Supporting Information: Detailed explanation considering the obtaining of the values of the difference in interaction energies of 1) mono- and dianionic arsenate in WT ArsC and 2) dianionic arsenate in WT and Arg16Ala ArsC.

1) The interaction energies of mono- and dianionic arsenate in WT ArsC are given by the energetic difference between the energy of the optimized complex and the optimized, isolated arsenate and non-complexed enzyme. These two interaction energies contain the same, unknown energy of the non-complexed enzyme, which cancels upon comparison.

$$\Delta \Delta E = \Delta E_{\rm m} - \Delta E_{\rm d} \tag{1}$$

with ΔE_m and ΔE_d the binding energy of mono- and dianionic arsenate in WT ArsC, which can be written as

$$\Delta E_{\rm m} = E_{\rm complex} - E_{\rm monoanion} - E_{\rm enzyme} \tag{2a}$$

$$\Delta E_{d} = E_{complex} - E_{dianion} - E_{enzyme}$$
 (2b)

with $E_{complex}$ and $E_{complex}$ the energy of the mono- and dianionic enzyme-substrate complex, $E_{monoanion}$ and $E_{dianion}$ the energy of the free mono- and dianion in gas phase and E_{enzyme} the energy of the non-complexed enzyme.

Since E_{enzyme} is equal in Eq. (2a) and Eq. (2b), Eq. (1) can be written as:

$$\Delta \Delta E = E_{\text{complex}} - E_{\text{monoanion}} - (E_{\text{complex}} - E_{\text{dianion}})$$
 (3)

<u>Table 1</u>: Numerical values calculated at the B3LYP/6-31+G** level. The values are given in a. u.

	$E_{complex}$	E _{mono-/dianion}	$E_{complex}$ - $E_{mono ext{-/dianion}}$
Monoanion	-5568.468	-2536.006	-3032.462
Dianion	-5567.870	-2535.278	-3032.592

$$\Delta\Delta E = E_{complex} - E_{monoanion} - (E_{complex} - E_{dianion}) = 0.130 \ a. \ u. = 81 \ kcal/mol$$

2) When comparing energetics between WT and Arg16Ala ArsC, ΔE_{enzyme} does not cancel out. However, interaction energies are calculated using the extracted geometry of the uncomplexed enzyme from the complexed one.

$$\Delta E_d = E_{complex} - E_{dianion} - E_{enzyme} \tag{4}$$

with $E_{complex}$ the energy of the dianionic enzyme-substrate complex, $E_{dianion}$ the energy of the free dianion in gas phase and E_{enzyme} the energy of the non-complexed enzyme with the geometry extracted from the optimized enzyme-substrate complex.

<u>Table 2</u>: Numerical values calculated at the B3LYP/6-31+ G^{**} level. The values are given in a. u.

	$E_{complex}$	$oldsymbol{E}_{substrate}$	E _{enzyme}	ΔE_d
WT	-5567.870	-2535.272	-3032.207	-0.391
R16Ala	-5284.400	-2535.265	-2748.940	-0.195

 $\Delta\Delta E = \Delta E_{d(WT)}$ - $\Delta E_{d(Arg16Ala)} =$ -0.196 a. u. = -123 kcal/mol