1660 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 438 (M⁺, 1), 184 (34), 179 (19), 178 (100); HRMS (EI, 20 eV) calcd for C₂₆H₃₄N₂O₄ (M⁺) 438.2519, found 438.2521.

Preparation of 17. A solution of **13** (277 mg, 1 mmol), DMAP (134 mg, 1.1 mmol), and *iso*butylamine (152 μL, 1.1 mmol) in THF (10 mL) were refluxed for 6 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (40% EtOAc in *n*–Hexane) to afford compound **17** as a colorless oil (287 mg, 82% yield). $[\alpha]^{20}_{D} = +$ 20.8° (c 1.02, CHCb); ¹H NMR (300 MHz, CDCb) δ 7.83 (s, 1H), 7.59 (s, 1H), 7.39–7.31 (m, 5H), 5.17 (s, 2H), 4.12–4.05 (m, 1H), 3.13 (dt, *J* = 6.5, 13.1 Hz, 1H), 3.02 (dt, *J* = 6.4, 13.0 Hz, 1H), 2.58 (dd, *J* = 2.9, 15.2 Hz, 1H), 2.36 (dd, *J* = 6.7, 15.2 Hz, 1H), 1.89–1.81 (m, 1H), 1.79–1.67 (m, 1H), 1.61 (dt, *J* = 7.7, 14.1 Hz, 1H), 1.34 (ddd, *J* = 1.7, 5.7, 7.4 Hz, 1H), 0.92 (d, *J* = 6.7 Hz, 6H), 0.88 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (75.47 MHz, CDCl₃) δ 170.3, 158.5, 135.3, 128.6, 128.6, 128.4, 82.1, 67.9, 47.0, 41.0, 40.2, 28.3, 24.7, 22.8, 22.5, 20.2; IR (CH₂Cl₂) 3448 (br, N–H), 3354 (br, N–H), 1745 (C=O) cm⁻¹; LRMS (EI, 70 eV) *m/z* 350 (M⁺, 4), 185 (11), 184 (97), 91 (100); HRMS (EI, 70 eV) calcd for C₂₆H₃₄N₂O₄ (M⁺) 350.2206, found 350.2202.

Preparation of 18. A solution of **13** (277 mg, 1 mmol), DMAP (134 mg, 1.1 mmol), and *p*-anisidine (135 mg, 1.1 mmol) in THF (10 mL) was refluxed for 24 h. The resulting solution was diluted with ether, and washed with sat. NH₄Cl and NaCl solution, then the organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (30% EtOAc in *n*-Hexane) to afford compound **18** as a light yellow solid (312 mg, 79%). M.p. 86–87 °C; $[\alpha]^{20}_{D} = + 64.7^{\circ}$ (*c* 1.03, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 9.63 (s, 1H), 7.70 (s, 1H), 7.60 (d, *J* = 9.0 Hz, 2H), 7.44–7.30 (m, 5H), 6.86 (d, *J* = 9.0 Hz, 2H), 5.24 (d, *J* = 12.0 Hz, 1H), 5.19 (d, *J* = 12.0 Hz, 1H), 4.19–4.11 (m, 1H), 3.79 (s, 3H), 2.77 (dd, *J* = 2.5, 15.2 Hz, 1H), 2.45 (dd, *J* = 6.6, 15.1 Hz, 1H), 1.81–1.57 (m, 2H), 1.44–1.35 (m, 1H), 0.91 (d, *J* = 6.6 Hz, 3H),

0.89 (d, J = 6.6 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃) δ 168.4, 159.1, 155.9, 135.0, 132.1, 128.8, 128.7, 128.5, 121.5, 113.9, 82.2, 68.2, 55.5, 41.2, 40.7, 24.8, 22.8, 22.5; IR (CH₂Cl₂) 3321 (br, N–H), 1738 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m/z* 400 (M⁺, 17), 234 (18), 124 (13), 123 (100); HRMS (EI, 20 eV) calcd for C₂₂H₂₈N₂O₅ (M⁺) 400.1998, found 400.2005.

Preparation of 19. Following the procedure for the preparation of **18**, **19** was obtained from **13** as a white solid (70% yield). M.p. 49–50 °C; $[α]^{20}_D = +52.6^\circ$ (*c* 1.00, CHC_B); ¹H NMR (300 MHz, CDC_B) δ 9.64 (s, 1H), 7.71 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.37 (m, 5H), 7.11 (d, *J* = 8.3 Hz, 2H), 5.25 (d, *J* = 12.0 Hz, 2H), 5.20 (d, *J* = 12.0 Hz, 2H), 4.18–4.11 (m, 1H), 2.78 (dd, *J* = 2.6, 15.0 Hz, 1H), 2.45 (dd, *J* = 6.4, 15.1 Hz, 1H), 2.31 (s, 3H), 1.85–1.79 (m, 1H), 1.77–1.61 (m, 1H), 1.59–1.35 (m, 1H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (75.47 MHz, CDC_B) δ 168.5, 159.1, 136.2, 135.1, 133.2, 129.3, 128.7, 128.7, 128.5, 119.9, 82.3, 68.2, 41.3, 40.7, 24.8, 22.8, 22.4, 20.9; IR (CH₂Ch₂) 3321 (br, N–H), 1791 (C=O), 1741 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/z 384 (M⁺, 15), 218 (46), 134 (13), 108 (20), 107 (100); HRMS (EI, 20 eV) calcd for C₂₂H₂₈N₂O₄ (M⁺) 384.2049, found 384.2052.

Preparation of 20. Following the procedure for the preparation of **18**, **20** was obtained from **14** as a colorless oil (65% yield). $[\alpha]^{20}{}_{D} = -16.6^{\circ}$ (*c* 0.18, CHC_b); ¹H NMR (300 MHz, CDC_b) δ 8.07 (s, 1H), 7.64 (s, 1H), 7.58–7.20 (m, 10H), 5.15 (d, *J* = 12.0 Hz, 1H), 5.09 (d, *J* = 12.0 Hz, 1H), 4.52 (dd, *J* = 6.2, 14.8 Hz, 1H), 4.42 (dd, *J* = 5.7, 14.8 Hz, 1H), 3.93 (ddd, *J* = 3.2, 5.4, 8.0 Hz, 1H), 2.50 (dd, *J* = 3.2, 16.3 Hz, 1H), 2.44 (dd, *J* = 7.9, 16.3 Hz, 1H), 2.15–2.02 (m, 1H), 0.93 (d, *J* = 7.4 Hz, 3H), 0.91 (d, *J* = 7.4 Hz, 3H); ¹³C NMR (75.47 MHz, CDC_b) δ 170.7, 158.3, 138.9, 135.2, 128.6, 128.5, 128.4, 127.8, 127.0, 87.8, 67.9, 43.4, 35.9, 29.1, 18.6, 16.5; IR (CH₂Cl₂) 3446 (br, N–H), 1750 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 370 (M⁺, 15), 279 (31), 204 (100); HRMS (EI, 20 eV) calcd for C₂₁H₂₆N₂O₄ (M⁺) 370.1893, found 370.1894.

Preparation of 21. Following the procedure for the preparation of **18**, **21** was obtained from **14** as a white solid (59% yield). M.p. 86–87 °C; $[α]^{20}_{D} = +35.8^{\circ}$ (*c* 0.30, CHC_b); ¹H NMR (300 MHz, CDC_b) δ 9.87 (s, 1H), 7.79 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 2H), 7.45–7.28 (m, 5H), 7.25 (d, *J* = 8.9 Hz, 2H), 5.24 (d, *J* = 12.0 Hz, 1H), 5.20 (d, *J* = 12.0 Hz, 1H), 3.87 (ddd, *J* = 2.1, 7.3, 8.8 Hz, 1H), 2.68 (dd, *J* = 2.2, 16.1 Hz, 1H), 2.51 (dd, *J* = 7.5, 16.1 Hz, 1H), 2.13–2.04 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.94 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (75.47 MHz, CDC_b) δ 169.0, 158.9, 137.4, 134.9, 128.8, 128.7, 128.7, 128.6, 128.5, 121.4, 88.1, 68.3, 37.4, 29.1, 18.9, 16.9; IR (CH₂C₂) 1745 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 390 (M⁺, 6), 224 (42), 127 (69), 91 (100); HRMS (EI, 20 eV) calcd for C₂₀H₂₃N₂O₄Cl (M⁺) 390.1346, found 390.1346.

Preparation of 22. A solution of **15** (100.5 mg, 0.5 mmol), DMAP (67.1 mg, 055 mmol), and ptoluidine (59 mg, 0.55 mmol) in toluene (8 mL) was refluxed for 24 h. The resulting solution was diluted with ether, and washed with sat. NH₄Cl and NaCl solution. Then the organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (40 % EtOAc in *n*-Hexane) to afford compound **22** as a white solid (149 mg, 97 %). M.p. 96–98 $^{\circ}$ C; [α]²⁰_D = + 48.7° (c 0.56, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 9.68 (s, 1H), 7.64 (s, 1H), 7.62 (d, *J* = 8.7 Hz, 2H), 7.16 (d, *J* = 8.3 Hz, 2H), 4.36–4.26 (m, 2H), 3.93 (ddd, *J* = 2.3, 7.4, 9.0 Hz, 1H), 2.74 (dd, *J* = 2.3, 15.9 Hz, 1H), 2.58 (dd, *J* = 7.5, 15.9 Hz, 1H), 2.36 (s, 3H), 2.21–2.10 (m, 1H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.04 (d, *J* = 6.9 Hz, 3H), 1.02 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃) δ 168.8, 158.9, 136.2, 133.2, 129.2, 120.2, 87.1, 62.6, 37.4, 29.1, 20.8, 18.9, 17.1, 14.4; IR (CH₂Cl₂) 3319 (N–H), 3200 (N–H), 33134 (br, N–H), 1789 (C=O), 1739 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/z 308 (M⁺, 14), 203 (31), 107 (100); HRMS (EI, 20 eV) calcd for C₁₆H₂₄N₂O₄ (M⁺) 308.1736, found 308.1739. Preparation of 24. Compound 17 (100 mg, 0.29 mmol) was treated with HBr in acetic acid (40%, 2 mL). After stirring at room temperature for 6 h, the reaction mixture was concentrated under vacuum, and azeotroped with toluene to afford 23 as a colorless oil (57 mg). A solution of 13 (80 mg, 0.29 mmol), DMAP (40 mg, 0.32 mmol), and compound 23 (57 mg, 0.26 mmol) in THF (10 mL) was refluxed for 16 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (50% EtOAc in *n*-Hexane) to afford compound **24** as a colorless oil (107 mg, 72% yield). $[\alpha]^{20}_{D} = +32.9^{\circ}$ (c 1.00, CHCb); ¹H NMR $(270 \text{ MHz}, \text{CDC}_{\text{h}}) \delta 10.91 \text{ (s, 1H)}, 8.54 \text{ (t, } J = 3.9 \text{ Hz}, 1\text{H}), 7.51 \text{ (s, 1H)}, 7.41-7.34 \text{ (m, 5H)},$ 5.22 (d, J = 11.9 Hz, 1H), 5.17 (d, J = 11.9 Hz, 1H), 4.14–4.05 (m, 2H), 3.17 (dt, J = 6.4, 13.1 Hz, 1H), 3.06 (dt, J = 6.3, 13.1 Hz, 1H), 2.60 (dd, J = 2.5, 15.6 Hz, 2H), 2.38 (dd, J = 6.0, 15.5 Hz, 1H), 2.34 (dd, J = 7.0, 15.6 Hz, 1H), 1.90–1.81 (m, 2H), 1.78–1.61 (m, 2H), 1.45–1.32 (m, 3H), 0.96 (d, J = 7.0 Hz, 6H), 0.93 (d, J = 6.7 Hz, 6H), 0.92 (d, J = 6.1 Hz, 6H); ¹³C NMR (67.94 MHz, CDC₃) δ 170.2, 168.7, 159.3, 134.8, 128.9, 128.8, 128.8, 105.1, 81.7, 81.6, 68.5, 47.1, 40.8, 40.3, 37.9, 28.4, 24.8, 24.7, 22.8, 22.6, 22.6, 20.3; IR (CH₂Cl₂) 3442 (br, N-H), 3355 (br, N-H), 3286 (br, N-H), 3233 br, (N-H), 1734 (C=O), 1657 (C=O) cm⁻¹; LRMS (EI, 20 eV) m/z 493 (M⁺, 3), 184 (59), 144 (34), 128 (22), 111 (63), 91 (100); HRMS (EI, 20 eV) calcd for C₂₆H₄₃N₃O₆ (M⁺) 493.3152, found 493.3188.

Preparation of 27. To a suspension of baker's yeast (50 g) in H₂O (40 mL) and petroleum spirit (300 mL) was added *tert*-butyl acetoacetate (1 mL, 6.03 mmol). After kept stirring for 24 h at room temperature, the mixture was filtered and the baker's yeast was washed with EtOAc. The combined organic layer was washed with brine, dried (MgSO₄), concentrated in vacuum and purified by flash column chromatography (10% EtOAc in *n*-Hexane) to give **27** (0.605 g, 63%

yield) as an oil. 93 % ee (determined by HPLC); $[\alpha]^{20}{}_{D} = +36.0^{\circ}$ (*c* 1.08, CHC_b), Lit.² $[\alpha]^{20}{}_{D} = +34.0^{\circ}$ (*c* 1, CHC_b). The NMR data is identical to that previously reported.²

Preparation of 28. The experimental procedure is the same as that previously reported.³

Preparation of 29. To the suspension of LiAlH₄ (2.384 g, 62.82 mmol) in ether (20 mL) was added a solution of compound **27** (5.000 g, 31.41 mmol) in ether (20 mL) at 0 °C. After kept stirring for 10 h at room temperature, the reaction was quenched with H₂O (1.2 mL), followed by 30% NaOH (1.5 mL) after 10 min, and finally 1.2 mL of water. Then the mixture was kept stirring overnight. The reaction mixture was filtered on a MgSO₄ pad. The filtrate was dried with MgSO₄, concentrated in vacuum and purified by flash column chromatography (30% EtOAc in CH₂Cl₂) to give **29** (2.517g, 89% yield) as an oil. $[\alpha]^{20}{}_{D} = + 28.0^{\circ}$ (*c* 1.06, EtOH), Lit.⁴ $[\alpha]^{21}{}_{D} = - 28.7^{\circ}$ (*c* 3.2, EtOH) for the enantiomer of **29**; the NMR data is identical to that previously reported.⁴

Preparation of 30. Following the procedure for the preparation of **29**, **30** was obtained from **28** as an oil (56%). $[\alpha]^{20}{}_{D} = +16.6^{\circ}$ (*c* 1.04, EtOH); the NMR data is identical to that previously reported.⁵

Preparation of 31. To the solution of compound **29** (1.353 g, 15.02 mmol) in DMF (12 mL) were added triphenylmethyl chloride (4.653 g, 16.53 mmol), 4-dimethylaminopyridine (0.185 g, 1.50 mmol), and Et₃N (3.14 mL, 22.53 mmol) at 0 °C. Then the solution was warmed to room temperature and kept stirring for 14 h. The reaction mixture was poured into ice water, extracted with CH₂Ch 3 times. The combined organic layer was washed successively with sat. NH₄Cl, water, and brine, then dried (MgSO₄), concentrated in vacuum and purified by flash column chromatography (10% EtOAc in *n*-Hexane) to give **31** (4.590 g, 92% yield) as a solid. M.p. 63-64 °C; $[\alpha]^{20}{}_{\rm D}$ = + 2.3° (*c* 2.30, EtOH), Lit.⁶ $[\alpha]^{22}{}_{\rm D}$ = - 2.5° (*c* 1.12, EtOH) for the enantiomer

of **31**; LRMS (EI, 20 eV) m/z 332 (M⁺, 5), 259 (41), 243 (95), 241 (100); HRMS (EI, 20 eV) calcd for C₂₃H₂₄O₂ (M⁺) 332.1776, found 332.1779. The NMR data is identical to that previously reported.⁶

Preparation of 32. Following the procedure for the preparation of **31**, **32** was obtained from **30** as an oil (97% yield): $[α]^{20}_{D} = -9.6^{\circ}$ (*c* 0.78, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) d 7.51–7.16 (m, 15H), 3.68–3.64 (m, 1H), 3.41–3.35 (m, 1H), 3.26–3.19 (m, 1H), 2.86 (d, *J* = 2.9 Hz, 1H), 1.79–1.67 (m, 2H), 1.51–1.37 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75.47 MHz, CDCl₃) d 143.8, 128.5, 127.8, 126.9, 87.2, 72.6, 62.6, 36.2, 30.1, 9.9; IR (CH₂Cl₂) 3525 (br, O–H) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 346 (M⁺, 4), 259 (34), 242 (100), 165 (30); HRMS (EI, 20 eV) calcd for C₂₄H₂₆O₂ (M⁺) 346.1933, found 346.1940.

Preparation of 33. To the solution of compound **31** (0.205 g, 0.617 mmol), N-hydroxyphthalimide (0.109 g, 0.648 mmol), and PPh₃ (0.178 g, 0.678 mmol) in THF (5 mL) was added diisopropylazodicarboxylate (0.126 mL, 0.646 mmol) at 0 °C. After 1 h, the reaction was warmed to room temperature and kept stirring overnight, then concentrated in vacuum and purified by flash column chromatography directly (10% EtOAc in *n*-Hexane) to give **33** (0.277 g, 94% yield) as a solid. M.p. 98–99 °C; $[\alpha]^{20}_{D} = + 9.6^{\circ}$ (*c* 0.84, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) d 7.84–7.79 (m, 2H), 7.75–7.71 (m, 2H), 7.44–7.18 (m, 15H), 4.62–4.54 (m, 1H), 3.34 (dt, *J* = 6.2, 9.5 Hz, 1H), 3.20 (dt, *J* = 6.2, 9.5 Hz, 1H), 2.22–2.14 (m, 1H), 1.87–1.79 (m, 1H), 1.29 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) d 164.2, 144.1, 134.3, 128.9, 128.6, 127.7, 126.8, 123.4, 86.6, 82.3, 60.0, 35.4, 18.9; IR (CH₂Cl₂) 1790 (C=O), 1734 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 243 (78), 241 (100), 237 (11), 234 (M⁺–Tr, 23); HRMS (EI, 20 eV) calcd for C₁₂H₁₂O₄ (M⁺–Tr) 234.0766, found 234.0760.

Preparation of 34. Following the procedure for the preparation of **33**, **34** was obtained from **32** as a solid (74% yield). M.p. 56–57 °C; $[\alpha]^{20}_{D} = +7.0^{\circ}$ (*c* 0.73, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) d 7.83–7.79 (m, 2H), 7.75–7.70 (m, 2H), 7.47–7.40 (m, 6H), 7.27–7.17 (m, 9H), 4.37–4.31 (m, 1H), 3.32 (dt, *J* = 6.5, 9.4 Hz, 1H), 3.25 (dt, *J* = 6.6, 9.4 Hz, 1H), 2.11–2.02 (m, 1H), 1.95–1.87 (m, 1H), 1.71–1.62 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) 164.1, 144.1, 134.2, 128.9, 128.5, 127.6, 126.8, 123.2, 86.9, 86.6, 60.2, 32.7, 25.6, 9.1; IR (CH₂Cl₂) 1791 (C=O), 1734 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m/z* 248 (M⁺–Tr, 21), 243 (100), 165 (27); HRMS (EI, 20 eV) calcd for C₁₃H₁₄O₄ (M⁺–Tr) 248.0923, found 248.0919.

Preparation of 35. To the solution of compound **33** (5.621 g, 11.78 mmol) in CH₂Cl₂ (20 mL) was added HCOOH (20 mL). After kept stirring for 14 min at room temperature, the reaction was quenched with brine, and diluted with CH₂Cl₂. The organic layer was washed with brine, sat. NaHCO₃, and brine again until pH 7, dried (MgSO₄), concentrated in vacuum and purified by flash column chromatography (50% EtOAc in *n*-Hexane) to give **35** (2.022g, 73% yield) as a solid. M.p.71–72 °C; $[\alpha]^{20}_{D} = -35.7^{\circ}$ (*c* 0.93, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) d 7.88–7.80 (m, 2H), 7.80–7.74 (m, 2H), 4.55–4.44 (m, 1H), 4.13–4.03 (m, 1H), 3.91–3.75 (m, 1H), 3.08 (t, *J* = 6.6 Hz, 1H), 1.97–1.86 (m, 2H), 1.41 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) d 164.5, 134.6, 128.8, 123.6, 82.6, 58.7, 37.6, 19.7; IR (CH₂Cl₂) 3507 (br, O–H), 1790 (C=O), 1731 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/*z* 236 (M⁺+1, 0.7), 164 (12), 163 (100), 147 (7); HRMS (EI, 20 eV) calcd for C₁₂H₁₃O₄ (M⁺) 235.0845, found 235.0846.

Preparation of 36. Following the procedure for the preparation of 35, 36 was obtained from 34 as a solid (75% yield). M.p. 45–46 °C; $[\alpha]^{20}{}_{D} = -34.2^{\circ}$ (*c* 0.73, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) d 7.87–7.82 (m, 2H), 7.79–7.74 (m, 2H), 4.35–4.29 (m, 1H), 4.13–4.06 (m, 1H), 3.84–3.80 (m, 1H), 3.25 (s, 1H), 1.93–1.76 (m, 4H), 1.01 (t, J = 7.4 Hz, 3H); ¹³C NMR (100

- S14 -

MHz, CDCb) d 164.7, 134.6, 128.8, 123.6, 87.2, 58.7, 34.2, 26.1, 8.7; IR (CH₂Cl₂) 3513 (br, O–H), 1790 (C=O), 1730 (C=O) cm⁻¹; LRMS (EI, 20 eV) m/z 250 (M⁺+1, 2), 163 (100), 162 (70), 132 (6); HRMS (EI, 20 eV) calcd for C₁₃H₁₅O₄ (M⁺) 249.1001, found 249.1004.

Preparation of 39. To the solution of compound **35** (1.911 g, 8.13 mmol) in 6.43 mL of the solvent (CH₃CN/CCl₄/H₂O/actone=1/1/1.4/0.3) were added NaIO₄ (3.476 g, 16.25 mmol) and RuO₂·xH₂O (0.216 g, 1.62 mmol) at room temperature. After kept stirring for 5 h, the reaction was diluted with CH₂Cl₂ and filtered on celite, dried (MgSO₄) and concentrated in vacuum. The crude product **37** was used directly in next step without further purification.

To the stirred solution of compound **37** (8.13 mmol), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (2.026 g, 10.57 mmol) and 1-hydroxy-7-azabenzotriazole (1.438 g, 10.57 mmol) in CH₂Cl₂ (40 mL) was added cyclohexylamine (1.12 mL, 9.76 mmol) at room temperature. After kept stirring overnight, the reaction was diluted with CH₂Cl₂. The organic layer was washed with 5% NaHCO₃ solution and brine, then dried (MgSO₄), concentrated in vacuum and purified by flash column chromatography (25% EtOAc in CH₂Cl₂) to give **39** (1.638g, 61% yield) as a solid. M.p. 182–183 °C; $[\alpha]^{20}_{D} = + 85.8^{\circ}$ (*c* 0.80, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) d 7.88–7.84 (m, 2H), 7.81–7.77 (m, 2H), 7.03 (d, *J* = 7.3 Hz, 1H), 4.74–4.65 (m, 1H), 3.85–3.74 (m, 1H), 2.58 (d, *J* = 5.1 Hz, 2H), 1.93–1.92 (m, 2H), 1.75–1.71 (m, 2H), 1.63–1.52 (m, 1H), 1.45 (d, *J* = 6.4 Hz, 3H), 1.39–1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) d 168.0, 164.5, 134.7, 128.8, 123.7, 81.6, 48.3, 42.1, 32.9, 32.8, 25.5, 24.8, 18.3; IR (CH₂Cl₂) 3428 (br, N–H), 3367 (br, N–H), 1791 (C=O), 1734 (C=O), 1662 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/z 330 (M⁺, 19), 168 (100), 152 (67), 139 (50); HRMS (EI, 20 eV) calcd for C₁₈H₂₂N₂O₄ (M⁺) 330.1580, found 330.1584. **Preparation of 40.** Following the procedure for the preparation of **39**, **40** was obtained from **38** as a solid. A small part of crude product was purified by crystallization in CH₂Cl₂/hexane. Others were used in the next step without further purification. M.p. 153–154 °C; $[\alpha]^{20}_{D} = +94.9^{\circ}$ (*c* 0.62, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) d 7.88–7.83 (m, 2H), 7.80–7.77 (m, 2H), 7.10 (d, *J* = 7.4 Hz, 1H), 4.48–4.42 (m, 1H), 3.82–3.73 (m, 1H), 2.62 (dd, *J* = 3.1, 15.5 Hz, 1H), 2.55 (dd, *J* = 6.2, 15.5 Hz, 1H), 1.93–1.91 (m, 2H), 1.87–1.70 (m, 4H), 1.64–1.58 (m, 1H), 1.38–1.22 (m, 5H), 1.13 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) d 168.2, 164.6, 134.7, 128.8, 123.7, 86.8, 48.3, 40.1, 32.9, 32.8, 25.6, 25.4, 24.9, 9.8; IR (CH₂Cl₂) 3428 (br, N–H), 3357 (br, N–H), 1790 (C=O), 1734 (C=O), 1657 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/z 344 (M⁺, 5), 182 (100), 168 (27), 147 (23); HRMS (EI, 20 eV) calcd for C₁₉H₂₄N₂O₄ (M⁺) 344.1736, found 344.1733.

Preparation of 43. To a stirred solution of compound **39** (0.300 g, 0.91 mmol) in CH₃OH (2 mL) and CH₂Cl₂ (2 mL) was added NH₂NH₂·H₂O (0.132 mL, 2.73 mmol). After kept stirring at room temperature for 1.5 h, the reaction was diluted with CH₂Cl₂, washed with 5% NaHCO₃ and brine, then dried (MgSO₄) and concentrated to give **41**, which was used directly in the next step.

To the stirred solution of *iso*-butyric acid (0.093 mL, 0.999 mmol), 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.226 g, 1.18 mmol) and 1-hydroxy-7-azabenzotriazole (0.161 g, 1.18 mmol) in CH₂Cb (5 mL) was added a solution of compound **41** in CH₂Cl₂ (3 mL) at room temperature. After kept stirring overnight, the reaction was diluted with CH₂Cb. The organic layer was washed with 5% NaHCO₃ and brine, then dried (MgSO₄), concentrated in vacuum and purified by flash column chromatography (50% EtOAc in CH₂Cl₂) to give **43** (0.125g, 51% yield) as a solid. M.p. 166–167 °C; $[a]_D^{20} = +5.8^{\circ}$ (c 0.99, CH₂Cb); ¹H NMR (400 MHz, CDCl₃) d 9.24 (s, 1H), 8.02 (d, J = 6.8 Hz, 1H), 4.24–4.21 (m, 1H), 3.79–3.71 (m, 1H), 2.48 (dd, J = 2.4, 15.8 Hz, 1H), 2.40–2.31 (m, 2H), 1.90–1.88 (m, 2H), 1.75–1.68 (m, 2H), 1.62–1.59 (m, 1H), 1.42–1.12 (m, 5H), 1.27 (d, J = 6.3 Hz, 3H), 1.18 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCb) d 176.1, 169.2, 78.4, 48.6, 41.9, 32.8, 32.7, 32.5, 25.5, 25.1, 19.4, 19.2, 18.3; IR (CH₂Cl₂, 2 mM) 3428 (br, N–H), 3391 (br, N–H), 3302 (br, N–H), 1694 (C=O), 1652 (C=O) cm⁻¹; LRMS (EI, 20 eV) m/z 270 (M⁺, 13), 168 (79), 152 (100), 104 (64); HRMS (EI, 20 eV) calcd for C₁₄H₂₆N₂O₃ (M⁺) 270.1943, found 270.1932.

Preparation of 44. Following the procedure for the preparation of **43**, **44** was obtained from **40** as a solid (39% overall yield for four steps from compound **36**). M.p. 164–165 °C; $[a]_D^{20} = +$ 5.7° (c 1.04, CH₂Cl₂): ¹H NMR (400 MHz, CDCl₃) d 9.75 (s, 1H), 8.32 (d, *J* = 7.5 Hz, 1H), 3.97–3.94 (m, 1H), 3.74–3.70 (m, 1H), 2.51 (dd, *J* = 2.3, 5.7 Hz, 1H), 2.43–2.28 (m, 2H), 1.89–1.87 (m, 2H), 1.75–1.52 (m, 5H), 1.39–1.11 (m, 5H), 1.17 (d, *J* = 6.8 Hz, 3H), 1.16 (d, *J* = 6.8 Hz, 3H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) d 176.2, 169.4, 83.5, 48.6, 39.5, 32.7, 32.6, 32.4, 25.4, 25.0, 19.4, 19.2, 9.6; IR (CH₂Cl₂, 2 mM) 3426 (br, N–H), 3389 (br, N–H), 3302 (br, N–H), 1693 (C=O), 1651 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m*/z 284 (M⁺, 8), 182 (100), 152 (74), 116 (39); HRMS (EI, 20 eV) calcd for C₁₅H₂₈N₂O₃ (M⁺) 284.2100, found 284.2091.

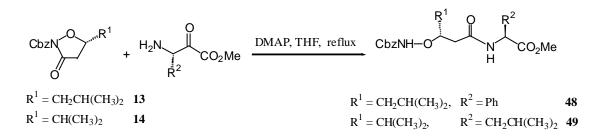
Preparation of 45. Following the procedure for the preparation of **43**, **45** was obtained from **39** as a solid (54% yield). M.p. 148–149 °C; $[\alpha]^{20}_{D} = +74.8^{\circ}$ (*c* 0.80, CH₂Cl₂); 1H NMR (400 MHz, CDCl₃) d 10.57 (s, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.88–7.84 (m, 2H), 7.83–7.79 (m, 2H), 4.72–4.66 (m, 1H), 4.34–4.27 (m, 1H), 3.77–3.75 (m, 1H), 2.66 (dd, J = 6.4, 15.5 Hz, 1H), 2.60 (dd, J = 4.2, 15.5 Hz, 1H), 2.51 (dd, J = 3.5, 16.4 Hz, 1H), 2.45 (dd, J = 7.2, 16.4 Hz, 1H), 1.89–1.88 (m, 2H), 1.72–1.69 (m, 2H), 1.60–1.57 (m, 1H), 1.49 (d, J = 6.4 Hz, 3H), 1.38–1.16 (m, 5H), 1.33 (d, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) d 169.0, 167.7, 164.6, 134.9, 128.5, 123.8, 81.2, 78.3, 48.4, 41.8, 39.4, 32.6, 32.6, 25.4, 25.0, 18.5, 18.3; IR (CH₂Cl₂)

3294 (br, N–H), 1791 (C=O), 1732 (C=O), 1678 (C=O), 1651 (C=O) cm⁻¹; LRMS (EI, 20 eV) m/z 431 (M⁺, 2), 168 (69), 163 (100), 152 (41); HRMS (EI, 20 eV) calcd for C₂₂H₂₉N₃O₆ (M⁺) 431.2056, found 431.2067.

Preparation of 46. Following the procedure for the preparation of **43**, **46** was obtained from **45** as a solid (50% yield). M.p. 189–190 °C; $[\alpha]^{20}{}_{D} = -5.26^{\circ}$ (*c* 0.60, EtOH); ¹H NMR (400 MHz, CDCl₃) d 11.89 (s, 1H), 9.19 (s, 1H), 8.39 (d, *J* = 7.5 Hz, 1H), 4.32–4.25 (m, 1H), 4.22–4.15 (m, 1H), 3.77–3.75 (m, 1H), 2.54–2.32 (m, 5H), 1.91–1.89 (m, 2H), 1.74–1.70 (m, 2H), 1.61–1.58 (m, 1H), 1.38–1.13 (m, 5H), 1.31 (d, *J* = 6.2 Hz, 3H), 1.30 (d, *J* = 6.2 Hz, 3H), 1.19 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) d 177.4, 169.4, 167.9, 78.2, 77.9, 48.5, 41.8, 39.8, 32.8, 32.4, 25.5, 25.2, 19.3, 19.2, 18.5, 18.3; IR (CH₂Cl₂) 3386 (br, N–H), 3288 (br, N–H), 3189 (br, N–H), 1667 (C=O), 1658 (C=O), 1649 (C=O) cm⁻¹; LRMS (EI, 20 eV) *m/z* 371 (M⁺, 4), 200 (67), 168 (100), 152 (68); HRMS (EI, 20 eV) calcd for C₁₈H₃₃N₃O₅ (M⁺) 371.2420, found 371.2411.

References:

- 1. Yang, D.; Li, B.; Ng, F.-F.; Yan, Y.-L.; Qu, J.; Wu, Y.-D. J. Org. Chem. 2001, 66, 7303.
- 2. Medson, C.; Smallridge, A. J.; Trewhella, M. A. Tetrahedron: Asymmetry 1997, 8, 1049.


3. Genê t, J. P.; Ratovelomanana-Vidal, V.; Caño de Andrade, M. C.; Pfister, X.; Guerreiro, P.; Lenoir, J. Y. *Tetrahedron Lett.* **1995**, *36*, 4801.

- 4. O'Neill, J. A.; Lindell, S. D.; Simpson, T. J.; Willis, C. L. *Tetrahedron: Asymmetry* **1994**, *5*, 117.
- 5. Mellin, M.; Davidson, M.; Lumbroso, D.; Giuliani, P.; Coussemant, F. Bull. Soc. Chim. Fr. 1964, 2974.
- 6. Mori, K.; Miyake, M. Tetrahedron 1987, 43, 2229.

Determination of optical purity of 13 and 14 by ¹H NMR spectroscopy

Since the racemic diamides **16** and **17** of β^3 -aminoxy acids cannot be base-line separated by HPLC columns (Chiracel OD and (*R*, *R*) Whelk-O 1), we resorted to derivatize β^3 -aminoxy acids with suitable chiral reagents, and the diastereoisomeric excess of the corresponding diamides was examined by ¹H NMR spectroscopy. For this purpose, (*S*)-leucine methyl ester and (*S*)-phenylglycine methyl ester reacted with the lactams **13** and **14** to give the diastereomers **48** and **49**, respectively (Scheme 1), and the de % value was determined by the integration of α protons of the (*S*)-amino acids or methylene protons of Cbz group of the crude products. The results are shown in Table 1.

Scheme 1

The Cbz regions of the ¹H NMR (500 MHz) spectra of (R/S, S)-48 and (R, S)-48 are showed in Figure 1. And the α -CH (L-Leu) regions of the ¹H NMR (500 MHz) spectra of (R/S, S)-49 and (R, S)-49 are shown in Figure 2.

The ¹H NMR spectra of (R/S, S)-48 showed two well-separated AB quartet peaks of different patterns at 5.17 ppm and 5.10 ppm, respectively, and the integration ratio of these two signals was almost 1:1. These two signals were assigned to the protons of Cbz group. The integration ratio of these two signals in the ¹H NMR spectra of (R, S)-48 was about 1:39.3.

The ¹H NMR spectra of (*R/S*, *S*)-**49** contained two well-separated ddd peaks at 3.92 ppm and 3.86 ppm, respectively, and the integration ratio of these two signals was almost 1:1. These two signals were assigned to the α -CH's of *L*-Leu residue. The integration ratio of these two signals in the ¹H NMR spectra of (*R*, *S*)-48 was about 1:34.8.

α-aminoxy acid	lactam	diastereomer	ee % of α-aminoxy acid (by HPLC)	de % of β ³ -aminoxy acid (by ¹ H NMR)
	CbzNO	CbzNH-O H 48	98.6	98.6
N-O ^t CO ₂ ^t Bu	CbzN 0 14	CbzNH-O 49	95.8	95.8

Table 1. Diastereometric excess determination of β^3 -aminoxy diamides 47 and 48

Figure 1. Cbz regions of the ¹H NMR (500 MHz) spectra of (R, S)-48 and (R/S, S)-48.

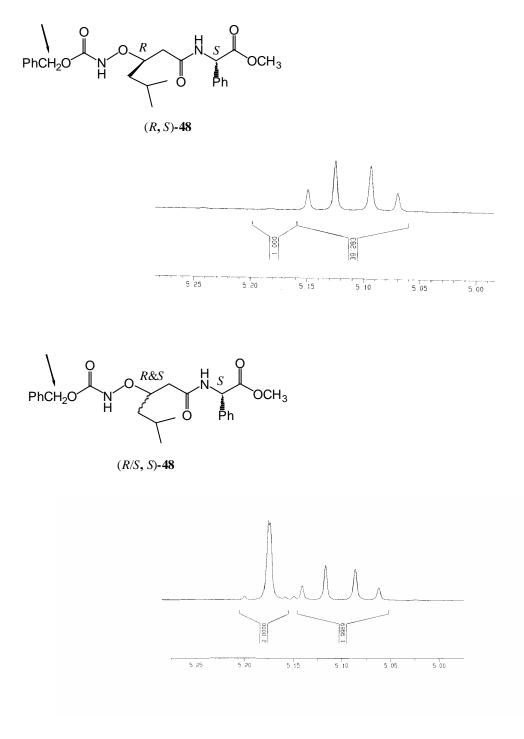
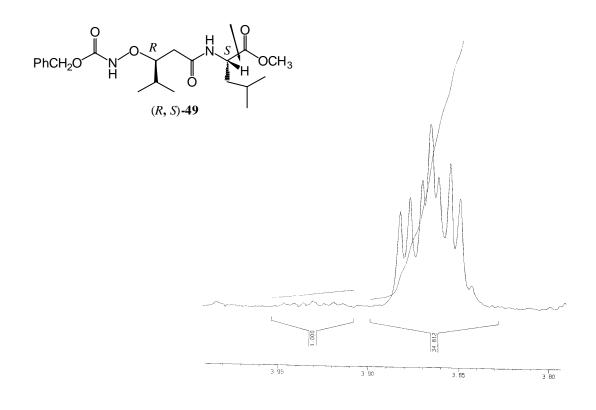
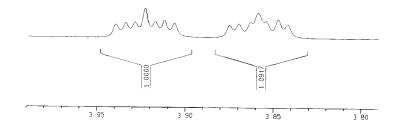
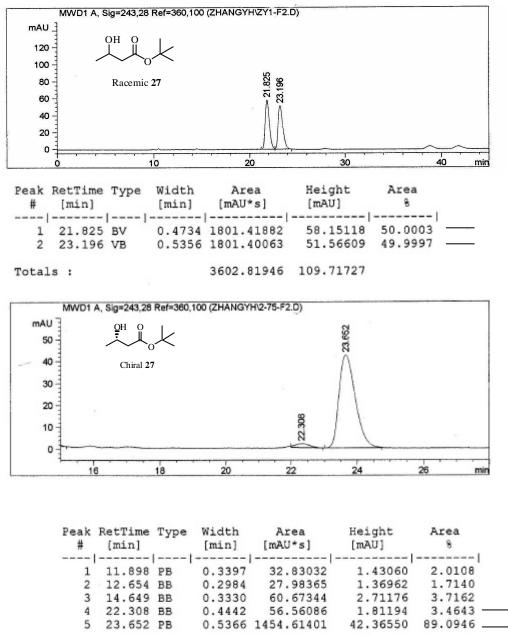




Figure 2. α -CH regions of the ¹H NMR spectra (500 MHz) of (*R*, *S*)-49 and (*R*/*S*, *S*)-49.


Ο R&S PhCH₂C OCH₃ || 0 (R/S, S)-49

Determination of enantiomeric excess of compound 27 by HPLC

HPLC Conditions:

Column: Chiral OD (Column No. OD00CE-AH045) Solvents: *n*-Hexane/*i*-PrOH (98.0/2.0) Flow rate: 0.3 mL/min Detection: UV 243 nm

Totals : 1632.66228 49.68943