A New Asymmetric Synthesis of Pyrrolidinoindolines. Application for the Practical Total Synthesis of (-)-Phenserine.

Audris Huang, Jeremy J. Kodanko, and Larry E. Overman*
Department of Chemistry, 516 Rowland Hall, University of California, Irvine CA 92697-2025

Supporting Information ${ }^{1}$

Experimental procedures for the preparation of 15-17, 19-22, 24-26, 28a-c, 29a-c, 30a-c, 31a-c, 33a-c, 34a-c, 35a-c, 37, 39, 41-44, 46-63, 65-69; copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 21, 22, 28b-c, 29a-c, 30a-c, 31a-c, 32b-c, 33a-c, 34a-c, 35a-c, 36b-c, 37, 41-44, 46, 47, 49-57, 59, 62, 63, 65-67, 69; HPLC traces used to determine the enantiopurity of 48, 66, and 67 .

3-Benzylidene-1,3-dihydroindol-2-one (15). Benzaldehyde ($16.8 \mathrm{~mL}, 165 \mathrm{mmol}$) and piperidine ($2.97 \mathrm{~mL}, 300 \mathrm{mmol}$) were added to a suspension of oxindole $\mathbf{1 4}(20.0 \mathrm{~g}, 150 \mathrm{mmol})$ in ethanol (132 mL). The solution was heated at $80^{\circ} \mathrm{C}$ for 1.5 h . The reaction was allowed to cool to room temperature. The precipitate was filtered, washed with ethanol and dried to afford the product as a yellow solid ($26.5 \mathrm{~g}, 80 \%$). The spectral data was consistent with that previously reported. ${ }^{2}$

1,3-Dibenzyl-1,3-dihydroindol-2-one (16). A 60% dispersion of $\mathrm{NaH}(3.98 \mathrm{~g}, 99.4$ $\mathrm{mmol})$ was added to a solution of $15(20.0 \mathrm{~g}, 90.4 \mathrm{mmol})$ in DMF $(200 \mathrm{~mL})$ at room temperature. The reaction was stirred for 15 min , then benzyl bromide (filtered through basic alumina, 11.8 $\mathrm{mL}, 99.4 \mathrm{mmol}$) was added. After 3 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and diluted with MTBE ($2 \square 200 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford an orange residue (28.1 g , quant.), which was carried forward without further purification.

[^0]Zinc dust (40 g) and concentrated $\mathrm{HCl}(0.40 \mathrm{~mL})$ were added to a solution of the orange residue $(28.1 \mathrm{~g}, 90.4 \mathrm{mmol})$ in acetic acid $(150 \mathrm{~mL})$. The reaction was stirred overnight, then filtered through Celite. The filter cake was washed with EtOAc (300 mL). A solution of saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ was added to the filtrate and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \square 300 \mathrm{~mL})$ and brine (1 $\square 300$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a thick brown-green residue. Crystallization of the product was induced by adding 90 mL of $2: 1$ EtOAc:hexanes to this residue. The resulting precipitate was filtered to yield the product as a yellow-green solid ($17.7 \mathrm{~g}, 63 \%$). The spectral data was consistent with that previously reported. ${ }^{3}$

3-Benzyl-1-methyl-1,3-dihydroindol-2-one (17). A 60% dispersion of $\mathrm{NaH}(398 \mathrm{mg}$, $9.94 \mathrm{mmol})$ was added to a solution of $15(2.00 \mathrm{~g}, 9.04 \mathrm{mmol})$ in DMF (20 mL) at room temperature. After 20 min , MeI $(0.62 \mathrm{~mL}, 9.9 \mathrm{mmol})$ was added. After stirring the reaction overnight, $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the resulting aqueous solution was extracted with ether $(3 \square 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \square 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and dried further under high vacuum. Purification of the crude product by silica gel chromatography (eluant $15-50 \% \mathrm{EtOAc} /$ hexanes) afforded a yellow residue ($2.06 \mathrm{~g}, 97 \%$).

Zn dust $(3.80 \mathrm{~g})$ and $\mathrm{HCl}(0.038 \mathrm{~mL})$ were added to the yellow residue ($2.03 \mathrm{~g}, 8.63$ $\mathrm{mmol})$ in glacial acetic acid (14.3 mL). The reaction was stirred at room temperature overnight, then filtered through Celite. The filter cake was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the filtrate was concentrated (required azeotrope with heptane). Purification of the crude product by silica gel chromatography (eluant $30-40 \% \mathrm{EtOAc} /$ hexanes) afforded a yellow solid ($1.77 \mathrm{~g}, 87 \%$). The spectral data was consistent with that previously reported. ${ }^{4}$

1-Benzyl-3-hydroxy-3-phenyl-1,3-dihydroindol-2-one (19). Phenylmagnesium chloride (2 M solution in THF, $24.0 \mathrm{~mL}, 47.2 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{1 8}$ $(8.00 \mathrm{~g}, 33.7 \mathrm{mmol})$ in THF $(170 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$. After 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL}$). The aqueous solution was extracted with EtOAc (3 200

[^1]mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow solid, which was further dried under high vacuum. Recrystallization from hot toluene afforded yellow crystals ($9.32 \mathrm{~g} .88 \%$). The spectral data was consistent with that previously reported. ${ }^{5}$

1-Benzyl-3-phenyl-1,3-dihydroindol-2-one (20). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.16 \mathrm{~mL}, 1.3 \mathrm{mmol})$ was added to a solution of $19(200 \mathrm{mg}, 0.635 \mathrm{mmol})$ and triethylsilane $(0.20 \mathrm{~mL}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. After 15 min , the reaction was allowed to warm to room temperature. After stirring the reaction overnight, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \square 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $1-10 \%$ EtOAc/toluene) afforded a white solid ($127 \mathrm{mg}, 67 \%$): mp $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.36-7.15(\mathrm{~m}, 12 \mathrm{H}), 7.02(\mathrm{ddd}, 1 \mathrm{H}, J=7.5,7.5,1.0 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.99$ $(\mathrm{d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ — 176.0, 143.5, 136.7, 135.9, 128.9, 128.8, 128.7, 128.4, 128.3, 127.6 (2), 127.3, 125.1, 122.7, 109.1, 52.0, 43.9; IR (thin film) 3087, 3060, 2923, 1710, 1611, 1488, 1345, 1183, 751, $695 \mathrm{~cm}^{-1}$; HRMS (CI/ NH_{3}) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}\left(\mathrm{M}^{+}\right)$299.1310, found 299.1307; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 84.25$; H 5.72; N, 4.68. Found: C, 83.98; H, 5.74; N, 4.62.

1-Benzyl-3-isopropylidene-1,3-dihydroindol-2-one (21). n-Butyllithium (0.52 mL , 1.14 mmol) was added dropwise to a stirring mixture of isopropyltriphenylphosphonium iodide ($549 \mathrm{mg}, 1.27 \mathrm{mmol}$) in THF (17 mL). The reaction was stirred for 1 h , then a solution of N benzylisatin $18(100 \mathrm{mg}, 0.422 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$ was cannulaed into the phosphonium iodide suspension over 5 min . After stirring at $23{ }^{\circ} \mathrm{C}$ for 12 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The aqueous slurry was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \square 40 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a greenish-black residue. The crude product was purified by silica gel chromatography (eluant $2-20 \%$ EtOAc/hexanes) to yield a pink solid ($72.5 \mathrm{mg}, 65 \%$): mp $151-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.96(\mathrm{ddd}, 1 \mathrm{H}, J$ $=7.6,7.6,1.0 \mathrm{~Hz}), 6,98(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 167.8,155.3,141.2,136.5,128.6,127.4,127.3,127.2,123.7,123.4,122.5$,

[^2]121.6, 108.4, 43.1, 25.3, 23.3; IR (thin film) 3509, 2927, 1692, 1607, 1468, 1352, 1182, 742 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}\left(\mathrm{M}^{+}\right)$263.1310, found 263.1309.

1-Benzyl-3-isopropyl-1,3-dihydroindol-2-one (22). A mixture of 21 ($100 \mathrm{mg}, 0.380$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ in $1: 1 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ was allowed to stir at $23^{\circ} \mathrm{C}$ for 12 h under a H_{2} balloon. The reaction mixture was filtered through Celite and the filter cake was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). The filtrate was concentrated to afford a yellow residue, which was purified further by silica gel chromatography (eluant $10-20 \%$ EtOAc/hexanes) to yield the product as a clear residue ($80 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.27-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.12$ $(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.97(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz})$, $4.76(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 2.53(\mathrm{dddd}, 1 \mathrm{H}, J=14.1,7.1,7.1,3.7 \mathrm{~Hz})$, $1.08(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 177.4,143.9$, 136.1, 128.7, 127.8, 127.7, 127.5, 127.3, 124.4, 122.1, 108.8, 51.5, 43.6, 30.9, 19.9, 18.2; IR (thin film) 3057, 2961, 1706, 1613, 1467, 1355, 1166, $749 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}\left(\mathrm{M}^{+}\right)$265.1467, found 265.1468.

1-Benzyl-3-(3-methylbut-2-enyl)-1,3-dihydroindol-2-one (24). A solution of 23 (3.00 $\mathrm{g}, 13.4 \mathrm{mmol}$) in THF (67 mL) was cooled to $-78^{\circ} \mathrm{C}$ and deoxygenated by vigorously sparging with argon for 30 min . A 1 M solution of LHMDS in THF ($13.4 \mathrm{~mL}, 13.4 \mathrm{mmol}$) was added dropwise. After 55 min , 4-bromo-2-methyl-2-butene ($1.95 \mathrm{~mL}, 16.8 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2.5 h , then allowed to warm to $-45^{\circ} \mathrm{C}$ and quenched with $3 \% \mathrm{AcOH}$ in THF (30 mL). EtOAc (70 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(70$ mL) were added to the resulting solution, and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 70 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a brown residue. Purification of the crude product by silica gel chromatography (eluant 5-15\% EtOAc/hexanes) afforded a yellow-orange liquid ($2.45 \mathrm{~g}, 63 \%$), which solidified upon storage at $0^{\circ} \mathrm{C}$. The spectral data was consistent with that previously reported. ${ }^{6}$

[^3]

1-Benzyl-3-methyl-1,3-dihydroindol-2-one (25). A solution of freshly distilled sulfuryl chloride ($12.9 \mathrm{~mL}, 161 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(162 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added to a solution of ethyl(methylthio)acetate ($14.7 \mathrm{~mL}, 161 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(448 \mathrm{~mL})$ by cannula over 5 min . The reaction mixture was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1.3 h . A solution of freshly distilled aniline (14.7 $\mathrm{mL}, 161 \mathrm{mmol}$) and 2,6-lutidine ($18.9 \mathrm{~mL}, 161 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(136 \mathrm{~mL})$ was added to the reaction mixture dropwise by an addition funnel over 1 h . After the addition was complete, the reaction mixture was maintained at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(22.5 \mathrm{~mL}, 161 \mathrm{mmol})$ was added, and the reaction mixture was allowed to warm to room temperature. Evaporation of the solvent yielded a yellow solid, which was taken up in $\mathrm{Et}_{2} \mathrm{O}(360 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(180 \mathrm{~mL})$. The solution was stirred vigorously overnight. A solid precipitated and was filtered. A second crop was obtained by extracting the aqueous filtrate with ether ($4 \square 200 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a solid, which was recrystallized from hot toluene. The combined crops yielded 18.5 g (64%) of 3-methylsulfanyl-1,3-dihydroindol-2-one as a solid. The spectral data was consistent with that previously reported. ${ }^{7}$

A 60% dispersion of $\mathrm{NaH}(1.10 \mathrm{~g}, 27.9 \mathrm{mmol})$ was added to a solution of 3-methylsulfanyl-1,3-dihydroindol-2-one ($5.00 \mathrm{~g}, 27.9 \mathrm{mmol}$) in DMF (100 mL) at room temperature. After 40 min , MeI ($1.7 \mathrm{~mL}, 27.9 \mathrm{mmol}$) was added, and the reaction was stirred overnight. Additional $\mathrm{NaH}(1.10 \mathrm{~g}, 27.9 \mathrm{mmol})$ was added. After 1.5 h , benzyl bromide (filtered through basic alumina, $3.3 \mathrm{~mL}, 28 \mathrm{mmol}$) was added. The reaction was allowed to stir for 7.5 h , then $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the resulting aqueous solution was extracted with ether ($3 \square 250 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a red residue, which was further dried under high vacuum. Purification of the crude product by silica gel chromatography (eluant $15-60 \%$ EtOAc/hexanes) afforded 1 -benzyl-3-methyl-3-methylsulfanyl-1,3-dihydroindol-2-one as a red residue ($4.88 \mathrm{~g}, 62 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.35(\mathrm{dd}, 1 \mathrm{H}, J=7.4,1.3,0.51 \mathrm{~Hz}$), $7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18$ (ddd, $1 \mathrm{H}, J=7.7,7.7,1.3 \mathrm{~Hz}$), 7.07 (ddd, $1 \mathrm{H}, J=7.6,7.6,1.0 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.01(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 177.6,141.8,135.9,131.2,128.8,128.7,127.7,127.3,127.2,123.7,123.0,109.1,43.8$, 21.7, 12.0; IR (thin film) $3505,2974,2927,1715,1607,1491,1352,1182,749 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NOS}\left(\mathrm{M}^{+}\right)$283.1031, found 283.1030.

A mixture of 1-benzyl-3-methyl-3-methylsulfanyl-1,3-dihydroindol-2-one ($3.83 \mathrm{~g}, 13.5$ mmol) and zinc dust ($8.82 \mathrm{~g}, 135 \mathrm{mmol}$) in glacial acetic acid (112 mL) was heated at reflux for 6 h , then allowed to cool to room temperature. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ and filtered through Celite. The filter cake was rinsed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). Evaporation of the solvent from the filtrate afforded a solid. Purfication of the crude product by silica gel chromatography (eluant $2-8 \% \mathrm{EtOAc} /$ toluene) and recrystallization of the resulting

[^4]solid afforded the product as colorless crystals $(2.60 \mathrm{~g}, 81 \%)$. The spectral data was consistent with that previously reported. ${ }^{8}$

1,3-Dimethyl-1,3-dihydroindol-2-one (26). A 60\% dispersion of NaH ($984 \mathrm{mg}, 24.6$ mmol) was added to a solution of 3-methylsulfanyl-1,3-dihydroindol-2-one ($2.00 \mathrm{~g}, 11.2 \mathrm{mmol}$) in DMF (56 mL). After stirring the reaction at room temperature for 20 min , MeI ($1.5 \mathrm{~mL}, 24.6$ mmol) was added. Consumption of starting material required the addition of more NaH (492 $\mathrm{mg}, 12.3 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.77 \mathrm{~mL}, 12.3 \mathrm{mmol})$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(150$ $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \square 200 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ (3 $\square 150 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford 1,3-dimethyl-3-methylsulfanyl-1,3-dihydroindol-2-one as a yellow residue, which was used without further purification.

A mixture of 1,3-dimethyl-3-methylsulfanyl-1,3-dihydroindol-2-one ($2.32 \mathrm{~g}, 11.2 \mathrm{mmol}$) and zinc dust ($732 \mathrm{mg}, 112 \mathrm{mmol}$) in glacial acetic acid (93 mL) was heated at reflux overnight. Consumption of starting material required the addition of more zinc dust ($732 \mathrm{mg}, 112 \mathrm{mmol}$) and heating the reaction an additional 4 h . The reaction was allowed to cool to room temperature, then filtered through Celite. After the filter cake was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL), the filtrate was concentrated. The crude product was purified by silica gel chromatography (eluant $30-50 \% \mathrm{EtOAc} /$ hexanes) to afford 26 as a yellow solid ($1.45 \mathrm{~g}, 81 \%$ over two steps). The spectral data was consistent with that previously reported. ${ }^{9}$

$\boldsymbol{C}_{2^{-}}$and \boldsymbol{C}_{1}-Symmetric products 28a, 28b, and 28c. A solution of $\mathbf{1 6}$ ($18.6 \mathrm{~g}, 59.6$ $\mathrm{mmol})$, DMPU (0.9 mL) and THF (400 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ in a large dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated by vigorously sparging with argon for 30 min . LHMDS ($9.97 \mathrm{~g}, 59.6$ $\mathrm{mmol})$ was added. After 15 min , ditriflate $\mathbf{1 0}(11.5 \mathrm{~g}, 27.1 \mathrm{mmol})$ was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and concentrated. The resulting solid was dissolved in 500 mL of $1: 1$ benzene:EtOAc and the solution was extracted with brine ($3 \square 150 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a solid containing a mixture of three diastereomers 28a, 28b, and 28c. Recrystallization from hot EtOH (700 mL , prolonged heating is required to solubilize the

[^5]product) afforded the major C_{2}-symmetric product $\mathbf{2 8 a}$ as a colorless solid ($1.38 \mathrm{~g}, 64 \%$). The mother liquor was concentrated and the residue was purified by silica gel chromatography (eluant $5-20 \% \mathrm{EtOAc} /$ toluene) to afford a yellow solid. A portion of this solid was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 85 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}+1 \% \mathrm{NH}_{4} \mathrm{OH}$, flow rate $10 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=42$ $\min \left(\right.$ major $\left.C_{2}\right), 58 \mathrm{~min}\left(C_{1}\right), 63 \mathrm{~min}\left(\right.$ minor $\left.C_{2}\right)$) to afford pure analytical samples of the $C_{1}{ }^{-}$ symmetric product $\mathbf{2 8 b}(27.6 \mathrm{mg})$ and the minor C_{2}-symmetric product $\mathbf{2 8 c}(0.8 \mathrm{mg})$.

Major C_{2}-symmetric product, 28a: $[\square]^{27}{ }_{589}-13,[\square]^{27}{ }_{577}-16,[\square]^{27}{ }_{546}-16,[\square]^{27}{ }_{435}-27$, $[\square]^{27}{ }_{405}-32\left(c=0.4, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 128-131{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.23-7.21(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.11 (m, 8H), 7.07-7.03 (m, 8H), 6.82-6.80 (m, 4H), 6.76-6.74 (m, 4H), 6.33-6.31 (m, $2 \mathrm{H}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=16.1 \mathrm{~Hz}), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=16.2 \mathrm{~Hz}), 3.38(\mathrm{dd}, 2 \mathrm{H}, J=5.4,2.6 \mathrm{~Hz}), 3.17(\mathrm{~d}$, $2 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.02(\mathrm{~d}, 2 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.24(\mathrm{dd}, 2 \mathrm{H}, J=13.9,9.5 \mathrm{~Hz}), 1.89(\mathrm{dd}, 2 \mathrm{H}, J=$ $14.0,2.3 \mathrm{~Hz}), 1.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 178.5,143.6,135.7,135.5,130.2$, 128.4, 128.0, 127.7, 127.0, 126.7, 126.5, 123.6, 121.8, 109.1, 108.8, 77.7, 52.8, 44.4, 43.6, 40.1, 26.9; IR (thin film) $3032,1714,1615,1368 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 81.35; H, 6.43; N, 3.72. Found: C, 81.32; H, 6.47; N, 3.66.
C_{1}-Symmetric product, 28b: $[\square]^{27}{ }_{589}-43.7,[\square]^{27}{ }_{577}-46.3,[\square]^{27}{ }_{546}-51.6,[\square]^{27}{ }_{435}-88.1$, $[\square]^{27}{ }_{405}-104.8\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 8 \mathrm{H}), 6.81(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 6.38$ $(\mathrm{m}, 1 \mathrm{H}), 6.30(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=16.1$ $\mathrm{Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 3.57(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,8.0,3.3 \mathrm{~Hz}$), $3.36(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,7.8$, $2.2 \mathrm{~Hz}), 3.31(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.18(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.02(\mathrm{~d}$, $1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.25(\mathrm{dd}, 1 \mathrm{H}, J=14.0,10.4 \mathrm{~Hz}), 2.15(\mathrm{dd}, 1 \mathrm{H}, J=14.3,8.2 \mathrm{~Hz}), 2.02(\mathrm{dd}, 1 \mathrm{H}$, $J=13.9,2.3 \mathrm{~Hz}), 1.97(\mathrm{dd}, 1 \mathrm{H}, J=14.2,3.3 \mathrm{~Hz}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 178.9,178.5,143.5,142.8,135.9,135.8,135.5,135.2,130.5,130.1,130.0$, 128.5, 128.4, 127.9 (2), 127.8, 127.6, 127.1, 126.9, 126.6 (2), 126.5, 124.6, 123.6, 122.1, 121.8, 109.1, 109.0, 108.8, 78.0, 77.9, 53.5, 52.9, 44.6, 44.0, 43.5, 40.0, 39.9, 26.9 (2); IR (thin film) 3053, 2985, 2929, 1711, 1611, 1368, $729 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$ 775.3512 , found 775.3516 .

Minor C_{2}-symmetric product, 28c: $\left.[\square]_{589}-46,[\square]_{577}-56,[\square]_{546}-59,[\square]_{435}-108,[]\right]_{405}$ $-133\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 8 \mathrm{H})$, $7.06-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.59(\mathrm{~d}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.34-6.33(\mathrm{~m}, 2 \mathrm{H}), 4.82$ $(\mathrm{d}, 2 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.39(\mathrm{~d}, 2 \mathrm{H}, J=16.1 \mathrm{~Hz}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~d}, 2 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.17(\mathrm{~d}$, $2 \mathrm{H}, J=13.1 \mathrm{~Hz}$), 2.16 (dd, 2H, $J=14.2,8.4 \mathrm{~Hz}$), 1.94 (dd, $2 \mathrm{H}, J=14.2,1.9 \mathrm{~Hz}$), 1.15 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 178.7,142.8,136.1,135.3,130.6,130.2,128.5,127.8,127.7$, $127.0,126.6,126.4,124.7,122.0,109.0,78.4,53.4,43.8,43.3,39.9,27.1$; IR (thin film) 2928, $1707,1615 \mathrm{~cm}^{-1}$; LRMS (ESI) m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 775.3$, found: 775.3.

Major \boldsymbol{C}_{2}-symmetric product 29a. A solution of $\mathbf{2 0}(500 \mathrm{mg}, 1.67 \mathrm{mmol})$ and DMPU $(0.22 \mathrm{~mL})$ in THF (11 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated
by vigorously sparging with argon for 30 min . A 1 M solution of LHMDS in THF ($1.7 \mathrm{~mL}, 1.7$ mmol) was added dropwise. After 15 min , ditriflate 10 ($356 \mathrm{mg}, 0.835 \mathrm{mmol}$) was added as a solid. The reaction flask was covered with aluminum foil and allowed to slowly warm to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and diluted with 16 mL of $1: 1$ benzene:EtOAc. After the layers were separated, the aqueous phase was extracted with EtOAc ($3 \square 16 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $2-16 \% \mathrm{EtOAc} /$ toluene) yielded a colorless residue consisting of a mixture of three diastereomers. A small amount of this diastereomeric mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 80 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$. UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=58 \mathrm{~min}$ (major C_{2}), 78 min (mixture of C_{1} and minor C_{2})) to afford pure analytical samples of the major C_{2} symmetric diastereomer 29a (14.4 mg) and a mixture of the C_{1}-symmetric and minor $C_{2}{ }^{-}$ symmetric diastereomers 29b and 29c (13.1 mg).

Major C_{2}-symmetric product, 29a: $[\square]^{27}{ }_{589}+100,[\square]^{27}{ }_{577}+106,[\square]^{27}{ }_{546}+120,[\square]^{27}{ }_{435}$ $+240,[\square]^{27}{ }_{405}+313\left(c=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ $7.30-7.20(\mathrm{~m}, 22 \mathrm{H}), 7.16(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.06(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $4.87(\mathrm{~d}, 2 \mathrm{H}, J=15.9 \mathrm{~Hz}), 4.75(\mathrm{~d}, 2 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~d}, 2 \mathrm{H}, J=$ 13.0 Hz), $1.05(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 178.1,143.7$, 140.8, 136.0, 130.5, 128.6, $128.5,128.4,127.4,127.2,126.8,125.2,122.2,109.5,109.1,77.9,54.6,44.3,40.4,26.8$; IR (thin film) $3058,2944,1717,1611,1488,1356,753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+} 747.3199$, found 747.3193 .

$\boldsymbol{C}_{\mathbf{1}}$-Symmetric product 29b. p-Toluenesulfonic acid monohydrate ($34.4 \mathrm{mg}, 0.181$ $\mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ were added to a stirring solution containing a mixture of 29b and 29c $(34.4 \mathrm{mg}, 0.0472 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$. The reaction was heated at reflux overnight, then allowed to cool to room temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \square 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford colorless residue. Purification of the crude product by silica gel chromatography (eluant $30-60 \% \mathrm{EtOAc} /$ hexanes) afforded pure analytical samples of the C_{1}-symmetric diol ($15.4 \mathrm{mg}, 48 \%$) minor C_{2}-symmetric diol $(1.7 \mathrm{mg}$, 5%).
C_{1}-Symmetric diol: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.36-7.21(\mathrm{~m}, 22 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.76(\mathrm{dd}, 2 \mathrm{H}, J=7.7,2.4 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $26.9 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=27.0 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.51$ (m, 1H), 3.45 (br s, 1H), 3.19 (d, 1H, $J=9.8 \mathrm{~Hz}$), 2.97 (dd, 1H, $J=14.2,10.7 \mathrm{~Hz}$), 2.59 (dd, 1H, $J=14.8,2.4 \mathrm{~Hz}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 179.9,179.4$, 143.7, 141.7, 141.2, 139.3, 136.0, 135.4, 133.0, 131.3, 128.9, 128.7, 128.5, 128.3, 128.2, 127.7, $127.5,127.4,127.3$ (2), 127.1, 126.7, 126.6, 125.0, 124.5, 123.2, 122.4, 109.7, 109.6, 71.7, 71.4,
55.5, 54.7, 44.1, 43.9, 41.0 (2); IR 3462, 3061, 2922, 1702, 1610, 1351, $733 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 707.2886$, found 707.2879.

Camphorsulfonic acid (2.2 mg) was added to a solution of the C_{1}-symmetric diol (23 mg , 0.034 mmol) and 2,2-dimethoxypropane (0.5 mL) in acetone (1.0 mL). After 24 h , EtOAc (5 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added. The layers were separated, and the aqueous phase was extracted with EtOAc ($2 \square 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a residue. Purification of the crude product by silica gel chromatography (eluant $15-50 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless film (24 mg , $\left.99 \%):[\square]^{27}{ }_{589}-33,[\square]\right]^{27}{ }_{577}-35,[\square]{ }^{27}{ }_{546}-38,[\square]{ }^{27}{ }_{435}-51,[\square]^{27}{ }_{405}-50\left(c=0.48, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.37-7.16$ (m, 24H), 7.11 (ddd, $\left.1 \mathrm{H}, J=7.6,7.6,1.0 \mathrm{~Hz}\right), 7.01(\mathrm{t}, 1 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.94(\mathrm{t}, 2 \mathrm{H}, J=16.3 \mathrm{~Hz}), 4.74$ (dd, $2 \mathrm{H}, J=15.7,5.6 \mathrm{~Hz}$), 3.49 (ddd, $1 \mathrm{H}, J=7.5,7.5,3.7 \mathrm{~Hz}$), 3.32 (ddd, $1 \mathrm{H}, J=9.8,8.0,1.9$ $\mathrm{Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=13.9,10.1 \mathrm{~Hz}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=14.3,3.7 \mathrm{~Hz}), 2.42(\mathrm{dd}, 1 \mathrm{H}, J=14.2,7.4$ Hz), $2.36(\mathrm{dd}, 1 \mathrm{H}, J=14.0,2.0 \mathrm{~Hz}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square $178.4,178.2,143.8,142.7,141.2,140.7,136.2,135.8,131.7,130.7,128.7,128.6,128.6,128.5$, $128.2,128.0,127.6,127.4,127.3$ (2), 127.2 (2), 126.8, 126.7, 125.9, 125.4, 122.4, 122.3, 109.4, $109.2,108.9,78.3,78.0,55.2,54.8,44.3,43.9,40.4,40.1,26.7,26.6$; IR (thin film) 3058, 1710, 1611, 1466, 1358, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 725.3380$, found 725.3408 .

29c: $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 724.3301
Minor \boldsymbol{C}_{2}-symmetric product 29c. p-Toluenesulfonic acid monohydrate (34.4 mg , $0.181 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ were added to a stirring solution containing a mixture of $\mathbf{2 9 b}$ and 29c $(34.4 \mathrm{mg}, 0.0472 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$. The reaction was heated at reflux overnight, then allowed to cool to room temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \square 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford colorless residue. Purification of the crude product by silica gel chromatography (eluant $30-60 \% \mathrm{EtOAc} /$ hexanes) afforded pure analytical samples of the C_{1}-symmetric diol ($15.4 \mathrm{mg}, 48 \%$) minor C_{2}-symmetric diol ($1.7 \mathrm{mg}, 5 \%$).

Minor C_{2}-symmetric diol: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.41(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.22(\mathrm{~m}$, $18 \mathrm{H}), 7.15$ (ddd, 2H, $J=7.7,7.7,1.1 \mathrm{~Hz}$), 7.04 (ddd, 2H, $J=7.6,7.6,0.9 \mathrm{~Hz}$), 6.75 (d, 2H, $J=$ $7.8 \mathrm{~Hz}), 5.05(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, 2 \mathrm{H}, J=3.8$ Hz), 2.71 (dd, $2 \mathrm{H}, J=14.8,1.5 \mathrm{~Hz}$), $2.21(\mathrm{dd}, 2 \mathrm{H}, J=15.0,8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 180.0,141.7,139.6,135.6,133.7,128.9,128.8,128.1,127.7,127.4,127.3,126.8$, $124.5,123.1,109.5,71.3,55.7,44.0,40.5$; IR (thin film) $3405,3061,2926,1683,1610,1370$, $733 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 707.2886$, found 707.2899.

Camphorsulfonic acid (2.0 mg) was added to a solution of diol ($5 \mathrm{mg}, 0.007 \mathrm{mmol}$) and 2,2-dimethoxypropane (0.5 mL) in acetone (1.0 mL). After 24 h , EtOAc (5 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added. The layers were separated, and the aqueous phase was extracted with EtOAc $(2 \square 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, and concentrated to yield a residue. Purification of the crude product by silica gel chromatography (eluant $15-50 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless film ($4.7 \mathrm{mg}, 89 \%$): $\left.[\square]^{27}{ }_{589}-74,[\square]^{27}{ }_{577}-76,[\square]\right]_{546}^{27}-85,[\square]^{27}{ }_{435}-158,[\square]^{27}{ }_{405}-194\left(c=0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.39-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 18 \mathrm{H}), 7.15(\mathrm{ddd}, 2 \mathrm{H}, J=7.7,7.7,1.3$ $\mathrm{Hz}), 7.00(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.94(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J$ $=15.7 \mathrm{~Hz}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, 2 \mathrm{H}, J=14.3,1.9 \mathrm{~Hz}), 2.34(\mathrm{dd}, 2 \mathrm{H}, J=14.2,8.3 \mathrm{~Hz}), 0.71$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 178.2, 142.7, 140.6, 136.1, 132.3, 128.6, 128.5, 127.7, $127.4,127.3$ (2), 126.9, 125.9, 122.1, 109.0, 108.5, 78.3, 55.2, 43.9, 39.9, 26.4; IR (thin film) 3058, 2925, 1710, 1611, 1466, 1360, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 725.3380 , found 725.3369 .

$\boldsymbol{C}_{2^{-}}$and \boldsymbol{C}_{1}-Symmetric products 30a, 30b, and 30c. A solution of $21(400 \mathrm{mg}, 1.52$ $\mathrm{mmol})$ and DMPU $(0.20 \mathrm{~mL})$ in THF $(10.1 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice i - PrOHand was deoxygenated by vigorously sparging with argon for 35 min . A 1 M solution of LHMDS in THF ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added dropwise. After 45 min , ditriflate $\mathbf{1 0}$ ($295 \mathrm{mg}, 0.691 \mathrm{mmol}$) was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(9 \mathrm{~mL})$. After the layers were separated, the aqueous phase was extracted with EtOAc $(2 \square 16 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford an orange solid. Purification of the crude product by silica gel chromatography (eluant $8-50 \% \mathrm{EtOAc} /$ hexanes) yielded a residue consisting of a mixture of three diastereomers ($365 \mathrm{mg}, 81 \%$). A small amount of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 85 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=63 \mathrm{~min}$ (major C_{2}), 82 $\min \left(C_{1}\right), 88 \mathrm{~min}\left(\right.$ minor $\left.C_{2}\right)$) to afford pure analytical samples of the major C_{2}-symmetric diastereomer 30a, the C_{1}-symmetric diastereomer 30b, and the minor C_{2}-symmetric diastereomer 30c.

Major C_{2}-symmetric product, 30a: $[\square]^{28}{ }_{589}-31,[\square]^{28}{ }_{577}-31,[\square]^{28}{ }_{546}-35,[\square]^{28}{ }_{435}-48(c=$ $0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.32-7.23$ (m, 10 H), 7.16 (ddd, 2H, J = 7.7, 7.7, $1.6 \mathrm{~Hz}), 7.08-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.96(\mathrm{~m}, 4 \mathrm{H}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=15.9 \mathrm{~Hz})$, $4.78(\mathrm{~d}, 2 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 177.7$, 143.9 (2), 136.2, 130.5, 128.6, 128.2, 127.4, 127.3, 123.9, $122.2,113.1,109.2,109.0,77.9,56.2,44.3,37.5,26.9,19.6$; IR (thin film) 3056, 2919, 1717, 1611, 1490, 1355, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 675.3199$, found 675.3210.
C_{1}-Symmetric product, 30b: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.33-7.22(\mathrm{~m}, 10 \mathrm{H})$, 7.17-7.11 (m, 3H), $7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.7 \mathrm{~Hz}), 5.02-4.94(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{ddd}, 1 \mathrm{H}, J=7.4,7.4$, $3.5 \mathrm{~Hz}), 3.06(\mathrm{ddd}, 1 \mathrm{H}, J=9.8,7.9,1.9 \mathrm{~Hz}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$,
$3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 177.9,177.8,144.0,143.9,143.8$, $142.9,136.3,136.0,131.3,130.6,128.8,128.6,128.1,127.8,127.7,127.4,127.3,124.8,124.0$, $122.3,122.2,113.1,113.0,109.1,108.8,108.7,78.1,77.8,56.8,56.3,44.2,43.9,37.2,36.8$, $26.8,26.5,19.7,19.6$; IR (thin film) $3058,2921,1713,1611,1488,1356,1173,755 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 653.3380$, found 653.3395 .

Minor C_{2}-symmetric product, 30c: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.33-7.23(\mathrm{~m}, 10 \mathrm{H})$, $7.12-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.95(\mathrm{~m}, 8 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}$, $2 \mathrm{H}, J=14.1,1.7 \mathrm{~Hz}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 0.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ 177.7, 143.9, 143.0, 136.2, 132.0, 128.7, 127.6, 127.5, 127.4, 124.7, 122.1, 113.1, 108.7, 108.3, 78.2, 56.7, 43.8, 36.8, 26.5, 19.7; IR (thin film) 3058, 2919, 1710, 1611, 1488, 1360, 1175, 745 $\mathrm{cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 653.3380$, found 653.3398 .

$\boldsymbol{C}_{2^{-}}$and $\boldsymbol{C}_{\mathbf{1}}$-Symmetric products 31a, 31b, and 31c. A solution of $22(239 \mathrm{mg}, 0.903$ $\mathrm{mmol})$ and DMPU $(0.62 \mathrm{~mL})$ in THF (5.5 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated by vigorously sparging with argon for 40 min . A 1 M solution of LHMDS in THF ($0.90 \mathrm{~mL}, 0.90 \mathrm{mmol}$) was added dropwise. After 50 min , ditriflate $\mathbf{1 0}$ (175 $\mathrm{mg}, 0.410 \mathrm{mmol}$) was added as a solid. The reaction was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(14 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with EtOAc ($2 \square 14 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $10-50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) yielded a residue consisting of a mixture of three diastereomers. A small portion of this residue was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 85 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=57 \mathrm{~min}$ (major C_{2}), $78 \mathrm{~min}\left(C_{1}\right), 87 \mathrm{~min}\left(\operatorname{minor} C_{2}\right)$) to afford pure analytical samples of the major C_{2}-symmetric product $\mathbf{3 1 a}(9.5 \mathrm{mg}), C_{1}$-symmetric product $\mathbf{3 1 b}(2.1 \mathrm{mg})$ and the minor C_{2}-symmetric product 31c (4.2 mg).

Major C_{2}-symmetric product, 31a: $\left.\left.[\square]\right]^{26}{ }_{589}-77,[\square]\right]_{577}^{26}-79,[\square]{ }_{546}^{26}-89$, $[\square]^{26}{ }_{435}-155(c$ $=0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.34-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.14(\mathrm{ddd}, 2 \mathrm{H}, J=7.7,7.7$, 1.3 Hz), 7.08 (dd, $2 \mathrm{H}, J=7.4,0.8 \mathrm{~Hz}$), 7.01 (ddd, $2 \mathrm{H}, J=7.5,7.5,1.0 \mathrm{~Hz}$), $6.64(\mathrm{~d}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.81(\mathrm{~d}, 2 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.77$ $(\mathrm{dd}, 2 \mathrm{H}, J=13.8,2.2 \mathrm{~Hz}), 1.01(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.77(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 179.4, 144.1, 136.4, 130.3, 128.6, 127.7, 127.4, 127.3, 123.6, 121.7, $108.8,108.5,78.0,54.0,44.0,37.9,36.0,26.8,17.5,17.0$; IR (thin film) 2966, 2935, 1711, 1611, 1466, 1362, 1171, $755 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 679.3512$, found 679.3533.
C_{1}-Symmetric product, 31b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.34-7.21(\mathrm{~m}, 10 \mathrm{H})$, $7.19-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz})$,
$4.93(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.25(\mathrm{ddd}, 1 \mathrm{H}, J=7.7,7.7,2.8$ Hz), 3.09 (ddd, 1H, $J=8.1,8.1,3.4 \mathrm{~Hz}$), 2.16-2.10 (m, 2H), 2.07-2.00 (m, 3H), 1.82 (dd, 1H, J $=14.4,2.9 \mathrm{~Hz}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.78$ $(\mathrm{d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.72(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 179.8,179.5,144.0$, $143.3,136.5,136.2,130.8,130.3,128.7,128.5,127.6,127.5,127.4$ (2), 127.2, 124.7, 123.8, 121.8 (2), 108.7, 108.5, 78.4, 78.2, 54.8, 54.2, 43.9, 43.7, 37.8, 37.6, 36.0 (2), 26.8, 26.7, 17.5, 17.4, 17.2, 17.1; IR (thin film) 2966, 2931, 1708, 1611, 1466, 1364, 1173, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 679.3512$, found 679.3492 .

Minor C_{2}-symmetric product, 31c: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.32-7.23(\mathrm{~m}, 10 \mathrm{H})$, 7.12 (d, 2H, $J=7.4 \mathrm{~Hz}$), 7.08 (ddd, 2H, $J=7.7,7.7,1.2 \mathrm{~Hz}$), 6.93 (ddd, 2H, $J=7.6,7.6,0.9 \mathrm{~Hz}$), $6.64(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.96(\mathrm{~d}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.36(\mathrm{~m}, 2 \mathrm{H})$, 2.23-2.17 (m, 2H), 2.06 (dd, 2H, $J=14.3,8.3 \mathrm{~Hz}$), 2.01 (dd, 2H, $J=14.3,2.5 \mathrm{~Hz}), 0.94$ (d, 6H, $J=6.9 \mathrm{~Hz}), 0.73(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 179.6,143.3$, $136.3,131.4,128.6,127.3$ (2), 127.1, 124.6, 121.6, 108.4, 108.2, 78.6, 54.6, 43.6, 37.6, 36.1, 26.6, 17.3 (2); IR (thin film) 2964, 2919, 1708, 1613, 1466, 1368, 1181, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$679.3512, found 679.3492.

Major \boldsymbol{C}_{2}-symmetric product 33a. A solution of $24(400 \mathrm{mg}, 1.37 \mathrm{mmol})$ and DMPU $(0.19 \mathrm{~mL})$ in THF (9.1 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ and was deoxygenated by vigorously sparging with argon for 40 min . A 1 M solution of LHMDS in THF ($1.4 \mathrm{~mL}, 1.4$ mmol) was added dropwise. After 40 min , ditriflate $10(266 \mathrm{mg}, 0.623 \mathrm{mmol})$ was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(9 \mathrm{~mL})$ and diluted with EtOAc (10 mL). After the layers were separated, the aqueous phase was extracted with EtOAc (2 $\square 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $10-40 \mathrm{EtOAc} /$ hexanes) yielded a residue consisting of a mixture of three diastereomers ($389 \mathrm{mg}, 88 \%$). Recrystallization from $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$) afforded the major $C_{2^{-}}$ symmetric diastereomer 33a as a colorless solid ($181 \mathrm{mg}, 41 \%$): $[\square]^{27}{ }_{589}+22,[\square]^{27}{ }_{577}+22$, $[\square]{ }^{27}{ }_{546}$ $+27,[\square]^{27}{ }_{435}+60\left(c=0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 130-131{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.28-7.21$ $(\mathrm{m}, 10 \mathrm{H}), 7.12(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.00(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.58(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.95(\mathrm{~d}, 2 \mathrm{H}$, $J=15.8 \mathrm{~Hz}), 4.75(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, 2 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, 2 \mathrm{H}, J=13.7,8.2$ $\mathrm{Hz}), 2.39(\mathrm{dd}, 2 \mathrm{H}, J=13.8,6.5 \mathrm{~Hz}), 2.05(\mathrm{dd}, 2 \mathrm{H}, J=13.9,9.3 \mathrm{~Hz}), 1.76(\mathrm{dd}, 2 \mathrm{H}, J=13.9,1.6$ $\mathrm{Hz}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 179.4,143.5,136.3$, $135.5,131.1,128.6,127.7,127.2,127.1,123.3,121.8,117.7,108.9,108.6,77.7,51.1,43.8,39.4$, 37.1, 26.9, 25.9, 18.0; IR (thin film) 3058, 3031, 2929, 1715, 1613, 1490, 1368, $751 \mathrm{~cm}^{-1}$, HRMS (ESI) m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 709.4005$, found 709.4021.

\boldsymbol{C}_{2} - and \boldsymbol{C}_{1}-Symmetric products 33b and 33c. A solution of 24 ($200 \mathrm{mg}, 0.687 \mathrm{mmol}$) in THF (4.6 mL) was cooled to $0^{\circ} \mathrm{C}$ and deoxygenated by vigorously sparging with argon for 30 min . A 60% dispersion of $\mathrm{NaH}(27.5 \mathrm{mg}, 0.687 \mathrm{mmol})$ was added to this solution. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with EtOAc ($2 \square 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $10-40 \% \mathrm{EtOAc} / \mathrm{hexanes}$) yielded a residue consisting of a mixture of three diastereomers. A small amount of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature $23{ }^{\circ} \mathrm{C}, 90 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=61 \mathrm{~min}$ (major C_{2}), $76 \mathrm{~min}\left(C_{1}\right), 80 \mathrm{~min}\left(\operatorname{minor} C_{2}\right)$) to afford pure analytical samples of the $C_{1}{ }^{-}$ symmetric diastereomer 33b (2 mg) and the minor C_{2}-symmetric diastereomer $\mathbf{3 3 c}(<1 \mathrm{mg})$.
C_{1}-Symmetric product, 33b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.31-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{~d}$, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.11(\mathrm{ddd}, 2 \mathrm{H}, J=7.7,7.7,1.1 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.95(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.9 \mathrm{~Hz}), 4.76-4.66(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{ddd}, 1 \mathrm{H}, J=7.9,7.9,3.3 \mathrm{~Hz}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}$, $3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dd}, 1 \mathrm{H}, J=13.9,8.0 \mathrm{~Hz}), 1.90(\mathrm{dd}, 1 \mathrm{H}, J=14.0,1.9 \mathrm{~Hz})$, $1.84(\mathrm{dd}, 1 \mathrm{H}, J=14.0,3.4 \mathrm{~Hz}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, 0.95 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 179.7,179.5,143.5,142.7,136.4,136.0,135.5$, $135.3,131.5,131.0,128.7,128.5,127.6,127.5,127.4$, 127.1 (3), 124.2, 123.3, 122.1, 121.8, $118.0,117.7$, 108.8, 108.7, 108.6, 78.0 (2), 51.8, 51.2, 43.7, 43.6, 39.3, 39.0, 37.3, 36.9, 26.9, 26.8, 25.8 (2), 18.0 (2); IR (thin film) 3056, 2927, 1713, 1613, 1490, $1380,1187,751 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 731.3825$, found 731.3849.

Minor C_{2}-symmetric product, 33c: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.30-7.21(\mathrm{~m}, 10 \mathrm{H})$, 7.18 (d, 2H, $J=7.3 \mathrm{~Hz}$), $7.09(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.96(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.59(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ Hz), $5.04(\mathrm{~d}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.67(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (dd, $2 \mathrm{H}, J=14.2,6.7 \mathrm{~Hz}$), $2.58(\mathrm{dd}, 2 \mathrm{H}, J=14.2,8.5 \mathrm{~Hz}), 1.99(\mathrm{dd}, 2 \mathrm{H}, J=14.2,8.2 \mathrm{~Hz}), 1.84$ (dd, $2 \mathrm{H}, J=14.2,2.0 \mathrm{~Hz}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square$ $179.6,142.8,136.1,135.2,131.7,128.6,127.5,127.3,127.1,124.2,121.9,118.1,108.7$ (2), 78.3, 51.6, 43.5, 39.1, 36.8, 27.0, 25.8, 18.1; IR (thin film) 3056, 2927, 1711, 1613, 1466, 1368, $1171,751 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 731.3825$, found 731.3819 .

$\boldsymbol{C}_{2^{-}}$and $\boldsymbol{C}_{1^{-}}$-Symmetric products $\mathbf{3 4 a}, \mathbf{3 4 b}$, and $\mathbf{3 4 c}$. A solution of $\mathbf{1 7}(385 \mathrm{mg}, 1.62$ $\mathrm{mmol})$ and DMPU (0.22 mL) in THF (10.6 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated by vigorously sparging with argon for 30 min . A 1 M solution of LHMDS in THF was added dropwise ($1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$). After 30 min , ditriflate 10 (315 mg , 0.738 mmol) was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(11 \mathrm{~mL})$ and diluted with 16 mL of $1: 1$ benzene:EtOAc. After the layers were separated, the aqueous phase was extracted with EtOAc ($2 \square 16 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $30-70 \% \mathrm{EtOAc} /$ toluene) yielded a residue consisting of a mixture of three diastereomers. A small portion of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature $23{ }^{\circ} \mathrm{C}, 75 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=36$ $\min \left(\right.$ major C_{2}), $45 \mathrm{~min}\left(C_{1}\right)$) to afford pure analytical samples of the major C_{2}-symmetric diastereomer 34a and C_{1}-symmetric diastereomer 34b. The reaction was repeated under less selective conditions, ${ }^{10}$ and a small amount of the resulting mixture of diastereomers was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 75 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=49 \mathrm{~min}\left(\right.$ minor $\left.C_{2}\right)$) to afford a pure analytical sample of the minor C_{2}-symmetric diastereomer 34c.

Major C_{2}-symmetric product, 34a: [$[\square]^{27}{ }_{589}+67$, $[\square]^{27}{ }_{577}+71$, $[\square]^{27}{ }_{546}+81$, $\left.[\square]\right]^{27}{ }_{435}+153$, $[\square]^{27}{ }_{405}+190\left(c=0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 183-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.04-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.27(\mathrm{~m}$, $2 \mathrm{H}), 3.08(\mathrm{~d}, 2 \mathrm{H}, J=12.9 \mathrm{~Hz}), 2.93(\mathrm{~d}, 2 \mathrm{H}, J=12.9 \mathrm{~Hz}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{dd}, 2 \mathrm{H}, J=14.0$, $9.1 \mathrm{~Hz}), 1.79(\mathrm{dd}, 2 \mathrm{H}, J=13.9,1.9 \mathrm{~Hz}), 1.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 178.8$, $144.1,135.6,130.3,130.0,127.9,127.4,126.4,123.8,121.6,108.2,107.6,77.5,52.5,43.9,39.3$, 26.7, 25.9; IR (thin film) 3058, 2917, 1708, 1613, 1495, 1378, 1090, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 623.2886$, found 623.2890.
C_{1}-Symmetric product, 34b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}$, $3 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{ddd}, 1 \mathrm{H}, J=7.7,7.7$, $4.0 \mathrm{~Hz}), 3.30$ (ddd, 1H, $J=10.3,7.8,2.6$), $3.17(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.06(\mathrm{dd}, 2 \mathrm{H}, J=15.1,13.0$ Hz), $2.94(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dd}, 1 \mathrm{H}, J=14.0,2.5 \mathrm{~Hz}), 2.09(\mathrm{~d}$, $1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 178.9$, $178.8,144.1,143.4,135.6,135.5,130.2,130.1,129.9,129.7,127.8$ (2), 127.3, 127.2, 126.3, $124.6,123.8,121.9,121.5,108.3,107.6,107.4,78.0,77.7,53.2,52.5,44.3,43.9,39.2,38.6,26.7$ (2), 25.8, 25.7; IR (thin film) 3060, 2933, 1711, 1613, 1495, 1378, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 623.2886$, found 623.2899.

Minor C_{2}-symmetric product, 34c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.22(\mathrm{~d}, 2 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 7.15(\mathrm{ddd}, 2 \mathrm{H}, J=7.8,7.8,1.1 \mathrm{~Hz}), 7.03-6.94(\mathrm{~m}, 8 \mathrm{H}), 6.74(\mathrm{~m}, 4 \mathrm{H}), 6.51(\mathrm{~d}, 2 \mathrm{H}, J=7.8$ Hz), $3.61(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, 2 \mathrm{H}, J=13.1 \mathrm{~Hz}$), $3.07(\mathrm{~d}, 2 \mathrm{H}, J=12.9 \mathrm{~Hz}$), 2.86 (s, 6H), 2.07 (dd, $2 \mathrm{H}, J=14.2,7.7 \mathrm{~Hz}), 1.92(\mathrm{dd}, 2 \mathrm{H}, J=14.3,2.6 \mathrm{~Hz}), 1.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) — 178.9, 143.5, 135.8, 130.5, 129.8, 127.8, 127.3, 126.2, 124.8, 121.8, 108.8, 107.6, 78.3, 53.2, $44.2,38.6,27.0,25.7$; IR (thin film) $3058,2927,1710,1613,1470,1378,700 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$623.2886, found 623.2877.

[^6]

Major \boldsymbol{C}_{2}-symmetric product 35a. A 60% dispersion of $\mathrm{NaH}(18.8 \mathrm{mg}, 0.471 \mathrm{mmol}$) was added to a solution of $\mathbf{5 6}(90.0 \mathrm{mg}, 0.214 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$. After 1 h , additional $\mathrm{NaH}(19.1 \mathrm{mg}, 0.469 \mathrm{mmol})$ and $\mathrm{MeI}(24.7 \square \mathrm{~L}, 0.397 \mathrm{mmol})$ were added and the reaction was heated for 5 min at $60^{\circ} \mathrm{C}$, then allowed to cool to room temperature. Addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ caused a colorless solid to precipitate. The solid was collected and dried. The aqueous filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \square 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and further dried under high vacuum to afford a solid. The crude solid was combined with the previously filtered colorless solid. Purification of the crude product by silica gel chromatography (eluant $50-90 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless film (79.6 mg , 83\%): $\left.[\square]^{27}{ }_{589}-5.1,[\square]^{27}{ }_{577}-4.7,[\square]\right]^{27}{ }_{546}-3.4,[\square]^{27}{ }_{435}+18,[\square]^{27}{ }_{405}+38\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, 2 \mathrm{H}, J=7.3,0.7 \mathrm{~Hz}), 7.03$ (ddd, 2H, $J=$ $7.5,7.5,0.9 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 6 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dd}, 2 \mathrm{H}$, $J=13.3,2.3 \mathrm{~Hz}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 180.4,143.6,133.2$, $127.9,122.9,122.0,108.1,107.8,77.5,46.5,40.4,26.7,26.2,23.9$; IR (thin film) 3056, 2983, 2931, 1713, 1613, 1378, $755 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 471.2260$, found 471.2274.

\boldsymbol{C}_{2} - and \boldsymbol{C}_{1}-Symmetric products 35b and 35c. A solution of $26(261 \mathrm{mg}, 1.62 \mathrm{mmol})$ and DMPU $(0.22 \mathrm{~mL})$ in THF (10.7 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated by vigorously sparging with argon for 1 h . A 1 M solution of LHMDS in THF $(1.6 \mathrm{~mL}, 1.6 \mathrm{mmol})$ was added dropwise. After 40 min , ditriflate $10(304 \mathrm{mg}, 0.714 \mathrm{mmol})$ was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and diluted with 7 mL of 1:1 benzene:EtOAc. After the layers were separated, the aqueous phase was extracted with EtOAc ($2 \square 7 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a residue. Purification of the crude product by silica gel chromatography (eluant $2-16 \% \mathrm{EtOAc} /$ toluene) yielded a residue consisting of a mixture of three diastereomers ($285 \mathrm{mg}, 89 \%$). A small amount of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature 23 ${ }^{\circ} \mathrm{C}, 70 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=17 \mathrm{~min}$ (major C_{2}), $21 \min \left(C_{1}\right)$) to afford pure analytical samples of the major C_{2}-symmetric diastereomer 35a and C_{1}-symmetric diastereomer $\mathbf{3 5 b}$. The reaction was repeated under less selective conditions, ${ }^{26}$ and a small amount of the resulting mixture of diastereomers was purified further by HPLC
(Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \mathrm{x} 21.2 \mathrm{~mm}$, column temperature $23{ }^{\circ} \mathrm{C}$, 70% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=24 \mathrm{~min}\left(\right.$ minor $\left.C_{2}\right)$) to afford a pure analytical sample of the minor C_{2}-symmetric diastereomer $\mathbf{3 5 c}$.
C_{1}-Symmetric product, 35b: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}$, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.7 Hz), 3.34 (ddd, $1 \mathrm{H}, J=7.9,7.9,3.1 \mathrm{~Hz}$), $3.21(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (ddd, $1 \mathrm{H}, J=9.9,7.9,2.0 \mathrm{~Hz}$), $3.12(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 180.6, 180.5, 143.6, 142.9, 133.3, 133.1, 127.8, 127.7, 123.7, 122.9, $122.4,122.0,108.3,107.9,107.7,78.1,77.7,47.1,46.5,40.4,39.4,26.8,26.7,26.2,24.1,24.0$; IR (thin film) 3056, 2983, 2931, 1710, 1613, 1493, 1376, 1121, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 471.2260$, found 471.2279 .

Minor C_{2}-symmetric product, 35c: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}$, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $7.01(\mathrm{app} \mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}$, 6 H), 1.88 (dd, 2H, $J=14.0,8.0 \mathrm{~Hz}$), 1.69 (d, 2H, $J=14.3,1.8 \mathrm{~Hz}$), 1.35 (s, 6H), 1.11 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 180.6,142.9,133.4,127.7,123.8,122.2,108.7,107.9,78.2,47.0$, 39.2, 27.0, 26.1, 24.0; IR (thin film) 3054, 2981, 2931, 1708, 1613, 1453, 1376, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 471.2260$, found 471.2274 .

Oxindole diol 37. A solution of 23 ($400 \mathrm{mg}, 1.79 \mathrm{mmol}$), and DMPU (0.24 mL) in THF (12 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice $/ i-\mathrm{PrOH}$ bath and was deoxygenated by vigorously sparging with argon for 40 min . A 1 M solution of LHMDS in THF ($1.8 \mathrm{~mL}, 1.8 \mathrm{mmol}$) was added dropwise. After 30 min , ditriflate $\mathbf{1 0}(347 \mathrm{mg}, 0.815 \mathrm{mmol})$ was added as a solid. The reaction flask was covered with aluminum foil and allowed to warm slowly to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(9 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(9 \mathrm{~mL})$. After the layers were separated, the aqueous phase was extracted with EtOAc (2 $\square 9 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a residue. Purification of the crude product by silica gel chromatography (eluant 20% EtOAc/hexanes-100\% EtOAc) yielded a colorless residue ($133 \mathrm{mg}, 53 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.08$, $(\mathrm{m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.92\left(\mathrm{~J}_{\mathrm{AB}}, 2 \mathrm{H}, J=15.6 \mathrm{~Hz}\right), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.24(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}, J=14.8,5.0 \mathrm{~Hz}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=14.3,4.5 \mathrm{~Hz}), 2.12(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz})$, $1.99(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 184.2, 142.1, 135.5, 135.1, 128.9, $127.8,127.2,123.7,123.5,109.2,79.8,79.7,53.2,44.4,44.1,43.1$; IR (thin film) 3382,3058 , 2937, 1681, 1611, 1455, 1353, 1079, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 332.1263 , found 332.1267.

4,4-Dimethylcyclopentane-1,2-dicarboxylic acid dimethyl ester (39). Following a procedure of Paquette, ${ }^{11}$ bromine ($2.8 \mathrm{~mL}, 54.8 \mathrm{mmol}$) was added dropwise over 1 h with a syringe pump to a solution of 4,4-dimethyl-2-carbomethoxycyclohexanone ($8.0 \mathrm{~g}, 43.5 \mathrm{mmol}$) in ether cooled to $-21^{\circ} \mathrm{C}$ in a salt ice bath. The reaction was stirred at $-21^{\circ} \mathrm{C}$ for 1 h , then poured into an ice bath containing $\mathrm{NaHCO}_{3}(6.9 \mathrm{~g})$. Ether (150 mL) was added, and the layers were separated. The aqueous phase was extracted with ether ($1 \square 150 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant 5-8\% EtOAc/hexanes) afforded 6-bromo-4,4-dimethyl-2carbomethoxycyclohexanone as a pale yellow liquid ($8.86 \mathrm{~g}, 78 \%$).

6-Bromo-4,4-dimethyl-2-carbomethoxycyclohexanone ($5.0 \mathrm{~g}, 19.1 \mathrm{mmol}$) was added dropwise to a stirring solution of sodium metal ($\sim 1.7 \mathrm{~g}$) dissolved in $\mathrm{MeOH}(39 \mathrm{~mL})$. The reaction was heated at reflux for 13 h , then allowed to cool to room temperature. The reaction mixture was poured into a solution of dilute $\mathrm{HCl}(100 \mathrm{~mL})$, and the resulting aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \square 125 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow biphasic liquid. The crude product was purified by silica gel chromatography (eluant $8-16 \% \mathrm{EtOAc} /$ hexanes). Product-containing fractions were identified by GC, then combined and concentrated to afford 39 as a clear liquid ($1.80 \mathrm{~g}, 44 \%$). The spectral data was consistent with that previously reported. ${ }^{12}$

Trifluoromethanesulfonic acid 4,4-dimethyl-2-trifluoromethanesulfonyloxymethylcyclopentylmethyl ester (41). A 1 M solution of $\mathrm{LiAlH}_{4}(11.0 \mathrm{~mL}, 11.0 \mathrm{mmol})$ was added dropwise to a stirring solution of $39(1.57 \mathrm{~g}, 7.33 \mathrm{mmol})$ cooled to $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred overnight, then quenched with $\mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~mL})$, followed by $15 \% \mathrm{NaOH}(1.7 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~mL})$. A solid precipitated and was filtered. After washing the filter cake with EtOAc $(40 \mathrm{~mL})$, the layers in the filtrate were separated. The aqueous phase was extracted with EtOAc ($2 \square 40 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a liquid. Purification of the crude product by silica gel chromatography (eluant $50-70 \%$ EtOAc/hexanes) afforded (2-hydroxymethyl-4,4dimethylcyclopentyl)methanol as a clear liquid ($1.03 \mathrm{~g}, 90 \%$).

Trifluoromethanesulfonyl anhydride ($1.3 \mathrm{~mL}, 7.70 \mathrm{mmol}$) was added to a stirring solution of (2-hydroxymethyl-4,4-dimethylcyclopentyl)methanol (495 mg, 3.13 mmol) and diisopropylethylamine $(1.5 \mathrm{~mL}, 8.40 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15.2 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was

[^7]allowed to stir at $0^{\circ} \mathrm{C}$ for 10 min , then allowed to warm to room temperature and stirred for 2 h . The reaction mixture was filtered through Celite, and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated to afford a brown oil. Purification of the crude product by silica gel chromatography (eluant $10-20 \%$ ether/petroleum ether) afforded a pale yellow liquid (1.16 g , 88%), which solidifies upon storage at $0{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 4.55-4.49(\mathrm{~m}, 4 \mathrm{H})$, $2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{dd}, 2 \mathrm{H}, J=13.2,7.8 \mathrm{~Hz}), 1.41(\mathrm{dd}, 2 \mathrm{H}, J=13.2,8.4 \mathrm{~Hz}), 1.08(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 122.4,119.9,117.4,114.8,78.8,43.6,41.4,38.1,29.6$; IR (thin film) 2962, 2873, 1410, 1245, 1142, 926, $834 \mathrm{~cm}^{-1}$.

\boldsymbol{C}_{2} - and \boldsymbol{C}_{1}-Symmetric products 42, 43, and 44. A solution of 27 ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$) and DMPU (0.14 mL) in THF (6 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice $/ i$-PrOHand was deoxygenated by vigorously sparging with argon for 35 min . A 1 M solution of LHMDS in THF ($1.05 \mathrm{~mL}, 1.05 \mathrm{mmol}$) was added dropwise. After 50 min , ditriflate $41(201 \mathrm{mg}, 0.477 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise. The syringe was rinsed with THF (0.5 mL) into the flask. The reaction flask was covered with aluminum foil and allowed to slowly warm to room temperature overnight. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with EtOAc (10 mL). After the layers were separated, the aqueous phase was extracted with EtOAc (2 $\square 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $30-80 \% \mathrm{EtOAc} /$ hexanes) yielded the major C_{2}-symmetric diastereomer 42 as a colorless foam ($154 \mathrm{mg}, 64 \%$) and a mixture of C_{1}-symmetric and minor C_{2}-symmetric diastereomers 43 and 44 ($87 \mathrm{mg}, 36 \%$). A small amount of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature $23{ }^{\circ} \mathrm{C}$, 80% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, flow rate $6 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=27 \mathrm{~min}$ (major C_{2}), 32 min (minor $\left.\left.C_{2}\right), 34 \mathrm{~min}\left(C_{1}\right)\right)$ to afford pure analytical samples of the C_{1} diastereomer $43(17 \mathrm{mg})$ and the minor C_{2}-diastereomer $44(3 \mathrm{mg})$.

Major C_{2}-symmetric product, 42: mp 153-155 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.80$ (dd, 2H, $J=8.4,2.5 \mathrm{~Hz}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.13(\mathrm{~s}$, $6 \mathrm{H}), 1.81(\mathrm{dd}, 2 \mathrm{H}, J=13.7,0.9 \mathrm{~Hz}), 1.61(\mathrm{dd}, 2 \mathrm{H}, J=13.7,9.6 \mathrm{~Hz}), 1.31(6 \mathrm{H}), 0.94(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~m}, 2 \mathrm{H}), 0.63(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 180.6,156.1,136.8$, $135.2,111.5,110.4,108.1,55.8,48.4,46.4,42.6,42.4,37.4,30.8,26.3,25.2$; IR (thin film) 3056, 2950, 1700, 1598, 1493, 1289, 1036, 803, $735 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 505.3066$, found 505.3067.
C_{1}-Symmetric product, 43: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.85(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}$), 6.79 (dd, 1H, $J=8.4,2.5 \mathrm{~Hz}), 6.76(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.5 \mathrm{~Hz}), 6.71(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=$ 2.7 Hz), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{dd}, 1 \mathrm{H}, J=13.9,1.8 \mathrm{~Hz})$, $1.96(\mathrm{dd}, 1 \mathrm{H}, J=13.7,1.8 \mathrm{~Hz}), 1.75(\mathrm{dd}, 1 \mathrm{H}, J=13.9,10.4 \mathrm{~Hz}), 1.33(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.03$ $(\mathrm{m}, 1 \mathrm{H}), 0.99(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{dd}, 1 \mathrm{H}, J=12.7,9.4 \mathrm{~Hz}), 0.78(\mathrm{~m}, 1 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H})$,
$0.53(\mathrm{dd}, 1 \mathrm{H}, J=12.9,7.7 \mathrm{~Hz}), 0.37(\mathrm{dd}, 1 \mathrm{H}, J=12.9,9.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 180.7, 180.1, 156.0, 155.7, 136.9 (2), 135.8, 135.4, 112.2, 111.8, 110.9, 109.9, 108.0, 107.9, $55.9,48.9,48.7,48.1,46.3,43.3,43.1,42.8,42.7,37.8,30.7,30.5,26.2$ (2), 25.0, 24.7; IR (thin film) $3056,2950,1702,1493,1289,1036,803,735 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+} 505.3066$, found 505.3060.

Minor C_{2}-symmetric product, 44: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.77-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.68$ $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~d}, 2 \mathrm{H}, J=12.9 \mathrm{~Hz}), 1.51(\mathrm{dd}, 2 \mathrm{H}, J=13.8,10.3 \mathrm{~Hz})$, $1.33(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~m}, 2 \mathrm{H}), 0.53(\mathrm{~s}, 6 \mathrm{H}), 0.50(\mathrm{dd}, 2 \mathrm{H}, J=13.0,7.1 \mathrm{~Hz}), 0.38(\mathrm{dd}, 2 \mathrm{H}, J=12.9$, $9.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 180.2,155.8,136.8,136.4,111.8,110.8,107.9$, 55.9 , 48.9, 47.4, 43.6, 42.7, 37.3, 30.8, 26.1, 25.0; IR (thin film) 3058, 2948, 1706, 1600, 1495, 1289, $1036,807 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 505.3066$, found 505.3060.

Major and minor diastereomers 46 and 47. A solution of 27 ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$) and DMPU (0.14 mL) in THF (7 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice $i-\mathrm{PrOH}$ and was deoxygenated by vigorously sparging with argon for 30 min . KHMDS ($209 \mathrm{mg}, 1.05 \mathrm{mmol}$) was added as a solid. After 75 min , freshly prepared triflate 45 ($264 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added dropwise. The reaction flask was covered with aluminum foil and towels. After 3h, the reaction was quenched with $3 \% \mathrm{AcOH}$ in $\mathrm{THF}(2 \mathrm{~mL})$ and allowed to warm to room temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to the resulting solution and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 15 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $20-40 \%$ EtOAc/toluene) yielded a residue consisting of a mixture of two diastereomers ($207 \mathrm{mg}, 68 \%$). A small amount of this mixture was purified further by HPLC (Phenomenex, Luna C-18 (2), $5 \square \mathrm{~m}, 250 \times 21.2 \mathrm{~mm}$, column temperature $23{ }^{\circ} \mathrm{C}, 60 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $10 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ $=24 \mathrm{~min}$ (major), 27 min (minor)) to afford pure analytical samples of the major diastereomer 46 $(2.8 \mathrm{mg})$ and the minor diastereomer $47(0.8 \mathrm{mg})$.

Major product, 46: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.82(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 6.80$ (dd, 1 H , $J=8.4,2.6 \mathrm{~Hz}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=8.1,5.7$ Hz), $3.21(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $3.17(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=13.8,6.9 \mathrm{~Hz}), 1.89(\mathrm{dd}, 1 \mathrm{H}, J=13.8$, $6.2 \mathrm{~Hz}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 179.7$, 155.9, 136.9, 134.7, 112.0, 110.7, 108.3 (2), 72.8, 69.7, 55.8, 46.8, 42.0, 26.7, 26.3, 25.8, 24.1; IR (thin film) 2927, 1706, 1600, 1495, 1370, 1291, 1214, 1052, $803 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$305.1627, found 305.1627.

Minor product, 47: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 6.86(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 6.80(\mathrm{dd}, 1 \mathrm{H}$, $J=8.4,2.5 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, 1 \mathrm{H}, J=7.9,5.6 \mathrm{~Hz}), 3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.46(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, 1 \mathrm{H}, J=13.8,4.9 \mathrm{~Hz}), 2.10(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.9,7.9 \mathrm{~Hz}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $] 179.8$, $156.2,136.4,134.5,112.1,110.7,108.4,108.2,72.9,69.5,55.8,47.1,41.3,26.7,26.3,25.9$,
24.8; IR (thin film) 2933, 1706, 1600, 1497, 1370, 1291, 1219, 1059, 857, $807 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 328.1525$, found 328.1522 .

(S)-3-(2-Hydroxyethyl)-5-methoxy-1,3-dimethyl-1,3-dihydroindol-2-one (48). Sodium borohydride ($3.6 \mathrm{mg}, 0.094 \mathrm{mmol}$) was added to a solution of $\mathbf{8}(10 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $\mathrm{EtOH}(1.6 \mathrm{~mL})$ at room temperature. After 12 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous solution was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, and the layers were separated. The aqueous phase was extracted with EtOAc (2 $\square 10 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a residue. Purification of the crude product by silica gel chromatography (eluant 70% EtOAc/hexanes $-100 \% \mathrm{EtOAc}$) afforded a colorless residue ($9.2 \mathrm{mg}, 91 \%$): HPLC (Daicel Chiracel OD-H column, column temperature $23^{\circ} \mathrm{C}, 90 \% n$-hexane/isopropanol, flow rate 0.8 $\mathrm{mL} / \mathrm{min}, 18.2 \mathrm{~min}$ (minor enantiomer), 20.3 min (major enantiomer). The spectral data was consistent with that previously reported. ${ }^{13}$

Major \boldsymbol{C}_{2}-symmetric diol 49. p-Toluenesulfonic acid monohydrate ($20.1 \mathrm{mg}, 0.106$ $\mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{~mL})$ were added to a solution of $29 \mathrm{a}(20 \mathrm{mg}, 0.0276 \mathrm{mmol})$ in MeOH $(0.66 \mathrm{~mL})$. The reaction was heated at $79^{\circ} \mathrm{C}$ for 4.5 h , then allowed to cool to room temperature. Evaporation of the solvent afforded a thin film, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \square 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a solid. Purification of the crude product by silica gel chromatography (eluant 25-80\% EtOAc/hexanes) afforded a colorless film ($17.3 \mathrm{mg}, 92 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.31 $(\mathrm{m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 18 \mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.05(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 4.91(\mathrm{~d}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.82(\mathrm{~d}, 2 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.17(\mathrm{~d}, 2 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.83(\mathrm{dd}$, $2 \mathrm{H}, J=14.2,10.4 \mathrm{~Hz}), 2.25(\mathrm{dd}, 2 \mathrm{H}, J=14.1,1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 179.4$, 143.4, 140.9, 135.9, 131.1, 128.7, 128.6, 128.3, 127.5, 127.3, 126.7, 124.9, 122.5, 109.7, 72.1, 54.7, 44.2, 41.1; IR (thin film) $3482,3061,1695,1610,1351,733 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 707.2886$, found 707.2881.

[^8]
(R)-(1-Benzyl-2-oxo-3-phenyl-2,3-dihydro-1H-indol-3-yl)-acetaldehyde (50). A mixture of $49(15.9 \mathrm{mg}, 0.0232 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(74.1 \mathrm{mg}, 0.346 \mathrm{mmol})$ in THF $(0.25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~mL})$ was stirred at room temperature overnight. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the aqueous solution was extracted with $\mathrm{EtOAc}(2 \square 2 \mathrm{~mL})$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ $\square 2 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant $25-80 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded a colorless film ($12.3 \mathrm{mg}, 78 \%$) : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 9.53$ (br s, 1 H), $7.31-7.17(\mathrm{~m}, 12 \mathrm{H}), 7.03(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz})$, $4.89(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=17.4,1.0 \mathrm{~Hz}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=17.4,1.9 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 198.4, 177.7, 143.0, 138.8, 135.7, 131.1, 128.9, 128.8, 128.7, 127.8, $127.6,127.2,126.5,124.5,122.9,109.8,52.6,50.5,44.2$; IR (thin film) $3089,3060,2925,2833$, 2734, 1711, 1611, 1488, 1358, 751, $697 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$ 341.1416, found 341.1419.

(R)-1-Benzyl-3-(2-hydroxyethyl)-3-phenyl-1,3-dihydroindol-2-one (51). Sodium borohydride ($3.0 \mathrm{mg}, 0.079 \mathrm{mmol}$) was added to a solution of $50(12.3 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ at room temperature. After 5.5 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The aqueous solution was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 10 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant $25-50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded a cololess solid ($12.3 \mathrm{mg}, 100 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.24$ (m, 9H), 7.21 (ddd, $1 \mathrm{H}, J=7.8,7.8,1.3 \mathrm{~Hz}$), 7.08 (ddd, $1 \mathrm{H}, J=7.6,7.6,1.0 \mathrm{~Hz}$), $4.94(\mathrm{~m}, 2 \mathrm{H})$, 3.61-3.50 (m, 2H), $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 179.2, 142.7, $140.0,135.8,131.9,128.8,128.7,128.3,127.6,127.4,127.3,126.7,124.7,122.8,109.6,59.5$, $55.0,44.1,40.0$; IR (thin film) $3423,3058,2927,1702,1611,1488,1349,1169,1030,697 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$343.1572, found 343.1573.

Major \boldsymbol{C}_{2}-symmetric diol 52. p-Toluenesulfonic acid monohydrate ($116 \mathrm{mg}, 0.6 .9$ $\mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~mL})$ were added to a solution of $\mathbf{3 5 a}(71.3 \mathrm{mg}, 0.159 \mathrm{mmol})$ in $\mathrm{MeOH}(1.9$ mL). The reaction was heated at reflux for 7.5 h , then allowed to cool to room temperature. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 35 $\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a colorless foam. Purification of the crude product by silica gel chromatography (eluant 100% EtOAc, $2-12 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded a colorless solid ($49 \mathrm{mg}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.25(\mathrm{ddd}, 2 \mathrm{H}, J=8.8,7.7,1.2 \mathrm{~Hz}), 7.09(\mathrm{dd}, 2 \mathrm{H}, J=1.0 \mathrm{~Hz}), 7.03(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $6.82(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.15(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{~d}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}), 2.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.24(\mathrm{dd}, 2 \mathrm{H}, J=$ $14.1,11.1 \mathrm{~Hz}), 1.77(\mathrm{~d}, 2 \mathrm{H}, J=14.3 \mathrm{~Hz}), 1.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $] 181.6$, $143.4,133.3,127.8,122.5,122.3,108.2,72.0,46.5,41.4,26.3,25.2$; IR (thin film) 3450,3054 , 2927, 1690, 1611, 1493, 1380, 1125, $755 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$ 408.2049, found 408.2047.

Major \boldsymbol{C}_{2}-symmetric diol 53. p-Toluenesulfonic acid monohydrate ($2.9 \mathrm{~g}, 15.1 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(5.7 \mathrm{~mL})$ were added to a solution of $\mathbf{3 6 a}(2.00 \mathrm{~g}, 3.93 \mathrm{mmol})$ in $\mathrm{MeOH}(46 \mathrm{~mL})$. The reaction was heated at $79{ }^{\circ} \mathrm{C}$ overnight, then allowed to cool to room temperature. The solvent was evaportated to afford a solid, which was dissolved in EtOAc (30 mL) and partitioned with saturated aqueous $\mathrm{NaHCO}_{3}(2 \square 30 \mathrm{~mL})$. After the aqueous layers were combined and extracted with EtOAc ($6 \square 60 \mathrm{~mL}$), the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a colorless solid. The solid was recrystallized from hot EtOH ($19 \mathrm{~mL} / 2$ g) to afford colorless crystals ($1.66 \mathrm{~g}, 90 \%$): mp $228-229{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square $6.78(\mathrm{dd}, 2 \mathrm{H}, J=8.5,2.4 \mathrm{~Hz}), 6.72(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.15(\mathrm{~s}, 6 \mathrm{H}), 2.94(\mathrm{~d}, 2 \mathrm{H}, J=10.7 \mathrm{~Hz})$, $2.18(\mathrm{dd}, 2 \mathrm{H}, J=14.0,10.3 \mathrm{~Hz}), 1.77(\mathrm{dd}, 2 \mathrm{H}, J=14.6,1.2 \mathrm{~Hz}), 1.31(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 181.2,155.9,137.0,134.8,111.6,110.4,108.4,72.0,55.8,47.0,41.4,26.4$, 25.3; IR (thin film) 3458, 3056, 2929, 1690, 1600, 1495, 1291, 1036, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})^{+} 491.2158$, found 491.2166.

(S)-(1,3-Dimethyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetaldehyde (54). A mixture of $52(48.3 \mathrm{mg}, 0.118 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(377 \mathrm{mg}, 1.76 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.66 \mathrm{~mL})$ was stirred at room temperature overnight. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \square 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant
$50-90 \% \mathrm{EtOAc} /$ hexanes $)$ afforded a colorless film ($41.4 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) - 9.51 (br s, 1H), 7.28 (ddd, $1 \mathrm{H}, J=7.7,7.7,1.3 \mathrm{~Hz}$), 7.18 (ddd, $1 \mathrm{H}, J=7.4,1.3,0.6 \mathrm{~Hz}$), 7.05 (ddd, $1 \mathrm{H}, J=7.6,7.6,1.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 198.7,179.5,143.1,132.7,128.3,122.7,122.4,108.4,50.5$, 44.9, 26.4, 23.9; IR (thin film) 3056, 2929, 1711, 1613, 1472, 1380, 1127, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 226.0844$, found 226.0853.

(S)-3-(2-Hydroxyethyl)-1,3-dimethyl-1,3-dihydroindol-2-one (55). Sodium borohydride ($5.00 \mathrm{mg}, 0.132 \mathrm{mmol}$) was added to a solution of $54(12.2 \mathrm{mg}, 0.0601 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$. After 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The aqueous solution was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant $25-50 \% \mathrm{EtOAc} /$ hexanes) yielded a colorless film (10 mg , 81%): $\left.[\square]^{27}{ }_{589}-17,[\square]^{28}{ }_{577}-17,[\square]^{28}{ }_{546}-19,[\square]^{28}{ }_{435}-37\left(c 0.2, \mathrm{CHCl}_{3}\right) ; \%\right):{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 7.28(\mathrm{ddd}, 1 \mathrm{H}, J=7.7,7.7,1.3 \mathrm{~Hz}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,7.6,1.0$ $\mathrm{Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.66(\mathrm{ddd}, 1 \mathrm{H}, J=12.3,7.0,5.3 \mathrm{~Hz}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$, 2.15 (ddd, $1 \mathrm{H}, J=14.3,6.6,5.3 \mathrm{~Hz}), 1.98(\mathrm{ddd}, 1 \mathrm{H}, J=14.3,7.0,5.5 \mathrm{~Hz}), 1.41(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 181.5,142.9,134.1,128.0,122.8,122.4,108.3,59.4,47.0,40.1$, 26.3, 23.5; IR (thin film) 3417, 3056, 2927, 1692, 1613, 1470, 1380, 1042, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$228.1001, found 228.1111.

\boldsymbol{C}_{2}-Symmetric product 56. A 2 -necked roundbottom flask fitted with a liquid NH_{3} condenser was charged with Na metal (86 mg) under a positive flow of N_{2}. The reaction flask and condenser were cooled to $-78{ }^{\circ} \mathrm{C}$. A separate 3-necked roundbottom flask attached to a bubbler was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{NH}_{3}(25 \mathrm{~mL})$ was condensed directly from the tank into this flask. The NH_{3} was redistilled from the 3-necked roundbottom flask into the reaction vessel through a cannula to create a dark blue solution. A solution of 32a ($200 \mathrm{mg}, 0.333 \mathrm{mmol}$) in THF ($2.4 \mathrm{~mL}, 0.14 \mathrm{M}$) was added via syringe to the dark blue solution. After $10 \mathrm{~min}, \mathrm{MeOH}(10$ mL) was added dropwise to the reaction and the solution became clear. The solution was allowed to warm slowly to room temperature by replacing the dry ice/acetone bath with a water bath. The NH_{3} condenser was removed, thus allowing evaporation of NH_{3}. After the evolution of gas ceased, the solution was partitioned between EtOAc (10 mL) and saturated aqueous
$\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with CHCl_{3} (saturated with $\mathrm{NH}_{3}, 3 \square 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant $50-100 \% \mathrm{EtOAc} /$ hexanes $)$ afforded a colorless film ($101 \mathrm{mg}, 72 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.39 (br s, 2H), 7.19 (ddd, 2H, $J=7.7,7.7,1.3 \mathrm{~Hz}$), 7.15 (m, 2H), 7.03 (ddd, 2H, $J=7.5,7.5$, $1.0 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dd}, 2 \mathrm{H}, J=14.2,9.2 \mathrm{~Hz}), 1.72(\mathrm{dd}, 2 \mathrm{H}, J=$ $14.2,2.1 \mathrm{~Hz}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 183.3, 140.7, 133.7, $127.8,123.2,122.0,109.9,108.6,77.6,47.1,40.1,26.8,24.4$; IR (thin film) 3211, 3093, 2929, 1706, 1621, 1472, 1225, $754 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 420.2049$, found 420.2045 .

(S)-[1-Benzyl-3-(3-methyl-but-2-enyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-
acetaldehyde (57). A suspension of diol ah026 ($69.1 \mathrm{mg}, 0.103 \mathrm{mmol}$) and $\mathrm{NaIO}_{4}(329 \mathrm{mg}$, $1.54 \mathrm{mmol})$ in THF $(1.1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.58 \mathrm{~mL})$ was stirred at room temperature overnight. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the resulting solution was extracted with EtOAc (3 $\quad 5$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant $40 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless liquid ($53.3 \mathrm{mg}, 78 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.45(\mathrm{~s}, 1 \mathrm{H})$, $7.27-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=7.4,0.7 \mathrm{~Hz}), 7.08$ (ddd, $1 \mathrm{H}, J=7.7,7.7,1.1$ $\mathrm{Hz}), 6.93$ (ddd, $1 \mathrm{H}, J=7.4,7.4,0.7 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.79$ $(\mathrm{m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) \square 198.6, 178.8, 142.9, 136.4, 135.8, 130.8, 128.6, 128.1, 127.4, 127.1, $122.8,122.3,116.8,109.1,49.6,49.1,43.8,36.4,25.8,18.0$; IR (thin film) 3058, 2916, 1710, $1611,1466,1355,1171,753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$356.1627, found 356.1636.

(S)-[1-Benzyl-3-(3-methyl-but-2-enyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-acetic acid (58). A solution of sodium chlorite $(7.4 \mathrm{mg}, 0.082 \mathrm{mmol})$ and potassium phosphate monobasic $(12.2 \mathrm{mg}, 0.090 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{~mL})$ was added to a stirring solution of $57(24.9 \mathrm{mg}, 0.075$ mmol) in tert-butanol (1.2 mL) and 2-methyl-2-butene $(0.30 \mathrm{~mL})$ at room temperature. After 1 h , additional sodium chlorite $(3.7 \mathrm{mg}, 0.041 \mathrm{mmol})$ and potassium phosphate monobasic (6.1
$\mathrm{mg}, 0.045 \mathrm{mmol}$) were added and the reaction was stirred for 1 h , then diluted with EtOAc (15 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with EtOAc (2 $\square 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a residue. Purification of the crude product by silica gel chromatography (eluant 60-80\% EtOAc/hexanes) afforded a colorless residue ($11.4 \mathrm{mg}, 44 \%$). The spectral data was consistent with that previously reported. ${ }^{6}$

(S)-(1,3-Dibenzyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetaldehyde (59). pToluenesulfonic acid monohydrate ($15 \mathrm{~g}, 78.9 \mathrm{mmol}$) was added to a suspension of 28a (15.5 g , $20.6 \mathrm{mmol})$ in a solution of benzene (80 mL), $\mathrm{MeOH}(120 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was refluxed in a 500 mL roundbottom flask fitted with a distillation head. After 100 mL of distillate was collected, additional benzene (40 mL) and $\mathrm{MeOH}(80 \mathrm{~mL})$ were added. After an additional 100 mL of distillate was collected (6 h total) the mixture was cooled to room temperature and combined with benzene $(250 \mathrm{~mL})$ and EtOAc $(250 \mathrm{~mL})$ and the organic phase was washed with $\mathrm{NaHCO}_{3}(3 \square 150 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a solid. Sequential recrystallizations of the crude product from hot ethanol yielded the major C_{2}-symmetric diol as a colorless solid (2 crops, 11.5 g total, $\left.85 \%):[\square]^{27}{ }_{589}+4,[\square]^{27}{ }_{577}+3,[\square]^{27}{ }_{546}+4,[\square]\right]^{27}{ }_{435}+8,[\square]^{27}{ }_{405}+12(c=0.6$, benzene $)$; mp 107-109 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.20-7.14(\mathrm{~m}, 10 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{~d}, 4 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 6.71(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.38(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.84(\mathrm{~d}, 2 \mathrm{H}, J=16.1 \mathrm{~Hz}), 4.49(\mathrm{~d}, 2 \mathrm{H}, J=$ 16.1 Hz), $3.20(\mathrm{~d}, 2 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.07(\mathrm{~d}, 2 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.65(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, 2.51-2.47 (m, 2H), 2.05 (d, 2H, $J=14.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{180.2,143.7, ~}$ $135.8,135.7,130.7,130.5,128.7,128.2,128.0,127.3,127.0,126.8,123.6,122.3,109.6,72.2$, 58.6, 53.1, 45.3, 44.0, 41.3, 18.7; IR (film) 3444, 1693, 1612, $1467 \mathrm{~cm}^{-1} ;$ LRMS (ESI) m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 735.3$, found: 735.3; Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 80.87 ; \mathrm{H}, 6.22$; N, 3.93. Found: C, 80.35; H, 6.29; N, 3.93.

A mixture of the major C_{2}-symmetric diol ($16.9 \mathrm{~g}, 24.1 \mathrm{mmol}$) and $\mathrm{NaIO}_{4}(77 \mathrm{~g}, 360$ $\mathrm{mmol})$ in THF $(260 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(130 \mathrm{~mL})$ was stirred at room temperature for 18 h . The mixture was combined with $\mathrm{EtOAc}(500 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \square 200 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a clear viscous oil ($16.9 \mathrm{~g}, 100 \%$) that was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{ddd}, 1 \mathrm{H}, J=7.4,7.4,1.1 \mathrm{~Hz}), 6.86-6.84(\mathrm{~m}$, 2H), 6.80-6.78 (m, 2H), 6.43 (d, 1H, $J=7.3 \mathrm{~Hz}$), $4.90(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=16.0$ Hz), 3.25-3.13 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 198.2,178.0,143.1,135.3,134.6,130.2$, $129.9,128.5,128.4,127.9,127.1,126.9,126.7,123.2,122.3,109.4,50.6,50.3,43.7,43.6$; IR (thin film) 3087, 3060, 2919, 1708, 1613, 1490, 1366, 1173, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 378.1470$, found 378.1462 .

(3aS,8aS)-3a-Benzyl-1-methyl-1,2,3,3a,8,8a-hexahydro-pyrrolo[2,3-b]indole (60). Triethylamine ($42.2 \mathrm{~mL}, 300 \mathrm{mmol}$) was added to a stirring mixture of $\mathbf{5 9}(10.7 \mathrm{~g}, 30.2 \mathrm{mmol})$, methylamine hydrochloride ($20.4 \mathrm{~g}, 300 \mathrm{mmol}$), and $\mathrm{MgSO}_{4}(20.2 \mathrm{~g})$ in THF (400 mL) at room temperature. After $48 \mathrm{~h}, \mathrm{LiAlH}_{4}(11.4 \mathrm{~g}, 300 \mathrm{mmol})$ was added in four portions (caution: exotherm with rapid gas evolution occurs). After the addition was complete, the mixture was heated to reflux for 1.5 h , then cooled to $0^{\circ} \mathrm{C}$. Excess hydride was decomposed by the dropwise addition of EtOAc (125 mL) followed by isopropyl alcohol $(125 \mathrm{~mL})$. The mixture was filtered and the filter cake was washed with EtOAc ($3 \square 50 \mathrm{~mL}$). The filtrate was combined with saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and the layers were separated. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \square 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow oil. Purification of $\mathbf{6 8}$ by silica gel chromatography (eluant 75:25:2 hexanes: $\mathrm{EtOAc}: \mathrm{Et}_{3} \mathrm{~N}$) yielded a clear oil ($6.15 \mathrm{~g}, 58 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)]7.26-7.20 (m, 6H), 7.06-7.00 (m, 4H), 6.96-6.93 (m, 2H), $6.72(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 6.22(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J$ $=13.4 \mathrm{~Hz}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}$, $1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H})$.

A solution of $\mathbf{6 8}(1.23 \mathrm{~g}, 3.47 \mathrm{mmol})$ in THF (5 mL) was added dropwise to a blue solution of $\mathrm{Na}(320 \mathrm{mg}, 13.9 \mathrm{mmol})$ and $\mathrm{NH}_{3}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of diphenyl ether (2.9 g) in THF (5 mL) was added resulting in a light yellow solution that was subsequently treated with IPA (10 mL) resulting in a clear solution. After warming to room temperature, the solution was concentrated and combined with CHCl_{3} saturated with $\mathrm{NH}_{3}(100$ mL) and $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a residue. Purification of the crude product by silica gel chromatography (eluant $100 \% \mathrm{EtOAc}-50 \% \mathrm{CHCl}_{3}: \mathrm{IPA}$) afforded a colorless solid 60 ($790 \mathrm{mg}, 86 \%$). A small amount of this solid was recrystallized from hexanes/EtOAc to yield a pure analytical sample: $[\square]{ }^{27}{ }_{405}-288,[\square]^{27}{ }_{435}-207,[\square]^{27}{ }_{546}-95,[\square]^{27}{ }_{577}-81,[\square]^{27}{ }_{589}-77\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=77-78$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4$ Hz), $6.54(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $4.47(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 2.96$ (d, $1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 2.76-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 150.6,138.6,135.0,130.5,128.1,128.0,126.5,124.2,118.9,109.6$, 86.4, 58.9, 52.6, 45.8, 39.7, 37.4; IR (thin film) 3158, 2924, 1607, 1487, $1246 \mathrm{~cm}^{-1}$; LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$265.1, found: 265.1; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{C}, 81.78 ; \mathrm{H}, 7.63$; N, 10.60. Found: C, 81.56; H, 7.68; N, 10.61.

(3aS,8aS)-3a-Benzyl-7-iodo-1-methyl-1,2,3,3a,8,8a-hexahydro-pyrrolo[2,3-b]indole (61). A 1 M solution of NaHMDS in THF ($7.50 \mathrm{~mL}, 7.52 \mathrm{mmol}$) was added dropwise to a stirring solution of $\mathbf{6 0}(705 \mathrm{mg}, 2.64 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ cooled to $-78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of $\mathrm{Boc}_{2} \mathrm{O}(820 \mathrm{mg}, 3.76 \mathrm{mmol})$ and THF (3 mL) was added. The reaction was removed from the cooling bath and allowed to warm to room temperature. After 15 min at room temperature, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The resulting solution was combined with $\mathrm{EtOAc}(150 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic phase was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \square 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a yellow oil. Purification of the crude product by silica gel chromatography (30-50\% EtOAc: petroleum ether) afforded the N-Boc-pyrrolidinoindoline (772 $\mathrm{mg}, 79 \%$) as a clear oil: LRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 364.2$, found: 364.2.

A 1.1 M solution of sec-BuLi in cyclohexane (filtered prior to use, $3.60 \mathrm{~mL}, 3.95 \mathrm{mmol}$) was added dropwise to a stirring solution of N -Boc-pyrrolidinoindoline ($575 \mathrm{mg}, 1.58 \mathrm{mmol}$) and TMEDA ($714 \square \mathrm{~L}, 4.74 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$ cooled to $-78{ }^{\circ} \mathrm{C}$. After 30 min , a solution of diiodoethane ($2.22 \mathrm{~g}, 7.90 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(7.9 \mathrm{~mL})$ was added in one portion, then submerged in a $0{ }^{\circ} \mathrm{C}$ bath and stirred vigorously for 30 min . The reaction mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50$ mL). The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Purification of the crude product by silica gel chromatography (40% EtOAc: petroleum ether) afforded a clear oil ($685 \mathrm{mg}, 89 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$), $7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.5 \mathrm{~Hz}), 2.96(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}), 2.60-2.45(\mathrm{~m}, 5 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H})$, 2.03-1.97 (m, 1H), $1.50(\mathrm{~s}, 1 \mathrm{H})$.

TMSOTf ($400 \square \mathrm{~L}$) was added to a solution of N -Boc-iodo-pyrrolidinoindoline (860 mg , $1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After consumption of the starting material by TLC, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ and concentrated. Purification of the crude product by silica gel chromatography ($3-10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}+0.5 \% \mathrm{NH}_{4} \mathrm{OH}$) afforded a colorless solid (690 $\mathrm{mg}, 97 \%$). X-ray quality crystals were obtained by vapor diffusion with $\mathrm{Et}_{2} \mathrm{O}$:pentane: [C$]^{27}{ }_{405}$ $-310,[\square]]^{27}{ }_{435}-224,[\square]^{27}{ }_{546}-103,[\square]^{27}{ }_{577}-89,[\square]^{27}{ }_{589}-88\left(c=0.7, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.35(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.21-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.45(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=13.5$ Hz), 2.93 (d, 1H, $J=13.5 \mathrm{~Hz}$), 2.61-2.59 (m, 2H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.97$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 152.0,138.1,136.3,134.8,13.0 .5,128.2,126.7,124.1$, $120.2,85.2,75.0,60.8,52.5,45.6,39.6,37.2$; IR (thin film) $3398,2928,1599,1464 \mathrm{~cm}^{-1}$; LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{IN} \mathrm{N}_{2}(\mathrm{M}+\mathrm{H})^{+} 391.1$, found: 391.1; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{IN}_{2}$: C, 55.40; H, 4.91; N, 7.18. Found: C, 55.36; H, 4.95; N, 7.06.

Major and minor products 62 and 63. A solution of bromine ($19.7 \square \mathrm{~L}, 0.384 \mathrm{mmol}$) in acetic acid $(0.58 \mathrm{~mL})$ was added to a stirring solution of $\mathbf{4 2}(58.7 \mathrm{mg}, 0.116 \mathrm{mmol})$ in acetic acid $(1.4 \mathrm{~mL})$. After 18 h , the reaction mixture was poured into a mixture of crushed ice (19 g) and sodium metabisulfite ($36.7 \mathrm{mg}, 0.193 \mathrm{mmol}$). A solid precipitated and was filtered. The collected solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and partitioned with an aqueous $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. After the layers were separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{D}_{1} 15$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a residue. Purification of the crude product by silica gel chromatography (eluant 30-70\% $\mathrm{EtOAc} / \mathrm{hexanes}$) yielded a colorless residue consisting of a mixture of $\mathbf{6 2}$ and $\mathbf{6 3}(58 \mathrm{mg}, 76 \%)$. A small amount of this mixture was purified further by HPLC (Phenomenex C-18 (2), $5 \square \mathrm{~m}, 250$ x 21.2 mm , column temperature $23^{\circ} \mathrm{C}, 90 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$, flow rate $16 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}=8 \mathrm{~min}(\mathbf{6 2}), 13 \mathrm{~min}(\mathbf{6 3})$) to afford pure analytical samples of $\mathbf{6 2}(9.9 \mathrm{mg})$ and $\mathbf{6 3}$ $(1.6 \mathrm{mg})$.

Major product, 62: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.02$ (s, 2H), 6.76 (s, 2H), 3.90 (s, 6H), $3.13(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~d}, 2 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.63(\mathrm{dd}, 2 \mathrm{H}, J=13.9,9.5 \mathrm{~Hz}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.02-0.95$ (m, 4H), 0.84-0.78 (m, 2H), $0.68(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 180.2, 152.2, 137.6, $134.0,112.9,110.6,108.5,57.3,48.5,46.6,42.5,42.4,37.5,30.9,26.3,24.9$; IR (thin film) 3056, 2929, 1710, 1493, 1407, 1235, 1042, $706 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}$661.1277, found 661.1295.

Minor product, 63: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}$, $1 \mathrm{H}), 3.90$, (d, $6 \mathrm{H}, J=3.1 \mathrm{~Hz}$), 3.54 (s, 3 H), 3.13 (s, 3 H), 1.79 (d, $2 \mathrm{H}, J=13.6 \mathrm{~Hz}$), $1.67-1.57$ $(\mathrm{m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 2 \mathrm{H})$, $0.72(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 181.3, 180.7, 153.8, 152.7, 138.1, $136.6,136.4,134.5,116.2,113.4,111.1,108.9,107.7,107.1,57.8$ (2), 48.9, 48.7, 47.1, 47.0, 43.3, 42.9 (2), 42.8, 38.1, 31.4, 30.9, 30.2, 26.8, 25.6, 25.3; IR (thin film) 3064, 2923, 1713, 1465, 1227, 1048, $708 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 739.0381$, found 739.0383 .

(S)-(1-Benzyl-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-acetaldehyde (65). A mixture of diol ah017 ($530 \mathrm{mg}, 0.946 \mathrm{mmol}$) and $\mathrm{NaIO}_{4}(3.02 \mathrm{~g}, 14.1 \mathrm{mmol})$ in THF (10.4 mL) and $\mathrm{H}_{2} \mathrm{O}(5.3 \mathrm{~mL})$ was stirred at room temperature overnight. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \square 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a residue. Purification of the crude product by silica gel chromatography (eluant $50 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless film ($481 \mathrm{mg}, 91 \%$): HPLC (Daicel Chiracel OD-H column) column temperature $23^{\circ} \mathrm{C}$, $98 \% n$-hexane/isopropanol, flow rate $0.4 \mathrm{~mL} / \mathrm{min}, 112.1 \mathrm{~min}$ (major enantiomer), 123.3 min (minor enantiomer); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.30(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.22(\mathrm{t}, 1 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.98(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.76(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.96\left(\mathrm{AB}_{\mathrm{q}}, 2 \mathrm{H}, J_{\mathrm{AB}}=15.8 \mathrm{~Hz}\right), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \square 198.1,179.0,141.7,135.5,132.3,128.2,127.5,127.0,126.7,122.0,121.8,108.8,49.8$,
44.2, 43.1, 24.0; IR (thin film) 3060, 2970, 1706, 1613, 1490, 1356, 1179, $755 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$279.1259, found 279.1251.

(S)-1,3-Dibenzyl-3-(2-hydroxyethyl)-1,3-dihydroindol-2-one (66). Sodium borohydride ($3.9 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a solution of $59(17 \mathrm{mg}, 0.047 \mathrm{mmol})$ in EtOH $(1.8 \mathrm{~mL})$. The reaction was allowed to stir at room temperature overnight, then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The resulting aqueous solution was diluted with EtOAc $(4 \mathrm{~mL})$, and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 4 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant 30 and 60% EtOAc/hexanes) afforded a colorless film (15.9 mg , 94\%): HPLC (Daicel Chiracel OD-H column) column temperature $23^{\circ} \mathrm{C}$, $98 \% n$-hexane/isopropanol, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, 67.9 \mathrm{~min}$ (major enantiomer), 99.5 min (minor enantiomer); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.25-7.24$ (m, $1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 1 \mathrm{H}), 4.87$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 3.65(\mathrm{dddd}, 1 \mathrm{H}, J=6.0,6.0,6.0,6.0 \mathrm{~Hz}), 3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.12(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, 1 \mathrm{H}, J=$ $14.0,6.0,6.0 \mathrm{~Hz}), 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 179.7,142.9,135.4,135.3$, 130.9, 130.1, 128.5, 128.1, 127.8, 127.1, 126.7, 126.6, 123.4, 122.3, 109.3, 59.3, 53.0, 43.8, 43.6, 40.1; IR (thin film) $3419,3060,2919,1708,1694,1611,1466,1356,1171,699 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 358.1807$, found 358.1798.

(S)-1-Benzyl-3-(2-hydroxyethyl)-3-methyl-1,3-dihydroindol-2-one (67). Sodium borohydride ($7.7 \mathrm{mg}, 0.203 \mathrm{mmol}$) was added to a solution of $\mathbf{6 5}(25.8 \mathrm{mg}, 0.0924 \mathrm{mmol}$) in $\mathrm{EtOH}(2 \mathrm{~mL})$. The reaction was allowed to stir at room temperature overnight, then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The resulting solution was diluted with EtOAc (5 mL), and the layers were separated. The aqueous phase was extracted with EtOAc ($2 \square 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by silica gel chromatography (eluant 50 and $70 \% \mathrm{EtOAc} /$ hexanes) afforded a colorless film ($25.9 \mathrm{mg}, 100 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 7.30-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 4.88\left(\mathrm{AB}_{q}, 2 \mathrm{H}, J_{\mathrm{AB}}=19.6 \mathrm{~Hz}\right), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 181.5, 141.9, $135.8,133.9,128.8,127.8,127.6,127.2,122.7,122.5,109.3,59.3,46.9,43.8,40.1,24.0$; IR (thin film) 3413, 3060, 2925, 1694, 1611, 1488, 1382, 1177, 1061, $753 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$281.1416, found 281.1410.

(3aS,8aR)-3a,8-Dibenzyl-1-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (68). Triethylamine ($42.2 \mathrm{~mL}, 300 \mathrm{mmol}$) was added to a stirring mixture of $\mathbf{5 9}(10.7 \mathrm{~g}, 30.2 \mathrm{mmol})$, methylamine hydrochloride ($20.4 \mathrm{~g}, 300 \mathrm{mmol}$), and $\mathrm{MgSO}_{4}(20.2 \mathrm{~g})$ in THF (400 mL) at room temperature. After $48 \mathrm{~h}, \mathrm{LiAlH}_{4}(11.4 \mathrm{~g}, 300 \mathrm{mmol})$ was added in four portions (caution: exotherm with rapid gas evolution occurs). After the addition was complete, the mixture was heated to reflux for 1.5 h , then cooled to $0{ }^{\circ} \mathrm{C}$. Excess hydride was decomposed by the dropwise addition of EtOAc (125 mL) followed by isopropyl alcohol (125 mL). The mixture was filtered and the filter cake was washed with EtOAc ($3 \square 50 \mathrm{~mL}$). The filtrate was combined with saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and the layers were separated. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \square 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow oil. Purification of the crude product by silica gel chromatography (eluant 75:25:2 hexanes: $\mathrm{EtOAc}^{2} \mathrm{Et}_{3} \mathrm{~N}$) yielded N -Bn-pyrrolidinoindoline as a clear oil ($6.15 \mathrm{~g}, 58 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) प7.26-7.20 (m, 6H), 7.06-7.00 (m, 4H), 6.96-6.93 (m, 2H), $6.72(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.5 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz})$, 2.78-2.72 (m, 1H), 2.69-2.63 (m, 1H), 2.33-2.27 (m, 1H), 2.22 (s, 3H), 2.15-2.09 (m, 1H).

(3aS,8aR)-8-Benzyl-1,3a-dimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (69). Triethylamine ($2.20 \mathrm{~mL}, 16.0 \mathrm{mmol}$) was added to a mixture of $65(446 \mathrm{mg}, 1.60 \mathrm{mmol})$, methylamine hydrochloride ($1.08 \mathrm{~g}, 16.0 \mathrm{mmol}$), and $\mathrm{MgSO}_{4}(1.09 \mathrm{~g})$ in THF (39 mL) at room temperature. After 14 h , a 1 M solution of LiAlH_{4} in THF ($16.0 \mathrm{~mL}, 16.0 \mathrm{mmol}$) was added dropwise over 10 min to the mixture stirring at room temperature. After the evolution of gas ceased, the reaction was heated at $65^{\circ} \mathrm{C}$ for 2 h , then allowed to cool to room temperature. Excess hydride was decomposed by adding EtOAc (40 mL). After 30 min , saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ was added dropwise. The mixture was filtered, and the filter cake was washed with EtOAc (25 mL). Water (50 mL) was added to the filtrate, and the layers were separated. The aqueous phase was extracted with EtOAc ($1 \square 150 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a yellow residue. Purification of the crude product by silica gel chromatography (eluant $2.5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \% \mathrm{NH}_{4} \mathrm{OH}, 5 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \% \mathrm{NH}_{4} \mathrm{OH}$) afforded an orange oil ($409 \mathrm{mg}, 92 \%$): [[]$^{28}{ }_{589}-82$, $[\mathrm{C}]^{28}{ }_{577}-86$, $[\square]^{28}{ }_{546}-100,[\square]^{28}{ }_{435}-183\left(c=0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 7.28-7.24(\mathrm{~m}, 4 \mathrm{H})$, $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.53$ (d, 1H, $J=16.6 \mathrm{~Hz}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=16.6 \mathrm{~Hz}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~m}$,
$2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 151.2,139.1,136.8,128.4,127.6,127.0,126.7$, $122.3,117.7,106.9,96.0,53.1,53.0,52.8,40.8,38.6,27.3$; IR (thin film) 3025, 2958, 2865, 2794, 1603, 1490, 1451, 1351, 1034, 739, $699 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$ $\left(\mathrm{M}^{+}\right)$278.1783, found 278.1788.

e

$\operatorname{lom}_{\square 150}$

等

29c: $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 724.3301

\vdots

30a: $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 652.3301

pom

31a: $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}$

pom

35b: $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 448.2362

\vdots

$\sqrt{2=0}$

a

37: $\mathrm{C}_{19} \mathrm{H}_{1} \mathrm{NO}_{3}$ Exact Mass: 309.1365

pomm 150 ,

46: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$
Exact Mass: 305.1627

$$
\text { 50: } \mathrm{C}_{23} \mathrm{H}_{9} \mathrm{NO}_{2}
$$

51: $\mathrm{C}_{23} \mathrm{H}_{2}, \mathrm{NO}_{2}$
Exact Mass: 343.1572

54: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 203.0946

57: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}$ Exact Mass: 333.1729

59: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}$
Exact Mass: 355.1572

65: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ Exact Mass: 279.1259

66: $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2}$
Exact Mass: 357.1729

69: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$ Exact Mass: 278.1783

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \&	lution	Factor with	ISTDs	
Signal 1: DAD1 A,	$i g=254$	$4 \operatorname{Ref}=360,1$		
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \frac{\%}{\circ} \end{gathered}$
18.217 BB	0.4406	97.17242	2.67008	0.4740
220.347 BB	0.6997	2.04054 e 4	454.61688	99.5260
Totals :		2.05026 e 4	457.28696	
Results obtained	ith en	hanced integ	ator:	

```
2% IPA in hexanes }0.8\textrm{mL}/\textrm{min
chiralcel OJ
```

Injection Date : 1/7/04 1:15:54 PM
Sample Name : ah-II-88-oc Location : Vial 81
Acq. Operator : audris
Inj Volume : $5 \mu \mathrm{l}$
Method : C: \HPCHEM $\backslash 1 \backslash M E T H O D S \backslash A H C H I R A L . M$
Last changed : 1/7/04 9:57:51 AM by audris
(modified after loading)
DAD1 A, $\operatorname{Sig}=254,4$ Ref $=360,100$ (AUDRISIAHII88.D)

Area Percent Report	
Sorted By	Signal
Multiplier	1.0000
Dilution	1.0000

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	67.953	MM	7.2537	8721.76465	20.03967	100.0000
Totals	s :			8721.76465	20.03967	

Results obtained with enhanced integrator!
 *** End of Report ***
2% IPA in.hexanes $0.4 \mathrm{~mL} / \mathrm{min}$

Signal 1: DAD1 A, Sig $=254,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	112.113	MM	4.0394	1.41105 e 4	58.22099	98.7610
2	123.269	MM	3.4463	177.02098	$8.56090 \mathrm{e}-1$	1.2390
Tota	s			1. 42875 e 4	5.9 .07708	

Results obtained with enhanced integrator!


```
*** End of Report ***
```


[^0]: ${ }^{1}$ General experimental details have been described: Ando, S.; Minor, K. P.; Overman, L. E. J. Org. Chem. 1997, 62, 6379-6387. HPLC analyses to determine isomeric purity were calibrated with samples of the corresponding racemate.
 ${ }^{2}$ Villemin, D.; Martin, B. Synth. Commun. 1998, 28, 3201-3208.

[^1]: ${ }^{3}$ Fuji, K.; Kawabata, T.; Ohmori, T.; Shang, M.; Node, M. Heterocycles 1998, 47, 951-964.
 ${ }^{4}$ Munusamy, R.; Dhathathreyan, K. S.; Balasubramanian, K. K.; Venkatachalam, C. S. J. Chem. Soc., Perkin Trans. 2 2001, 7, 1154-1166.

[^2]: ${ }^{5}$ Kafka, S.; Klasek, A.; Kosmrlj, J. J. Org. Chem. 2001, 66, 6394-6399.

[^3]: ${ }^{6}$ Lakshmaiah, G.; Kawabata, T.; Shang, M.; Fuji, K. J. Org. Chem. 1999, 64, 1699-1704.

[^4]: ${ }^{7}$ Wright, S. W.; McClure, L. D.; Hageman, D. L. Tetrahedron Lett. 1996, 37, 4631-4634.

[^5]: ${ }^{8}$ Giannangeli, M.; Baiocchi, L. J. Heterocycl. Chem. 1982, 19, 891-895.
 ${ }^{9}$ Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem. 1998, 63, 6546-6553.

[^6]: ${ }^{10}$ Less selective conditions employed 2.2 equiv $\mathrm{NaH}, 2.2$ equiv oxindole substrate, and 1.0 equiv ditriflate $\mathbf{1 0}$. These reactions were conducted at $23^{\circ} \mathrm{C}$.

[^7]: ${ }^{11}$ Paquette, L. A.; Farkas, E.; Galemmo, R. J. Org. Chem. 1981, 46, 5434-5436.
 ${ }^{12}$ Reddy, S. H. K.; Chiba, K.; Sun, Y.; Moeller, K. D. Tetrahedron 2001, 57, 5183-5197.

[^8]: ${ }^{13}$ Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500-6503.

