One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals

Y. Charles Cao*, and Jianhui Wang
Department of Chemistry, University of Florida, Gainesville, FL 32611

Measurement of the number of stable nuclei in the synthesis of CdS nanocrystals

In the nanocrystal nucleation stage, two types of nuclei are often formed: (a) unstable nuclei and (b) stable nuclei. While unstable nuclei will dissolve with particle growth, the stable ones will grow to form nanocrystals. Therefore, the number of stable nuclei $\left(\mathrm{N}_{\mathrm{sn}}\right)$ is equal to the number of nanocrystals $\left(\mathrm{N}_{\mathrm{n}}\right)$ in the growth stage, and so the concentration of stable nuclei $\left(\mathrm{C}_{\mathrm{sn}}\right)$ is equal to the concentration of nanocrystals $\left(\mathrm{C}_{\mathrm{n}}\right)$. In other words, the concentration of stable nuclei can be obtained by measuring the concentration of nanocrystals in the growth stage.

$$
\begin{align*}
& \mathrm{N}_{\mathrm{sn}}=\mathrm{N}_{\mathrm{n}} \tag{1}\\
& \mathrm{C}_{\mathrm{sn}}=\mathrm{C}_{\mathrm{n}} \tag{2}
\end{align*}
$$

Finally, we can obtain the number of stable nuclei by Eq. 3 .

$$
\begin{equation*}
\mathrm{N}_{\mathrm{sn}}=\mathrm{C}_{\mathrm{sn}} * \mathrm{~V}_{0}=\mathrm{C}_{\mathrm{n}} * \mathrm{~V}_{0} \tag{3}
\end{equation*}
$$

Where, V_{0} is the volume of solution during the nucleation stage
In this paper, UV-Vis spectrometry is used to measure the concentration of nanocrystals in the synthesis (Eq. 4).
$\mathrm{C}_{\mathrm{n}}=\mathrm{A} /\left(\varepsilon^{*} l\right)$
Where, ε is the absorption coefficient at the first absorption peak of the nanocrystals, l is pathlength, and A is absorbance.
$\mathrm{C}_{\mathrm{n} 1} / \mathrm{C}_{\mathrm{n} 2}=\left[\left(\mathrm{A}_{1} /\left(\varepsilon_{1} *\right)\right] /\left[\left(\mathrm{A}_{2} /\left(\varepsilon_{2} * l\right)\right]\right.\right.$
$\mathrm{C}_{\mathrm{n} 1} / \mathrm{C}_{\mathrm{n} 2}=\mathrm{A}_{1} / \mathrm{A}_{2}$
$\mathrm{N}_{\mathrm{sn} 1} / \mathrm{N}_{\mathrm{sn} 2}=\mathrm{A}_{1} / \mathrm{A}_{2}$

The absorption coefficient (ε) depends on the size of the nanocrystals, and same-sized CdS particles have a nearly identical absorption coefficient regardless of their surface passivation. ${ }^{1}$ Therefore, when measuring same-sized particles in different reactions, Eq. 5 becomes Eq. 6 . Then the combination of Eqs. 6 and 3 yields Eq. 7. So, the ratio between the numbers of stable nuclei in two different reactions equals that of the optical density of the aliquots. In other words, Eq. 7 allows the comparison among the numbers of nuclei in different reactions without knowing the absorption coefficients of the nanocrystals.

Six syntheses were carried out to check the effect of I_{2} on the number of stable nuclei. The amount of chemicals except I_{2} was kept the same as in the typical experiment (main text). The ratios of S : I_{2} were $1: 1 / 32,1: 1 / 16,1: 1 / 8,1: 1 / 4,1: 3 / 8$, and $1: 1 / 2$. In each synthesis at least three different-sized particles were chosen to evaluate the number of stable nuclei. Then, the number of stable nuclei was normalized with that found in the synthesis when the ratio of $S: I_{2}$ was $1: 1 / 32$. The relative number of nuclei as a function of the ratio of S : I_{2} is shown in Figure 2A in main text (solid boxes). In addition, three syntheses were carried out to check the effect of I_{1} on the number
of stable nuclei. The relative number of nuclei as a function of the ratio of $S: I_{1}$ is shown in Supporting Figure 1 (solid boxes).

Supporting Figure 1. The number of stable nuclei in the synthesis with different $\mathrm{S}: \mathrm{I}_{1}$ ratios. The number of stable nuclei increases with the amount of initiator I_{1}.

Sample preparation for X-ray diffraction (XRD).

Powder X-ray diffraction patterns were measured on a Philips APD 3720 X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Approximately 8 mg of CdS nanocrystals were dispersed in a minimum volume of toluene. The nanocrystal solution was deposited onto low-scattering quartz plates, and the solvent was evaporated under mild vacuum.

Reference:

1. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
