Supplementary Information

on
On the Reaction of 1-Oxa-4-thiaspiro[4.5]decan-7-one with PhLi. A Reinvestigation

Veejendra K. Yadav, ${ }^{*}{ }^{\mathrm{a}}$ Govindaraji Senthil, ${ }^{\text {a }}$ Latika Singh ${ }^{\text {a }}$ and Masood Parvez ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology, Kanpur-208 016, India
${ }^{\mathrm{b}}$ Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

vijendra@iitk.ac.in

CONTENTS

General experimental details S1
Preparation of PhLi S1
Addition of PhLi to 1-oxa-4-thiaspiro[4.5]decan-3-one in $\mathrm{Et}_{2} \mathrm{O}$ or THF S1
Addition of PhLi to 1-oxa-4-thiaspiro[4.5]decan-3-one in 3:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane S1
Typical Procedure for the Reaction of 1-oxa-4-thiaspiro[4.5]decan-3-one with PhMgBr S2
Procedure for the Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with NaBH_{4} S2
Procedure for the Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}$ S3
Procedure for the Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with L-Selectride in THF S3
Procedure for Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with DIBAL-H in Toluene S4
Spectral data on $\mathbf{1}$ and 2a S4
Spectral data on $\mathbf{2 b}$ and $\mathbf{4 a}$ and $\mathbf{4 b}$ S5
ORTEP plot of $\mathbf{2 a}$ S6
ORTEP plot of $\mathbf{2 b}$ S7
ORTEP plot of $\mathbf{5 b}$ S8

General. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded of samples dissolved in CDCl_{3}. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced, respectively, to the residual CHCl_{3} at $\delta 7.27$ and the central line of CDCl_{3} resonance at $\delta 77.0$. The reactions were performed in an atmosphere of dry argon. After aqueous workup, the solvents were removed on a rotovap under reduced pressure at $30{ }^{\circ} \mathrm{C}$. The separations were effected by radial chromatography over silica gel. Mixtures of hexanes and EtOAc were used as the eluent. $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane used for the reactions were distilled afresh from LiAlH_{4} under argon atmosphere.

Preparation of PhLi: n-Butyllithium (2.0 M solution, 1.5 mL) was slowly added to a solution of bromobenzene $(0.315 \mathrm{~mL}, 3.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$. The resultant solution was stirred at the same temperature for 15 min to give a solution of $\operatorname{PhLi}(0.67 \mathrm{M})$.

Addition of PhLi to 1-oxa-4-thiaspiro[4.5]decan-3-one in $\mathbf{E t}_{2} \mathbf{O}$ or THF: $\operatorname{PhLi}(0.76 \mathrm{~mL}, 0.67$ M in $\mathrm{Et}_{2} \mathrm{O}, 0.51 \mathrm{mmol}$) was added to a stirred solution of 1-oxa-4-thiaspiro[4.5]decan-3-one (35 $\mathrm{mg}, 0.203 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ or THF (3.2 mL) at $-70{ }^{\circ} \mathrm{C}$ and the contents were stirred at the same temperature for 60 min . The reaction was then quenched with $\mathrm{MeOH}(0.51 \mathrm{~mL}, 12.5 \mathrm{mmol})$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, and concentrated afforded the alcohols.

Addition of PhLi to 1-oxa-4-thiaspiro[4.5]decan-3-one in 3:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane: $\mathrm{PhLi}\left(0.76 \mathrm{~mL}, 0.67 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.51 \mathrm{mmol}\right)$ was added, all at once, to a stirred solution of 1-oxa-4-thiaspiro[4.5]decan-3-one ($35 \mathrm{mg}, 0.203 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.3 \mathrm{~mL})$ and hexane $(1.0 \mathrm{~mL})$ at -70
${ }^{\circ} \mathrm{C}$ so that the desired solvent composition was eventually $3: 1$. The contents were stirred at -78 ${ }^{\circ} \mathrm{C}$ for 60 min . The reaction was quenched with $\mathrm{MeOH}(0.51 \mathrm{~mL}, 12.5 \mathrm{mmol})$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, and concentrated to afford the alcohols.

Typical procedure for the reaction of 1-oxa-4-thiaspiro[4.5]decan-3-one with PhMgBr . A

 0.18 M solution of PhMgBr was prepared from the reaction of Mg powder and bromobenzene in $\mathrm{Et}_{2} \mathrm{O}$ at $25{ }^{\circ} \mathrm{C}$. This (0.18 mL) was added to a $-70{ }^{\circ} \mathrm{C}$ cooled solution of 1-oxa-4-thiaspiro[4.5]decan-3-one $(0.015 \mathrm{~g}, 0.08 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The contents were stirred at $70{ }^{\circ} \mathrm{C}$ for 60 min , quenched with MeOH (5 equivalents), and allowed to warm up to $20^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x}$ 5 mL). The organic solution was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed on a rotovap under reduced pressure. The residue that could be purified for its components by radial chromatography was filtered through a short column of silica gel.For the reactions in mixtures of $\mathrm{Et}_{2} \mathrm{O}$ and hexane, the Grignard reagent was prepared in $\mathrm{Et}_{2} \mathrm{O}$ as usual and its requisite amount added to a solution of 1-oxa-thiaspiro[4.5]decan-3-one in a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane. The ratio of the solvents was such that the desired solvent proportion was achieved after all the Grignard solution had been added.

Procedure for the reduction of $\mathbf{1 - o x a}$-4-thiaspiro[4.5]decan-3-one with $\mathbf{N a B H}_{4} . \mathrm{NaBH}_{4}$ $(0.46 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added to a stirred solution of 1-oxa-4-thiaspiro[4.5]decan-3-one $(0.172 \mathrm{~g}$, $1 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resultant was stirred for 30 min when the reaction was found to be complete by TLC. MeOH was removed, the residue was taken with saturated $\mathrm{NH}_{4} \mathrm{Cl}$
$(2 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). The organic extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed to obtain a mixture of alcohols.

Procedure for the Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with $\mathbf{N a}(\mathbf{C N}) \mathbf{B H}_{3}$. A

 small crystal crystal of methyl orange was added to a solution of 1-oxa-4-thiaspiro[4.5]decan-3one $(0.172 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. The solution turend yellow. A few drops of 1 N HCl in MeOH were added so that the solution turned red. Now, $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}(1.2 \mathrm{mmol})$ was added in portions. Whenever the color of the reaction mixture started to turn yellow during this addition, drops of HCl were immediately added to restore the red color. After completion of the reaction, it was concentrated and mixed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The products were extracted into EtOAc (2 x 5 mL). The combined extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed to obtain a mixture of alcohols.Procedure for the Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with L-Selectride in THF/Toluene. A solution of L-Selectride in THF ($1.0 \mathrm{M}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a stirred solution of 1-oxa-4-thiaspiro[4.5]decan-3-one ($0.172 \mathrm{~g}, 1 \mathrm{mmol}$) in the chosen solvent $(2.5 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$. The stirring was continued at this temperature for 30 min . $\mathrm{MeOH}(1 \mathrm{~mL}), 1 \mathrm{~N}$ $\mathrm{NaOH}(1 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ were added and the reaction mixture was allowed to warm up to $25{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The product was extracted into EtOAc ($2 \times 5 \mathrm{~mL}$) and the organic extract was washed with brine and dried. The residue obtained from solvent removal was filtered through a silica gel column to furnish a mixture of alcohols.

Procedure for Reduction of 1-oxa-4-thiaspiro[4.5]decan-3-one with DIBAL-H in Toluene.
A solution of DIBAL-H in toluene ($1.0 \mathrm{M}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a stirred solution of 1-oxa-4-thiaspiro[4.5]decan-3-one $(0.172 \mathrm{~g}, 1 \mathrm{mmol})$ in toluene $(6 \mathrm{~mL})$ at $-70{ }^{\circ} \mathrm{C}$. The stiring was continued aat this temperature for 30 min and the reaction was quenched with 5% aqueous $\mathrm{HCl}(3 \mathrm{~mL})$. The products were extracted into EtOAc ($2 \times 5 \mathrm{~mL}$) followed by washing with brine, drying, removal of the solvents, and filtration of the residue through a short silica gel column to furnish a mixture of alcohols.

1 (liquid). ${ }^{1} \mathrm{H}$ NMR $\delta 4.19-4.11(2 \mathrm{H}, \mathrm{m}), 3.16-3.07(2 \mathrm{H}, \mathrm{m}), 2.85-2.81(1 \mathrm{H}, \mathrm{td}, J=14.4,1.5$ $\mathrm{Hz}), 2.78(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 2.41-2.29(2 \mathrm{H}, \mathrm{m}), 2.28-2.20(1 \mathrm{H}, \mathrm{m}), 2.15-2.07(1 \mathrm{H}, \mathrm{m}), 2.06-$ $1.95(1 \mathrm{H}, \mathrm{m}), 1.95-1.83(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\delta 207.4,95.2,70.2,55.2,40.0,38.3,33.7,21.8$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 55.78 ; \mathrm{H}, 7.02$. Found: C, 55.62; H, 6.90.

2a (mp $\left.94{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.51-7.21(5 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{s}), 4.29-4.21(2 \mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{t}$, $J=5.8 \mathrm{~Hz}), 2.33-2.28(1 \mathrm{H}, \mathrm{td}, J=14.4$ and 2.4 Hz$), 2.27-2.20(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz})$, 2.13-2.03 (1H, m), 1.87-1.71 (4H, m). ${ }^{13} \mathrm{C}$ NMR $\delta 147.5,128.0,126.6,124.4,94.3,74.6,70.7$, 49.8, 38.7, 37.6, 32.8, 19.5. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.16 ; \mathrm{H}, 7.25$. Found: C, 67.00; H, 7.10 .

2b (mp $\left.82{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.61-7.23(5 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{s}), 4.19-4.08(2 \mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{t}$, $J=6.0 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{s}), 2.41(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{d}, J=12.6$ $\mathrm{Hz}), 2.07-1.90(1 \mathrm{H}, \mathrm{m}), 1.88-1.70(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\delta 147.5,128.0,126.6,124.4,94.3,74.6$, 70.7, 49.8, 38.7, 37.6, 32.8, 19.5; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.16$; H, 7.25. Found: C, 67.03; H, 7.12.

4 (liquid). ${ }^{1} \mathrm{H}$ NMR $\delta 4.83-4.75(1 \mathrm{H}, \mathrm{tt}, J=10.7$ and 4.2 Hz$), 4.17(2 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}), 3.11-3.00$ $(2 \mathrm{H}, \mathrm{m}), 2.31-2.27(1 \mathrm{H}, \mathrm{bd}, J=12.0 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.02-1.80(3 \mathrm{H}, \mathrm{m}), 1.73-1.66(2 \mathrm{H}, \mathrm{m})$, $1.51-1.40(1 \mathrm{H}, \mathrm{tq}, J=12.7$ and 3.6 Hz$), 1.33-1.22(1 \mathrm{H}, \mathrm{dq}, J=12.2$ and 4.2 Hz$) ;{ }^{13} \mathrm{C}$ NMR δ 170.2, $95.6,71.8,69.6,44.9,39.0,33.1,30.6,21.3,21.2$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.53$; H, 7.46. Found: C, 55.44; H, 7.32.

4b (liquid). ${ }^{1} \mathrm{H}$ NMR $\delta 5.00-4.92(1 \mathrm{H}, \mathrm{tt}, J=10.2$ and 4.2 Hz$), 4.19-4.09(2 \mathrm{H}, \mathrm{tq}, J=9.5$ and 5.9 $\mathrm{Hz}), 3.06(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 2.39-2.34(1 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.01-1.95(1 \mathrm{H}, \mathrm{m}), 1.95-1.89(1 \mathrm{H}$, m), 1.86-1.80 $(1 \mathrm{H}, \mathrm{dd}, J=13.2$ and 10.2 Hz$), 1.74-1.67(3 \mathrm{H}, \mathrm{m}), 1.39-1.29(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR δ 170.3, 93.5, 70.6, 69.9, 44.0, 38.7, 33.3, 30.1, 21.3, 20.8. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.53$; H, 7.46. Found: C, 55.38; H, 7.25.

Figure 1. ORTEP plot of 2a. Selected bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$: S1-C1 1.792(4), S1-C3 1.846(3), O1-C2 1.424(4), O1-C3 1.422(3), O2-C5 1.425(3), C1-S1-C3 91.9(2), C2-O1-C3 110.8(3), S1-C3-O1 104.6(2), O2-C5-C4 109.8(2), O2-C5-C6 105.3(2), O2-C5-C9 110.0(3), S1-C3-C4-C5-73.2(3), O1-C3-C4-C5 173.0(2), O2-C5-C4-C3 65.0(3), O2-C5-C9-C14 133.4(3), O2-C5-C9-C10-49.3(4).

Figure 2. ORTEP plot of 2b. Selected bond lengths (\AA), bond angles (degrees) and torsion angles (degrees): S1-C1 1.782(5), S1-C3 1.851(4), O1-C2 1.384(5), O1-C3 1.422(5), O2-C7 1.431(5), C1-S1-C3 93.1(2), C2-O1-C3 113.1(4), S1-C3-O1 105.6(3), O2-C7-C8 108.7(3), O2-C7-C6 109.3(4), O2-C7-C9 107.4(4), S1-C3-C8-C7 176.1(3), O1-C3-C8-C7-67.6(5), O2-C7-C8-C3 69.4(5), O2-C7-C9-C14 175.2(4), O2-C7-C9-C10 -6.6(6).

Figure 3. ORTEP plot of $\mathbf{5 b}$. Selected bond lengths (\AA), bond angles (degrees) and torsion angles (degrees): S1-C1 1.804(3), S1-C3 1.852(3), O1-C2 1.387(6), O1-C3 1.419(3), C1-S1-C3 92.18(14), C2-O1-C3 113.60(3),O1-C3-S1 106.16(18), O1-C3-C4-C5-67.10(3), S1-C3-C4-C5 176.37(18), O2-C5-C4-C3 177.20(2).

