Direct Chemical Synthesis of the β-Mannans: the β-($1 \rightarrow 2$)- and β-($1 \rightarrow 4$)-

Series

David Crich, * Abhisek Banerjee, and Qingjia Yao

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7061

Entry	Page
Preparation of Thioglycoside 2	$\mathrm{S}-3$
Preparation of Sulfoxide $\mathbf{3}$	$\mathrm{S}-4$
General protocol for the sulfoxide glycosylation	$\mathrm{S}-4$
General procedure for removal of the PMB group with DDQ	$\mathrm{S}-5$
Preparation of monosaccharide $\mathbf{4}$	$\mathrm{S}-5$
Preparation of monosaccharide $\mathbf{5}$	$\mathrm{S}-6$
Preparation of disaccharide $\mathbf{6}$	$\mathrm{S}-6$
Preparation of disaccharide $\mathbf{7}$	$\mathrm{S}-7$
Preparation of trisaccharides $\mathbf{8}$ and $\mathbf{9}$	$\mathrm{S}-8$
Preparation of trisaccharide $\mathbf{1 0}$	$\mathrm{S}-9$
Preparation of tetrasaccharides $\mathbf{1 1}$ and $\mathbf{1 2}$	$\mathrm{S}-10$
Preparation of tetrasaccharide $\mathbf{1 3}$	$\mathrm{S}-11$
Preparation of pentasaccharides $\mathbf{1 4}$ and $\mathbf{1 5}$	$\mathrm{S}-12$
Preparation of pentasaccharide $\mathbf{1 6}$	$\mathrm{S}-14$
Preparation of hexasaccharide $\mathbf{1 7}$	$\mathrm{S}-15$
Preparation of hexasaccharide $\mathbf{1 9}$	$\mathrm{S}-16$
Preparation of heptasaccharides $\mathbf{2 2}$ and $\mathbf{2 3}$	$\mathrm{S}-17$
Preparation of octasaccharides $\mathbf{2 4}$ and $\mathbf{2 5}$	$\mathrm{S}-19$
Deprotection and isolation of the mannan $\mathbf{2 8}$	$\mathrm{S}-21$
Preparation of disaccharides $\mathbf{3 0}$ and $\mathbf{3 1}$	$\mathrm{S}-22$
Preparation of monosaccharide $\mathbf{3 2}$	$\mathrm{S}-23$
Preparation of disaccharides $\mathbf{3 3}$ and $\mathbf{3 4}$	$\mathrm{S}-24$
Preparation of monosaccahride $\mathbf{3 5}$	$\mathrm{S}-26$
Preparation of monosaccharide $\mathbf{3 6}$	$\mathrm{S}-26$
Preparation of disaccharides $\mathbf{3 7}$ and $\mathbf{3 8}$	$\mathrm{S}-27$

Preparation of disaccharide 39	S-28
Preparation of disaccharide 40	S-29
Preparation of trisaccharides 41 and 42	S-30
Preparation of trisaccharide 43	S-32
Preparation of trisaccharide 44	S-32
Preparation of tetrasaccharides 45 and 46	S-33
Preparation of tetrasaccharide 47	S-35
Preparation of tetrasaccharide 48	S-36
Preparation of pentasaccharides 49 and 50	S-37
Preparation of pentasaccharide 51	S-39
Preparation of pentaccharide 52	S-40
Preparation of hexasaccharides 53 and 54	S-41
Preparation of hexasaccharide 55	S-43
Deprotection and isolation of the mannan 56	S-44
References	S-45
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide 4	S-46
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide 5	S-47
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 6	S-48
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 7	S-49
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for trisaccharide $\mathbf{8}$	S-50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for trisaccharide 9	S-51
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for trisaccharide 10	S-52
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide $\mathbf{1 1}$	S-53
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide 12	S-54
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide $\mathbf{1 3}$	S-55
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for pentasaccharide 14	S-56
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide 15	S-57
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide 16	S-58
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for hexasaccharide 17	S-59
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for hexasaccharide 19	S-60
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for heptasaccharide 22	S-61
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for heptasaccharide 23	S-62
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for octasaccharide 26	S-63
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for octasaccharide 27	S-64
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for mannan 28	S-65
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide $\mathbf{3 0}$	S-66
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide 31	S-67
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide 32	S-68
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 33	S-69
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 34	S-70
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for monosaccharide 35	S-71
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for monosaccharide 36	S-72
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 37	S-73
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 38	S-74
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 39	S-75

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for disaccharide 40	S-76
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for trisaccharide 41	S-77
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for trisaccharide 42	S-78
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for trisaccharide 43	S-79
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for trisaccharide 44	S-80
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide 45	S-81
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide 46	S-82
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide 47	S-83
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for tetrasaccharide 48	S-84
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide 49	S-85
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide $\mathbf{5 0}$	S-86
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide $\mathbf{5 1}$	S-87
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for pentasaccharide 52	S-88
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for hexasaccharide 53	S-89
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for hexasaccharide 54	S-90
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for hexasaccharide 55	S-91
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra for mannan 56	S-92

Ethyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl-1-thio- α-D-mannopyr-

anoside (2). To a stirred mixture of ethyl 4,6-O-benzylidene-3- O-benzyl-1-thio- α-Dmannopyranoside $\mathbf{1}^{1}(9.29 \mathrm{~g}, 20.6 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(1.52 \mathrm{~g}, 4.12 \mathrm{mmol})$ in DMF (250 $\mathrm{mL}), \mathrm{NaH}$ was added at $0^{\circ} \mathrm{C}$. After 20 minutes, $\mathrm{PMBCl}(3.63 \mathrm{~mL}, 26.8 \mathrm{mmol})$ was slowly added to the above mixture, which was then warmed to room temperature and stirred overnight. The reaction mixture was quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ followed by removal of DMF by rotary evaporation under reduced pressure. The residue was taken up in EtOAc (150 mL), washed with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and purification by column chromatography over silica gel (eluent: hexane/ethyl acetate $=10: 1)$ afforded compound $2(8.11 \mathrm{~g}, 15.5 \mathrm{mmol})$ as a syrup in 75% yield. $[\alpha]_{\mathrm{D}}+63.1\left(c, 3.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right), \delta: 7.52-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.38 (m,10H), $6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 3 \mathrm{H})$,
$3.81(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.62$, $137.81,130.31,129.91,128.98,128.45,128.34,127.74,127.69,126.63,113.90,101.60$, $93.74,79.41,77.74,76.57,73.14,72.84,68.77,64.76,55.44,25.49,15.10$. Anal. Calcd. For $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 68.94, \mathrm{H}, 6.56$. Found: C, 68.79; H, 6.60 .

Ethyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl-1-thio- α-D-mannopyr-

 anoside \boldsymbol{S}-oxide (3). To a stirred solution of $\mathbf{2}(8.11 \mathrm{~g}, 15.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added $90 \% \mathrm{~m}$-CPBA $(2.97 \mathrm{~g}, 15.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h , warmed to $-20^{\circ} \mathrm{C}$, and quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The solution was washed with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and recrytallization from ethyl acetate and hexane gave 3 (7.00 g , $13.0 \mathrm{mmol})$ as a crystalline solid in 84% yield. M.p.: $106 \pm 1^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+15.0(c, 2.5$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 10 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.82(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=$ $9.6,1 \mathrm{H}), 4.20(\mathrm{dd}, J=4.5 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.70-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, $\delta: 159.64,138.26,137.33,130.25,129.75,129.17,128.49,128.39,127.81,127.77$, $126.17,114.01,101.72,92.84,78.02,76.26,73.72,73.23,72.60,70.21,68.31,55.43$, 44.15, 6.04. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 66.89 ; \mathrm{H}, 6.36$. Found: C, 68.68; H, 6.43.General procedure for the sulfoxide glycosylation. A mixture of sulfoxide (1.0 equiv, 0.03 M .), TTBP (2.0 equiv), and molecular sieves (1.0 weight equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Tf}_{2} \mathrm{O}$ (1.1 equiv) was added at this temperature. After 10
min, acceptor (1.0 M , for specific amounts, see the products below) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added. The solution was further stirred for 4 h at $-78{ }^{\circ} \mathrm{C}$, slowly warmed to $-30{ }^{\circ} \mathrm{C}$, quenched with MeOH and filtered. The filtrate was washed with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and purification by column chromatography over silica gel afforded the corresponding mannopyranosides.

General procedure for removal of the PMB group with DDQ. To a solution of the 2-O-PMB protected-D-mannopyranosides $(0.03 \mathrm{M})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(17 / 1)$ was added DDQ (2.3 equiv) at $0{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was warmed to room temperature and further stirred for 1 h before it was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The organic phase was washed with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and purification by column chromatography over silica gel provided the corresponding alcohol.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-

 oside (4). Coupling of sulfoxide $3(1.50 \mathrm{~g}, 2.78 \mathrm{mmol})$ and cyclohexanol ($0.59 \mathrm{~mL}, 5.56$ $\mathrm{mmol})$ by the standard coupling protocol gave β-D-mannopyranoside $4(1.20 \mathrm{~g}, 2.14$ $\mathrm{mmol})$ as a syrup in 77% yield without a detectable amount of α-anomer. $[\alpha]_{\mathrm{D}}-57.1(c$, 4.4, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.50-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.28-7,38(\mathrm{~m}, 10 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=4.7,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=3.0 \mathrm{~Hz} 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$,$3.70-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.36(\mathrm{~m}, 1 \mathrm{H}), 1.20-2.00(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.30,138.61,137.82,130.54,128.41,128.32,127.63$, $126.20,113.62,101.49,78.77,78.25,74.22,72.38,68.85,67.68,55.42,33.53,31.60$, 22.58, 22.90, 23.76; ESIHRMS Calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 583.2627$; found, 583.2687.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyranoside (5). Removal of the PMB group from compound $4(1.08 \mathrm{~g}, 1.91 \mathrm{mmol})$ with by the general procedure afforded alcohol $5(0.71 \mathrm{~g}, 1.62 \mathrm{mmol})$ in 85% yield. $[\alpha]_{\mathrm{D}}-20.0(c$, 3.1, $\left.\mathrm{CHCl}_{3}\right)$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.28-7.53(\mathrm{~m}, 10 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}) .4 .86(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H}), 1.18-2.04(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.34$, $137.72,129.13,128.60,128.39,128.04,126.28,101.63,98.24,78.61,77.18,77.14$, 72.53, 68.81, 67.04, 33.62, 31.76, 25.73, 24.30, 24.23; ESIHRMS: Calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 463.2121$; found: 463.2100.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-

 osyl-(1 $\boldsymbol{\rightarrow} \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (6). Coupling of sulfoxide $3(1.52 \mathrm{~g}, 2.82 \mathrm{mmol})$ and acceptor $97(0.62 \mathrm{~g}, 1.41 \mathrm{mmol})$ by the standard coupling protocol gave the β-D-mannopyranoside $\mathbf{6}(1.29 \mathrm{~g}, 1.34 \mathrm{mmol})$ as a syrup in 94% yield without any detectable α-anomer. $[\alpha]_{\mathrm{D}}-97.2\left(c, 0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR$\left(\mathrm{CDCl}_{3}\right), \delta: 7.22-7.55(\mathrm{~m}, 22 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.02$ (dd, $J=11.9 \mathrm{~Hz}, 30.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.33-$ $4.37(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})), 3.80(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.66$ (dd, $J=3.2 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 2 \mathrm{H}), 1.18-$ $2.04(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.50,139.20,138.85,137.91,131.45,131.03$, $129.30,129.19,128.63,128.58,128.00,127.84,127.78,126.47,113.87,104.51,101.96$, 101.74, 99.40, 78.86, 78.42, 77.55, 76.54, 76.50, 74.76, 74.27, 71.62, 69.27, 69.19, 68.13, 67.87, 33.72, 31.69, 25.94, 24.11, 23.86; ESIHRMS: Calcd. for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{O}_{12} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 923.3982; found, 923.3972.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (7). Removal of the PMB group from disaccharide $\mathbf{6}(1.75 \mathrm{~g}, 1.95 \mathrm{mmol})$ by the general procedure afforded the alcohol 7 (1.42 $\mathrm{g}, 1.89 \mathrm{mmol})$ in 97% yield. $[\alpha]_{\mathrm{D}}-48.4\left(c, 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.31-7.51$ $(\mathrm{m}, 20 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=12.5 \mathrm{~Hz} 1 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.36(\mathrm{~m}, 5 \mathrm{H}), 4.12(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.67(\mathrm{~m}, 2 \mathrm{H})$, 3.32-3.39 (m, 2H), 1.18-2.04 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.76,138.72,138.00$, $137.85,129.29,128.72,128.61,128.21,127.95,126.46,101.89,101.83,101.34,99.27$, $78.75,78.51,77.05,76.84,74.83,72.48,72.24,69.53,69.14,68.96,67.78,67.72,33.63$, 31.78, 25.89, 24.69, 23.93; ESIHRMS, Calcd. for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 803.3407$; found, 803.3466.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-osyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (8) and Cyclohexyl 3-O-Benzyl-4,6-O-ben-zylidene-2-O-p-methoxybenzyl- α-D-mannopyranosyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6-O-benz-ylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (9). Sulfoxide $3(2.62 \mathrm{~g}, 4.87 \mathrm{mmol})$ coupled with dimeric alcohol $7(1.90 \mathrm{~g}$, $2.43 \mathrm{mmol})$ by the standard coupling protocol to give β-D-mannopyranoside $8(2.51 \mathrm{~g}$, $2.16 \mathrm{mmol})$ as a foam in 89% yield along with its α-anomer $9(0.25 \mathrm{~g}, 0.22 \mathrm{mmol})$ in 9% yield. 8: $[\alpha]_{\mathrm{D}}-98.3\left(c, 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 7.13-7.48(\mathrm{~m}, 32 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60-4.89(\mathrm{~m}, 7 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=3.2 \mathrm{~Hz} 1 \mathrm{H}), 4.35(\mathrm{dd}, J=4.7 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=4.7,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=4.7 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=3.1 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=3.2 \mathrm{~Hz}$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.43(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.90(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 158.83,138.75,138.38,137.63,137.51,137.09,130.92$, $130.52,128.91,128.75,128.25,128.22,128.18,128.15,128.05,127.59,127.29,127.18$, $127.03,126.11,126.06,125.97,113.45,103.65,103.49,101.61,101.56,101.21,98.85$, $78.70,78.51,78.46,78.19,77.91,76.38,76.06,75.85,74.45,73,93,72.09,71.57,70.76$, 68.86, 68.82, 68.67, 67.69, 67.59, 67.35, 54.90, 33.39, 31.28, 25.46, 23.77, 23.46. ESIHRMS, Calcd. for $\mathrm{C}_{74} \mathrm{H}_{84} \mathrm{O}_{17} \mathrm{~N}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 1258.5739; found: 1258.5753. 9: $[\alpha]_{\mathrm{D}}-44.4$
$\left(c, 6.7, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 7.14-7.60(\mathrm{~m}, 32 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}$, $1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.89(\mathrm{~m}, 6 \mathrm{H}), 4.53-4.59(\mathrm{~m}, 5 \mathrm{H}), 4.49$ $(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ $4.29(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=3.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=10.3 \mathrm{~Hz} 1 \mathrm{H}), 3.88$ $(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=2.6 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{dd}, J=3.7 \mathrm{~Hz}, 10.1 \mathrm{~Hz} 1 \mathrm{H}), 3.39-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.24(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.20,130.68,129.71,129.16,128.65,128.46,128.28$, 128.25, 128.16, 128.09, 127.97, 127.72, 127.46, 127.29, 126.25, 126.15, 113.69, 103.26, $101.68,101.52,100.70,99.35,99.32,79.80,79.33,78.77,77.29,76.79,76.50,76.10$, $73.57,73.36,72.71,72.61,71.16,68.83,68.80,68.02,67.98,64.25,55.40,33.56,31.665$, 25.78, 23.83, 23.65; ESIHRMS, Calcd. for $\mathrm{C}_{74} \mathrm{H}_{80} \mathrm{O}_{17} \mathrm{Na}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 1258.5293; found: 1258.5306.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-D-mannopyran-osyl-(1 \rightarrow 2)-3-O-benzyl-

 4,6-O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-dmannopyranoside (10). Removal of the PMB group from trisaccharide 8 (0.313 g , $0.252 \mathrm{mmol})$ by the general procedure afforded alcohol $10(0.258 \mathrm{~g}, 0.227 \mathrm{mmol})$ as a foam in 91% yield $[\alpha]_{\mathrm{D}}-58.9\left(c, 6.4, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 7.19-7.51(\mathrm{~m}, 30 \mathrm{H})$, $5.63(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.83(\mathrm{~m}, 6 \mathrm{H}), 4.67(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.36(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=4.7 \mathrm{~Hz}$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.66(\mathrm{~m}, 3 \mathrm{H})$, $3.53(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathrm{C}$NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.36,138.10,137.53,137.28,128.87,128.25,127.66,127.57$, $126.09,126.03,103.30,101.45,101.39,100.76,98.77,78.55,78.41,77.67,76.20,76.06$, $73.23,71.91,71.12,69.12,68.67,68.59,67.65,67.35,67.06,33.37,31.26,25.47,23.77$, 23.44; ESIHRMS, Calcd. for $\mathrm{C}_{66} \mathrm{H}_{76} \mathrm{O}_{16} \mathrm{~N}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 1138.5164$; found: 1138.5177.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-osyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene - β-d-mannopyranosyl-($\mathbf{1} \rightarrow \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene $\quad \beta$-Dmannopyranoside (11) and Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-meth-oxybenzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-d-manno-pyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene $\boldsymbol{\beta}$-d-mannopyranoside (12). Sulfoxide $\mathbf{3}$ (1.73 g, 3.21 $\mathrm{mmol})$ coupled with trisaccharide $\mathbf{1 0}(1.65 \mathrm{~g}, 1.47 \mathrm{mmol})$ by the standard coupling protocol to give β-D-mannopyranoside $11(1.80 \mathrm{~g}, 1.13 \mathrm{mmol})$ as a foam in 77% yield along with its α-anomer $\mathbf{1 2}(0.458 \mathrm{~g}, 0.294 \mathrm{mmol})$ in 20% yield. $\mathbf{1 1}:[\alpha]_{\mathrm{D}}-94.8(c, 3.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.10-7.52(\mathrm{~m}, 42 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, $5.50(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73-4.85(\mathrm{~m}, 8 \mathrm{H}), 4.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H})$, 4.52-4.54 (m, 2H), $4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.14-$ $4.26(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=9.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.48$ $(\mathrm{m}, 3 \mathrm{H}), 3.30-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 159.15,138.98$,
$138.89,138.74,138.21,137.92,137.58,137.50,131.96,130.27,129.35,129.05,128.73$, $128.69,128.64,128.61,128.53,128.50,128.39,128.14,127.97,127.80,127.75,127.64$, $127.54,127.48,126.54,126.52,126.48,126.46,113.81,104.63,103.67,102.42,102.24$, $102.05,101.86,101.61,99.03,79.83,79.72,79.00,78.73,78.70,76.96,76.90,76.74$, $75.99,74.74,74.17,72.59,72.56,71.36,71.11,69.64,69.23,69.18,69.08,68.14,68.06$, 67.98, 67.84, 55.41, 33.85, 31.63, 25.88, 24.22, 23.88, 16.64; ESIHRMS, Calcd. for $\mathrm{C}_{94} \mathrm{H}_{103} \mathrm{O}_{23}\left(\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right]^{+}\right): 1599.6890$; found: 1599.6943. 12: $[\alpha]_{\mathrm{D}}-74.0\left(c, 1.3, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 7.14-7.58(\mathrm{~m}, 42 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}$, $1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.87(\mathrm{~m}, 7 \mathrm{H})$, 4.59-4.64 (m, 5H), 4.64-4.53 (m, 4H), 4.35 (dd, $J=5.0 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.28$ (m, $3 H), 4.08-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.91-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.68$ (dd, $J=3.5 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=3.5 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.47(\mathrm{~m}, 1 \mathrm{H})$; 3.21-3.38 (m, 2H), 1.20-1.90 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.39,139.73,139.49$, 138.78, 138.36, 138.27, 138.05, 137.96, 137.64, 130.95, 129.86, 129.35, 128.80, 128.76, $128.71,128.68,128.65,1128.61,128.56,128.51,128.49,128.46,128.36,128.17,128.05$, 128.00, 127.88, 127.64, 127.49, 113.89, 103.61, 102.47, 102.21, 101.83, 100.96, 99.76, $99.52,80.53,80.03,79.68,78.94,77.66,77.25,77.11,76.75,76.53,76.45,76.20,73.93$, $73.73,72.96,72.81,71.52,70.90,69.16,69.09,68.71,68.35,68.15,67.84,64.56,55.62$, 33.85, 31.75, 25.87, 24.17, 24.86; ESIHRMS, Calcd. for $\mathrm{C}_{94} \mathrm{H}_{103} \mathrm{O}_{23}\left(\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$: 1599.6890; found: 1599.6901.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-D-mannopyran-osyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($\mathbf{1} \rightarrow \mathbf{2}$)-3- O-benzyl-4,6-O-benzylidene- β-d-
mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene β-D-mannopyranoside (13). Removal of the PMB group from tetrasaccharide $11(1.56 \mathrm{~g}, 0.987 \mathrm{mmol})$ by the general procedure afforded alcohol $\mathbf{1 3}(1.22 \mathrm{~g}, 0.84 \mathrm{mmol})$ in 85%. M. p. 9ethyl acetate/hexane) $112 \pm 1^{0}[\alpha]_{\mathrm{D}}-83.6\left(c, 1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.10-7.50(\mathrm{~m}, 40 \mathrm{H}), 5.63(\mathrm{~s}$, $1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.57$ $(\mathrm{s}, 1 \mathrm{H}), 4.61-4.81(\mathrm{~m}, 9 \mathrm{H}), 4.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.35$ (m, 3H), $4.16(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.65-3.75(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz} 1 \mathrm{H}), 3.27-3.43(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.90$ $(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.29,138.27,137.64,137.27,137.07,128.37,128.25$, $128.20,128.15,127.82,127.71,127.46,127.26,127.00,126.11,126.05,103.56,101.69$, $101.60,101.55,101.44,101.31,101.25,98.82,78.55,78.46,78.41,78.11,77.81,76.45$, $75.61,74.75,73.59,72.36,71.92,71.53,70.82,69.01,68.67,67.80,67.65,67.33,67.04$, 33.34, 31.29, 29.26, 25.42, 23.42. Anal. Calcd. for $\mathrm{C}_{86} \mathrm{H}_{92} \mathrm{O}_{21} \bullet$ EtOAc: C, 69.75; H, 6.50; Found: C, 69.67; H, 6.34.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-

 osyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene-2-O-β-d-mannopyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (14) and Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- α-D-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benz-ylidene-2- O - β-D-mannopyranosyl-(1 \rightarrow 2)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranoside (15). Coupling of sulfoxide $\mathbf{3}(0.295 \mathrm{~g}, 0.547 \mathrm{mmol})$ and acceptor $\mathbf{1 3}$ (0.400 $\mathrm{g}, 0.274 \mathrm{mmol}$) by the standard coupling protocol gave β-D-mannopyranoside $\mathbf{1 4}$ (0.364 $\mathrm{g}, 0.19 \mathrm{mmol})$ as a foam in 69% yield with its α-anomer $15(81.9 \mathrm{mg}, 0.044 \mathrm{mmol})$ in 16% yield. 14: $[\alpha]_{\mathrm{D}}-104\left(c, 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.51-7.10(\mathrm{~m}, 52 \mathrm{H}), 6.74$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}$, $1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{s}, 1 \mathrm{H}), 4.57-4.79(\mathrm{~m}, 12 \mathrm{H}), 4.42(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.25(\mathrm{~m}$, $6 \mathrm{H}), 3.97(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.56-3.76(\mathrm{~m}, 9 \mathrm{H}), 3.49-3.51(\mathrm{~m}, 1 \mathrm{H})$, $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.12-3.16(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.85,139.27,139.05,138.64,138.57,138.55,138.33,138.06,137.56$, $137.53,131.00,129.43,129.35,129.28,129.16,128.98,128.88,128.84,128.74,128.68$, $128.61,128.56,128.50,128.43,128.39,128.32,128.22,128.08,127.99,127.95,127.88$, $127.78,127.73,127.68,127.62,127.49,127.43,127.34,127.28,126.54,126.44,113.86$, 104.43, 103.59, 103.54, 102.75, 102.12, 101.99, 101.89, 101.55, 99.35, 79.23, 79.13, $78.99,78.93,78.76,78.46,78.20,78.12,78.00,77.02,76.65,75.66,74.96,73.96,72.77$, $72.49,71.75,71.56,71.39,69.27,69.19,69.11,68.17,67.77,67.66,67.41,55.22,33.77$, 31.64, 30.13, 25.82, 24.14, 23.86; ESIHRMS, Calcd. for $\mathrm{C}_{114} \mathrm{H}_{123} \mathrm{O}_{28}\left(\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$: 1939.8210; found: 1939.8190. 15: $[\alpha]_{\mathrm{D}}-65.0\left(c, 2.3, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.02-$ $7.53(\mathrm{~m}, 52 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, $1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=12.5 \mathrm{~Hz} 1 \mathrm{H}), 4.61-$ $4.88(\mathrm{~m}, 13 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.36-4.41(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.30(\mathrm{~m}, 6 \mathrm{H})$, $4.09(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$,
$3.65-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.43(\mathrm{~m}$, 2H), 3.27-3.31 (m, 1H), 1.20-1.90 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 159.36, ~ 139.71$, $139.29,138.86,138.79,138.53,138.26,138.17,138.06,137.67,137.62,130.95,129.82$, $129.33,129.26,129.18,128.77,128.60,128.56,128.44,128.37,128.24,128.05,128.01$, 127.96, 127.89, 127.56, 127.48, 126.54, 126.52, 126.45, 113.84, 104.99, 102.69, 102.38, $102.20,101.88,101.84,101.78,101.12,99.45,98.85,80.92,80.33,80.05,79.62,78.96$, $78.74,77.55,76.87,76.79,76.50,76.41,76.13,74.20,73.99,73.71,73.24,72.74,72.57$, $70.92,70.65,69.23,69.10,69.08,69.05,68.75,68.47,68.12,67.87,64.48,55.61,33.89$, 32.37, 31.60, 30.15, 25.86, 24.24, 23.92; ESIHRMS, Calcd. for $\mathrm{C}_{114} \mathrm{H}_{120} \mathrm{O}_{27}\left([\mathrm{M}+\mathrm{Cs}]^{+}\right)$: 2053.7071; found: 2053.6990 .

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 \rightarrow 2)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene-2-O- β-d-mannopyranosyl(1 $\boldsymbol{\rightarrow} \mathbf{2}$)-3- \boldsymbol{O}-benzyl-4,6- \boldsymbol{O}-benzylidene- $\boldsymbol{\beta}$-D-mannopyranoside (16). Removal of the PMB group from pentasaccharide $\mathbf{1 4}(312 \mathrm{mg}, 0.162 \mathrm{mmol})$ by the general procedure afforded alcohol $16(234 \mathrm{mg}, 0.130 \mathrm{mmol})$ as a foam in $80 \%[\alpha]_{\mathrm{D}}-85.7\left(c, 1.3, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.00-7.49(\mathrm{~m}, 50 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}$, $1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.76(\mathrm{~m}$, $15 \mathrm{H}), 4.21-4.34(\mathrm{~m}, 7 \mathrm{H}), 4.17(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.91(\mathrm{~m}, 6 \mathrm{H}), 3.68-3.75(\mathrm{~m}, \mathrm{H}), 3.52-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{dd}, J=3.2 \mathrm{~Hz}$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.69,138.56,138.40,138.29,138.21,137.85,137.71,137.49,137.19$,
$137.15,129.18,129.08,128.95,128.87,128.55,128.52,128.41,128.35,128.29,128.64$, $128.22,127.96,127.90,127.80,127.59,127.54,127.48,127.43,127.35,126.99,126.28$, $126.25,126.23,126.20,126.14,104.06,102.13,101.96,101.87,101.80,101.69,101.45$, 101.42, 98.76, 79.04, 78.69, 78.66, 78.56, 78.35, 77.97, 77.33, 76.59, 76.34, 76.30, 75.60, $75.19,73.76,72.65,72.36,72.04,71.22,71.03,69.31,68.95,68.89,68.79,68.70,67.95$, 67.79, 67.67, 67.50, 66.99, 33.52, 31.29, 25.57, 23.90, 23.54; ESIHRMS, Calcd. for $\mathrm{C}_{106} \mathrm{H}_{115} \mathrm{O}_{27}\left(\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right]^{+}\right)$1819.7620; found: 1819.7710.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene-2-O-p-methoxybenzyl- β-D-mannopyran-osyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-($\mathbf{1} \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-

 3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranoside (17). Coupling of sulfoxide 3 ($299 \mathrm{mg}, 0.56 \mathrm{mmol}$) and acceptor $16(500 \mathrm{mg}, 0.28 \mathrm{mmol})$ by the standard coupling protocol gave 60% of β-D-mannopyranoside $17(374 \mathrm{mg}, 0.166 \mathrm{mmol})$ as a foam and 23% of a mixture of isomers ($145 \mathrm{mg}, 0.064 \mathrm{mmol}$) which contained $8 \% \beta$-anomer (17) and $15 \% \alpha$-anomer (18) according to the ${ }^{1} \mathrm{H}$ NMR spectrum. 17: $[\alpha]_{\mathrm{D}}-100(c, 2.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 6.94-7.50(\mathrm{~m}, 62 \mathrm{H}), 6.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$, $5.52(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5,21(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}$, $1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.84(\mathrm{~m}, 17 \mathrm{H}), 4.49(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.40(\mathrm{~m}, 5 \mathrm{H}), 4.07-$ $4.20(\mathrm{~m}, 8 \mathrm{H}), 3.98(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88((\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.64-3.83 (m, 7H), 3.53-3.62 (m, 5H), 3.48 (t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.37$ $(\mathrm{s}, 3 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}) ;$${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 158.73,138.84,138.70,138.36,138.24,138.17,137.96,137.90$, $137.74,137.32,136.97,136.90,136.82,130.86,130.74,129.06,128.98,128.95,128.76$, $128.73,128.53,128.47,128.38,128.29,128.23,128.20,128.15,128.10,128.05,128.01$, 127.96, 127.85, 127.46, 127.28, 127.18, 127.09, 127.05, 126.99, 126.88, 126.78, 126.18, $126.13,126.05,125.96,113.44,104.04,104.00,103.84,102.74,101.90,101.64,101.51$, 101.47, 101.42, 101.32, 101.15, 98.55, 79.03, 78.99, 78.94, 78.75, 78.57, 78.54, 78.38, $78.16,77.97,77.23,77.11,76.90,76.57,76.52,76.19,74.22,73.52,73.24,72.48,72.32$, $71.44,71.33,71.25,71.18,68.84,68.79,68.62,67.54,67.34,66.84,66.76,60.41,33.36$, 31.61, 31.10, 25.41, 23.73, 23.36, 21.09, 14.21; ESIHRMS, Calcd. for $\mathrm{C}_{134} \mathrm{H}_{144} \mathrm{O}_{32} \mathrm{~N}$ $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 2278.9671$; found: 2278.9717 . A pure sample of the α-anomer $\mathbf{1 8}$ was not isolated and as such no data is given here for this byproduct.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-($\mathbf{1} \rightarrow 2$)-3- O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6-O-benz-ylidene- β-D-mannopyranoside (19). Removal of the PMB group from hexasaccharide $17(362 \mathrm{mg}, 0.160 \mathrm{mmol})$ by the general procedure afforded the alcohol $19(291.5 \mathrm{mg}$, $0.136 \mathrm{mmol})$ as a foam in 85% yield. $[\alpha]_{\mathrm{D}}-91.7\left(c, 2.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ $7.02-7.45(\mathrm{~m}, 60 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H})$, $5.14(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.81(\mathrm{~m}, 17 \mathrm{H}), 4.29-4.40(\mathrm{~m}$, $5 H), 4.11-4.26(\mathrm{~m}, 5 \mathrm{H}), 3.92-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.73-3.84(\mathrm{~m}, 6 \mathrm{H}), 3.60-3.69(\mathrm{~m}, 6 \mathrm{H}), 3.51-$ $3.56(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}$,
$10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 138.65,138.37,138.31,138.21,138.17,137.95,137.79$, $137.69,137.48,136.97,136.90,129.02,128.74,128.65,128.43,128.28,128.20,128.13$, 128.10, 128.07, 127.90, 127.86, 127.80, 127.68, 127.47, 127.43, 127.36, 127.31, 127.25, 126.86, 126.83, 126.15, 126.06, 126.01, 103.67, 102.63, 102.60, 101.94, 101.88, 101.60, $101.38,101.32,101.27,98.75,78.89,77.32,77.28,77.23,77.01,76.92,76.82,76.58$, $76.43,76.04,75.16,74.42,72.25,72.21,71.82,71.53,71.38,71.29,69.23,68.94,68.73$, $68.68,68.61,67.70,67.53,67.34,67.07,66.73,33.38,31.19,29.73,25.43,23.76,23.42$. ESIHRMS, Calcd. for $\mathrm{C}_{126} \mathrm{H}_{136} \mathrm{O}_{31} \mathrm{~N}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 2158.9096; found: 2158.9038 .

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 $\rightarrow \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranosyl-($\mathbf{1} \rightarrow \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benz-ylidene- β-D-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranoside (22) and Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- α-D-mannopyranosyl(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-manno-pyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 $\rightarrow 2$)-3-O-benzyl-4,6-O-benzylid-ene- β-d-mannopyranoside (23). Coupling of sulfoxide $3(66.9 \mathrm{mg}, 0.124 \mathrm{mmol})$ and acceptor 19 ($133 \mathrm{mg}, 0.0621 \mathrm{mmol}$) by the standard coupling protocol gave an inseparable mixture of anomeric isomers 20 and 21 ($124 \mathrm{mg}, 0.048 \mathrm{mmol}$) in 77% yield. The mixture was treated with DDQ by the general procedure to give 67% of the β -
anomeric alcohol $22(78.4 \mathrm{mg}, 0.032 \mathrm{mmol})$ as a foam and the 14% of the α-anomeric alcohol $23(16.0 \mathrm{mg})$ as a foam. 22: $[\alpha]_{\mathrm{D}}-75.6\left(c, 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta$: $7.02-7.55(\mathrm{~m}, 70 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$, $5.44(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.84(\mathrm{~m}, 30 \mathrm{H}), 4.23-4.43(\mathrm{~m}, 8 \mathrm{H}), 4.20(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ $4.17(\mathrm{~m}, 2 \mathrm{H}), 3.93-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.81-4.91(\mathrm{~m}, 5 \mathrm{H}), 3.64-3.79(\mathrm{~m}, 7 \mathrm{H}), 3.55-3.60(\mathrm{~m}$, $3 \mathrm{H}), 3.52$ (dd, $J=3.0 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.28-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 139.15,138.90,138.80,138.67$, $138.62,138.57,138.35,138.22,138.01,137.62,137.43,137.35,137.30,129.50,129.45$, $129.28,129.12,129.08,128.91,128.81,128.76,128.58,128.48,128.36,128.32,128.12$, 128.02, 127.80, 127.73, 127.70, 127.62, 127.57, 127.52, 127.29, 127.21, 126.62, 126.59, $126.56,126.48,126.43,104.34,103.71,103.01,102.72,102.33,102.25,102.20,102.08$, $101.99,101.86,101.76,101.66,101.54,99.08,79.40,79.29,79.06,79.01,78.98,78.94$, $78.90,78.25,77.83,77.71,77.62,77.20,77.17,76.99,76.82,76.77,75.24,74.45,72.69$, $72.57,72.20,71.97,71.86,69.51,69.34,69.20,69.16,69.08,69.03,68.10,68.06,67.96$, 67.81, 67.55, 67.47, 67.28, 33.83, 31.60, 30.16, 25.86, 24.18, 23,85; ESIHRMS, Calcd. for $\mathrm{C}_{146} \mathrm{H}_{152} \mathrm{O}_{36} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 2503.9961$; found: 2504.0034. 23: $[\alpha]_{\mathrm{D}}-77.2(c, 2.40$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 6.90-7.45(\mathrm{~m}, 70 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}$, $1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.06$ $(\mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.93(\mathrm{~m}, 21 \mathrm{H}), 4.42-4.78(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}$, $J=4.0 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.20(\mathrm{~m}, 9 \mathrm{H}), 3.65-3.93(\mathrm{~m}, 16 \mathrm{H}), 3.50(\mathrm{dd}, J=4.7 \mathrm{~Hz}$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.14-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.90(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 139.10,138.56,138.51,138.27,138.24,138.18,138.11$,
$138.02,137.89,137.52,137.08,136.88,136.81,129.06,129.01,128.94,128.68,128.57$, $128.49,128.37,128.30,128.26,128.23,128.16,128.12,128.08,128.06,127.97, .127 .94$, $127.91,127.82,127.76,127.44,127.36,127.17,126.75,126.65,126.59,126.56,126.16$, 126.12, 126.07, 126.03, 125.98, 125.95, 104.46, 103.51, 103.22, 102.86, 101.88, 101.60, $101.35,101.30,101.20,101.10,101.07,100.42,100.06,98.33,80.05,79.73,79.68$, $79.41,79.28,79.19,78.51,78.31,78.12,77.92,77.58,77.43,77.24,76.81,76.58,76.52$, $76.44,76.33,76.06,73.40,73.23,72.92,72.67,72.40,71.59,71.44,70.99,70.66,70.19$, $68.95,68.65,68.59,68.74,67.76,67.67,67.38,67.34,66.93,66.75,63.35,60.42,33.35$, 31.03, 29.70, 25.43, 23.72, 23.34, 22.70; ESIHRMS, Calcd. for $\mathrm{C}_{146} \mathrm{H}_{152} \mathrm{O}_{36} \mathrm{Na}$ ([M+ $\mathrm{Na}]^{+}$): 2503.9961; found: 2504.0016.

Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranosyl-(1 $\rightarrow \mathbf{2}$)-3- O-benzyl-4,6- O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benz-ylidene- β-D-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyr-anosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-D-mannopyranoside (26) and Cyclohexyl 3-O-Benzyl-4,6-O-benzylidene- α-d-mannopyranosyl-(1 \rightarrow 2)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benzylidene- β-D-manno-pyranosyl-(1 $\rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3- O -benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-($1 \rightarrow 2$)-3-O-benzyl-4,6-O-benzylid-ene- β-d-mannopyranosyl-($1 \rightarrow 2$)-3- O-benzyl-4,6- O-benzylidene- β-d-mannopyranos-yl-(1 $\boldsymbol{\rightarrow} \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (27). Coupling of
sulfoxide 3 ($31.2 \mathrm{mg}, 0.058 \mathrm{mmol}$) and acceptor $22(66.7 \mathrm{mg}, 0.027 \mathrm{mmol})$ by the standard coupling protocol gave an inseparable mixture of anomeric isomers 24 and 25 ($61.3 \mathrm{mg}, 0.021 \mathrm{mmol}$) in 78% yield. The mixture was treated with DDQ by the general procedure to give 58% of the β-anomeric alcohol $26(33.1 \mathrm{mg}, 0.012 \mathrm{mmol})$ and 13% of the α-anomeric alcohol $27(7.4 \mathrm{mg}, 0.003 \mathrm{mmol})$. 26: $[\alpha]_{\mathrm{D}}-94.8\left(c, 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.00-7.41(\mathrm{~m}, 80 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.532(\mathrm{~s}, 1 \mathrm{H}), 5.525(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.07$ $(\mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.81(\mathrm{~m}, 23 \mathrm{H}), 4.29-4.40(\mathrm{~m}, 6 \mathrm{H}), 4.19-4.26(\mathrm{~m}$, $3 H), 4.13-4.17(\mathrm{~m}, 3 \mathrm{H}), 3.90-4.02(\mathrm{~m}, 5 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 5 \mathrm{H}), 3.72-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.70(\mathrm{~m}, 11 \mathrm{H}), 3.46(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.43(\mathrm{~m}, 2 \mathrm{H})$, 3.19-(3.26 (m, 2H), 1.20-1.90(m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 139.05,138.88,138.80$, $138.77,138.61,138.54,138.30,138.17,138.02,137.71,137.56,137.37,137.27,129.47$, $129.42,129.22,129.03,129.00,128.87,128.83,128.73,128.68,128.62,128.56,128.53$, $128.49,128.44,128.39,128.31,128.08,128.02,127.83,127.75,127.67,127.62,127.57$, $127.52,127.48,127.31,127.25,127.17,127.06,126.65,126.62,126.59,126.50,126.45$, $126.40,104.16,103.58,103.24,103.03,102.38,102.26,102.15,101.99,101.94,101.89$, $101.71,101.65,101.58,99.14,79.32,79.22,79.07,78.99,78.96,78.88,78.80,78.02$, $77,66,77.55,77.01,76.90,76.82,76.64,76.03,75.08,74.93,72.61,72.55,72.34,72.24$, $71.96,71.65,69.49,69.28,69.17,69.14,69.07,68.97,68.09,67.99,67.83,67.80,67.69$, 67.62, 67.40, 67.22, 33.81, 31.60, 30.13, 25.84, 24.17, 23.83; ESIHRMS, Calcd. for $\mathrm{C}_{166} \mathrm{H}_{172} \mathrm{O}_{41} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 2844.1272$; found: 2844.1272. 27: $[\alpha]_{\mathrm{D}}-77.9$ (c, 0.7, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 7.09-7.41(\mathrm{~m}, 80 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, $1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.21$
$(\mathrm{s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.88(\mathrm{~m}, 24 \mathrm{H}), 4.44-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.34(\mathrm{~m}, 6 \mathrm{H}), 4.05-4.20(\mathrm{~m}, 6 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.79-3.88(\mathrm{~m}$, $6 \mathrm{H}), 3.53-3.76(\mathrm{~m}, 14 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.48-60(\mathrm{~m}, 1 \mathrm{H}), 1.20-$ $1.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 139.57,139.00,138.88,138.85,138.58,138.55$, $138.46,138.28,137.61,137.40,137.36,137.24,137.05,129.39,128.81,128.77,128.70$, $128.65,128.62,128.59,128.54,128.48,128.43,128.39,128.36,128.32,128.25,128.22$, 128.14, 128.11, 127.98, 127.72, 127.56, 127.49, 127.46, 127.39, 127.12, 127.07, 127.03, $126.93,126.83,126.61,126.58,126.55,126.48,126.42,126.37,104.45,103.57,102.86$, $102.35,102.21,102.03,101.81,101.75,101.69,101.67,101.55,100.86,100.56,100.04$, $99.12,96.50,79.63,79.53,79.39,78.95,78.88,78.80,78.67,78.62,78.45,78.43,78.31$, $77.89,77.18,76.90,76 . .84,76.37,75.82,75.46,73.60,73.19,72.43,72.11,72.03,71.56$, $71.00,69.27,69.05,68.94,68.20,68.07,67.93,67.82,67.77,67.50,67.32,34.82,30.13$, 25.80, 24.17, 23.83, 14.64; ESIHRMS, Calcd. for $\mathrm{C}_{166} \mathrm{H}_{172} \mathrm{O}_{41} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$2844.1272; found: 2844.1280 .

Cyclohexyl β-d-Mannopyranosyl- β-D-mannopyranosyl-(1 $\rightarrow 2$)- β-D-mannopyranosyl-

 β-D-mannopyranosyl-(1 $\rightarrow 2$)- β-D-mannopyranosyl-($1 \rightarrow 2$)- β-D-mannopyranosyl(1 $\rightarrow \mathbf{2}$)- β-D-mannopyranosyl- β-D-mannopyranoside (28). A mixture of octasaccharide $26(33.9 \mathrm{mg}, 0.0120 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was shaken under 50 psi of H_{2} for 3 days. The reaction mixture was filtered through Celite followed by removal of solvent to give the target compound $\mathbf{2 6}(15.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ as a foam in 89% yield. $[\alpha]_{\mathrm{D}}-30.9(c, 0.43, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right), \delta: 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.032(\mathrm{~s}$, $1 \mathrm{H}), 5.026(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=3.0$$\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.38(\mathrm{~m}, 5 \mathrm{H}), 4.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.92$ $(\mathrm{m}, 8 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.75(\mathrm{~m}, 17 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.51(\mathrm{~m}, 5 \mathrm{H})$, 3.32-3.42 (m, 8H), 1.19-1.90 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right), \delta: 101.80,101.69,101.65$, 101.48, 101.31, $98.08,80.40,79.68,79.60,79.49,82.09,78.83,77.73,76.55,76.49$, $76.45,76.32,76.27,73.28,72.62,72.44,72.35,72.31,72.27,72.24,70.78,67.95,67.61$, $67.54,67.50,67.39,67.13,61.53,61.22,61.15,61.05,60.99,60.95,60.91,33.08,31.48$, 25.44, 23.80, 23.59; ESIHRMS, Calcd. for $\mathrm{C}_{54} \mathrm{H}_{92} \mathrm{O}_{41} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 1419.5011$; found: 1419.4993.

Methyl 2,3-Di- O-benzyl-4,6-O-benzylidene- β-d-mannopyranoside (30) and Methyl 2,3-Di- O-benzyl-4,6- \boldsymbol{O}-benzylidene- α-D-mannopyranoside (31). A stirred solution of thioglycoside $\mathbf{2 9}^{2}(2.140 \mathrm{~g}, 4.45 \mathrm{mmol}), \mathbf{B S P}^{3}(1.024 \mathrm{~g}, 4.89 \mathrm{mmol}), \mathbf{T T B P}^{4}(2.210 \mathrm{~g}$, $8.89 \mathrm{mmol})$ and activated $3 \AA$ powdered sieves in dichloromethane (75 mL) under a nitrogen atmosphere was kept at $-60{ }^{\circ} \mathrm{C}$ for 30 mins. Then was added $\mathrm{Tf}_{2} \mathrm{O}(898 \mu \mathrm{~L}, 5.34$ $\mathrm{mmol})$ and after 5 mins . $\mathrm{MeOH}(540 \mu \mathrm{~L}, 13.34 \mathrm{mmol})$ was added slowly and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 1.5 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (12% ethyl acetate in hexane) afforded the corresponding α ($\mathbf{3 1}$) and β mannosides ($\mathbf{3 0}$) ($1.850 \mathrm{~g}, 90 \%$) with a ratio of 1:10. 30: $[\alpha]^{26}{ }_{\mathrm{D}}-21.6\left(c, 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}$,
$1 \mathrm{H}), 4.35-4.31(\mathrm{dd}, J=5.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.60-$ $3.56(\mathrm{dd}, J=3.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $57.4,67.6,68.6,72.3,74.8,75.8,77.8,78.7,101.4\left({ }^{1} J_{\mathrm{CH}}=162.1 \mathrm{~Hz}\right), 103.4\left({ }^{1} J_{\mathrm{CH}}=156.6\right.$ $\mathrm{Hz}), 126.03,126.04,127.5,127.53,127.54,128.1,128.2,128.3,128.5,128.9,137.6$, 138.3, 138.5; ESIHRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 485.1940, found, 485.1941. 31: $[\alpha]^{26}{ }_{\mathrm{D}}+30.6\left(c, 1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.26(\mathrm{~m}$, $13 \mathrm{H}), 5.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.75(\mathrm{dd}, J=1.8,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.66(\mathrm{dd}, J=1.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.94(\mathrm{~m}, 1 \mathrm{H})$, 3.93-3.90(m, 1H), 3.85-3.84(m, 1H), 3.79-3.78(m, 1H), $3.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 54.8,64.0,68.9,73.1,73.6,76.2,76.4,77.3,77.4,79.1,100.5\left({ }^{1} J_{\mathrm{CH}}=\right.$ $168.4 \mathrm{~Hz}), 101.5\left({ }^{1} J_{\mathrm{CH}}=161.0 \mathrm{~Hz}\right), 126.1,127.5,127.8,128.1,128.2,128.3,128.4$, 128.8, 137.7, 138.1, 138.7; ESI-HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 485.1940, found 485.1961.

Methyl 2,3,6-Tri-O-benzyl- $\boldsymbol{\beta}$-D-mannopyranoside (32). To a solution of compound $\mathbf{3 0}$ $(1.415 \mathrm{~g}, 3.09 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was added sodium cyanaborohydride ($2.90 \mathrm{~g}, 46.3$ mmol) and a pinch of methyl orange. After stirring at $0{ }^{0} \mathrm{C}$ for 15 mins , a 2.0 M solution of hydrochloric acid in diethylether (20 mL) was added slowly until the color of the solution became permanently pink. The reaction mixture was stirred at room temperature for 12 h then diluted with ethyl acetate, washed with saturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (20% ethyl acetate in hexane) afforded 32 (1.032 g, 72\%). M.p. $110-112{ }^{0} \mathrm{C} ;[\alpha]^{26}{ }_{\mathrm{D}}-28.8\left(c, 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.48-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.98(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=6.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.40(\mathrm{~m}, 1 \mathrm{H})$, $3.32(\mathrm{dd}, J=2.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{bs}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 57.3,68.5,71.0,71.4$, $73.6,73.8,74.2,75.4,81.7,100.1,127.5,127.7,127.8,127.9,128.0,128.2,128.3,128.4$, 128.5, 128.6, 135.7, 138.0, 138.3, 138.3, 138.9; HRMS Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 487.2097$; found 487.2104.

Methyl 2,3,6-Tri-O-benzyl-4-O-(2,3-di-O-benzyl-4,6-O-benzylidene- β-d-mannopyr-anosyl)- β-D-mannopyranoside (33) and Methyl 2,3,6-Tri-O-benzyl-4-O-(2,3-di-O-benzyl-4,6-O-benzylidene- α-D-mannopyranosyl)- β-D-mannopyranoside (34). A

 stirred solution of thioglycoside $29(1.619 \mathrm{~g}, 2.99 \mathrm{mmol})$, BSP $(0.690 \mathrm{~g}, 3.30 \mathrm{mmol})$, TTBP ($1.500 \mathrm{~g}, 5.99 \mathrm{mmol}$) and activated $3 \AA$ í powdered sieves in dichloromethane (60 mL) under nitrogen atmosphere was kept at $-60^{\circ} \mathrm{C}$ for 30 mins . Then was added $\mathrm{Tf}_{2} \mathrm{O}$ $(605 \mu \mathrm{~L}, 3.60 \mathrm{mmol})$ and after 5 mins. acceptor $32(1.217 \mathrm{~g}, 2.62 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (18% ethyl acetate in hexane) afforded the corresponding α and β mannosides ($2.035 \mathrm{~g}, 80 \%$) with a ratio of $1: 10$. 33: $[\alpha]^{24}{ }_{\mathrm{D}}-40.3$ $\left(c, 0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.55-7.53(\mathrm{dd}, J=3.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 24 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.90-4.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~d}, J=$$12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.74(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.62(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47-4.44 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.14(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09-4.06(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.99(\mathrm{dd}, J=5.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76-3.75(\mathrm{dd}, J=3.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{dd}, J=5.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.62(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.45-$ $3.43(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 57.2,67.3,68.2$, $68.6,69.5,71.9,72.5,73.5,73.8,74.5,74.9,75.3,75.9,78.4,78.6,79.8,101.3,101.9$, $102.3,126.1,127.2,127.3,127.36,127.4,127.5,127.7,127.9,128.0,128.1,128.12$, $128.15,128.2,128.3,128.4,128.8,130.9,132.4,137.6,138.3,138.7,138.8 ;$ ESIHRMS Calcd for $\mathrm{C}_{55} \mathrm{H}_{58} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 917.3877, found: 917.3845. 34: $[\alpha]^{24}{ }_{\mathrm{D}}-26.6(c$, $\left.0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.51-7.49(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 24 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.94(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81-4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.71(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.62(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59-4.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.39(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.35(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 5 \mathrm{H}), 4.11-4.09(\mathrm{dd}, J=4.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.82(\mathrm{dd}, J=4.5$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{dd}, J=3.0$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 57.3,65.1,68.2,68.7,70.3,70.7,72.9,73.0,73.7$, $73.9,74.7,75.4,76.3,77.4,78.9,82.1,101.1,101.3,102.5,126.1,127.3,127.39,127.4$, $127.5,127.6,127.7,127.8,128.0,128.06,128.09,128.1,128.12,128.2,128.3,128.5$, 128.7, 128.8, 130.9, 137.6, 137.7, 138.4, 138.6, 138.9; ESIHRMS Calcd for $\mathrm{C}_{55} \mathrm{H}_{58} \mathrm{O}_{11} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 917.3877$, found 917.3851.

Methyl 2,3-Di-O-benzyl- β-D-mannopyranoside (35). A solution of $\mathbf{3 0}$ (1.688 g, 3.65 $\mathrm{mmol})$, CSA ($0.212 \mathrm{~g}, 0.91 \mathrm{mmol}$) and neo-pentylglycol ($1.14 \mathrm{~g}, 10.95 \mathrm{mmol}$) in dichloromethane (25 mL) under a nitrogen atmosphere was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate, washed with saturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (60% ethyl acetate in hexane) afforded $35(1.215 \mathrm{~g}, 89 \%) .[\alpha]^{26}{ }_{\mathrm{D}}-89.9\left(c, 0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.43(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 9 \mathrm{H}), 4.95(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.86-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.40$ and $2.22(2 \mathrm{br} . \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ 57.4, 63.1, 67.5, 70.9, 73.1, 74.2, 75.8, 76.7, 81.5, 103.0, 127.6, 127.9, 128.2, 128.3, 128.6, 137.5, 138.5; ESI-HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 397.1627$, found 397.1637.

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl- $\boldsymbol{\beta}$-D-mannopyranoside (36). To a stirred solution of $\mathbf{3 5}(1.215 \mathrm{~g}, 3.25 \mathrm{mmol})$ and DMAP $(0.099 \mathrm{~g}, 0.81 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(905 \mu \mathrm{~L}, 6.49 \mathrm{mmol})$ followed by pivaloyl chloride ($419 \mu \mathrm{~L}$, 3.42 mmol) at room temperature under a nitrogen atmosphere. The reaction mixture was stirred for 4 h and washed with saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (24% ethyl acetate in hexane) afforded $\mathbf{3 6}(1.417 \mathrm{~g}$,
$98 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}-74.0\left(c, 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.24(\mathrm{~m}, 9 \mathrm{H}), 4.94(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.28(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{bs}$, 1H), $1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.2,57.1,63.8,66.9,71.1,73.1,74.0,74.4,81.2$, 102.9, 127.5, 127.8, 127.9, 128.1, 128.2, 128.5, 137.6, 138.6, 178.7; ESI-HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 481.2202$, found 481.2202.

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl-4-O-(2,3-di- O-benzyl-4,6-benzylidene- β-D-

 mannopyranosyl)- β-D-mannopyranoside (37) and Methyl 2,3-Di-O-benzyl-6-O-pivaloyl-4- O-(2,3-di- O-benzyl-4,6-benzylidene- α-D-mannopyranosyl)- β-d-mannopyranoside (38). A stirred solution of thioglycoside 29 ($0.574 \mathrm{~g}, 1.06 \mathrm{mmol})$, BSP (0.245 $\mathrm{g}, 1.17 \mathrm{mmol})$, TTBP $(0.528 \mathrm{~g}, 2.12 \mathrm{mmol})$ and activated $3 \AA$ powdered sieves in dichloromethane (45 mL) under nitrogen atmosphere was kept at $-60{ }^{\circ} \mathrm{C}$ for 30 mins . Then was added $\mathrm{Tf}_{2} \mathrm{O}(214 \mu \mathrm{~L}, 1.27 \mathrm{mmol})$ and after 5 mins . acceptor $36(0.381 \mathrm{~g}, 0.83$ mmol) in dichloromethane (5 mL) was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (16% ethyl acetate in hexane) afforded the corresponding mannosides $(0.846 \mathrm{~g}, 89 \%)$ with a ratio of 1:9. 37: $[\alpha]^{26}{ }_{\mathrm{D}}-23.7(c$, $\left.0.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.48-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=$$3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.39(\mathrm{dd}, J=2.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H})$, 4.26-4.23 (dd, $J=6.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 3 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8: 27.2, 57.1, 63.4, 67.4, $68.5,71.9,72.5,73.5,73.8,74.3,75.2,75.7,78.2,78.5,101.4\left({ }^{1} J_{\mathrm{CH}}=155.1 \mathrm{~Hz}\right), 101.7$ $\left({ }^{1} J_{\mathrm{CH}}=162.1 \mathrm{~Hz}\right), 102.1\left({ }^{1} J_{\mathrm{CH}}=153.6 \mathrm{~Hz}\right), 126.1,127.2,127.3,127.4,127.5,128.8$, 137.6, 138.3, 138.4, 138.6, 178.1; ESIHRMS Calcd for $\mathrm{C}_{53} \mathrm{H}_{60} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 911.3982, found 911.3975. 38: $[\alpha]^{24}{ }_{\mathrm{D}}-11.6\left(c, 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.52$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 21 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.45(\mathrm{dd} J=2.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.18(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.89$ $(\mathrm{dd}, J=2.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.37(\mathrm{dd}, J$ $=3.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.2,57.1,63.5,65.2,68.4,70.8$, $72.9,73.1,73.8,75.9,76.3,77.5,78.9,81.6,101.2\left({ }^{1} J_{\mathrm{CH}}=165.6 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=170.9\right.$ $\mathrm{Hz}), 102.6\left({ }^{1} J_{\mathrm{CH}}=154.9 \mathrm{~Hz}\right), 126.1,127.37,127.4,127.5,127.7,127.9,128.0,128.1$, 128.14, 128.3, 128.5, 128.7, 137.5, 137.7, 138.4, 138.9, 178.1; ESI-HRMS Calcd for $\mathrm{C}_{53} \mathrm{H}_{60} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 911.3982$, found 911.4017.

Methyl 2,3-Di-O-benzyl-6-O-pivolyl-4-O-(2,3-di-O-benzyl- β-d-mannopyranosyl)- β -

 D-mannopyranoside (39). A solution of $37(0.761 \mathrm{~g}, 0.86 \mathrm{mmol})$, CSA ($0.040 \mathrm{~g}, 0.17$ $\mathrm{mmol})$ and neo-pentyl glycol ($0.268 \mathrm{~g}, 2.57 \mathrm{mmol}$) in dichloromethane (10 mL) undernitrogen atmosphere was stirred at room temperature for 16 h . The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate, washed with saturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (50% ethyl acetate in hexane) afforded $39(0.580 \mathrm{~g}, 85 \%) .[\alpha]^{26}{ }_{\mathrm{D}}-75.5$ $\left(c, 0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 17 \mathrm{H}), 4.91(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.75(\mathrm{dd}, J=3.0,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.48$ $(\mathrm{m}, 5 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.19(\mathrm{dd}, J=6.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.73(\mathrm{dd}, J=3.0,11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.23(\mathrm{dd}, J=2.8,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{bs}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.2,57.1,62.8$, $63.5,67.2,71.2,71.9,73.6,74.02,74.06,74.4,74.7,75.5,75.7,77.3,78.8,81.8,100.9$, $102.3,127.4,127.5,127.6,127.7,128.0,128.1,128.2,128.4,128.6,137.6,138.2,138.5$, 178.4; ESI-HRMS Calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{O}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 823.3669$, found 823.3679.

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl-4-O-(2,3-di-O-benzyl-6-O-pivaloyl- β-D-manno-

 pyranosyl)- β-D-mannopyranoside (40). To a stirred solution of 39 ($1.570 \mathrm{~g}, 1.96$ $\mathrm{mmol})$ and DMAP $(0.060 \mathrm{~g}, 0.49 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($547 \mu \mathrm{~L}, 3.92 \mathrm{mmol}$) followed by pivaloyl chloride ($253 \mu \mathrm{~L}, 2.06 \mathrm{mmol}$) at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 4 h and washed with saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (24% ethyl acetate in hexane) afforded $40(1.519 \mathrm{~g}, 88 \%) .[\alpha]^{26}{ }_{\mathrm{D}}-69.5$$\left(c, 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.41-7.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 18 \mathrm{H})$, 4.88-4.82 (m, 4H), 4.62-4.56 (m, 3H), $4.48(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}$, $1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.20(\mathrm{dd}, J=4.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.90-$ $3.88(\mathrm{dd}, J=2.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.56(\mathrm{dd}$, $J=3.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.20(\mathrm{dd}, J=2.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 1 \mathrm{H}), 1.21$ and $1.13(2 \mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.6,27.7,57.5,63.7,63.8$, $66.7,71.8,72.1,74.0,74.1,74.6,74.7,74.8,74.9,75.5,78.5,81.6,101.1,102.6,127.7$, $127.8,128.0,128.1,128.2,128.3,128.4,128.5,128.8,129.0,138.1,138.7,139.0,139.1$, 178.6, 179.3; ESI-HRMS Calcd for $\mathrm{C}_{51} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 907.4245, found 907.4218.

Methyl 2,3-Di- \boldsymbol{O}-benzyl-4,6- \boldsymbol{O}-benzylidene- β-d-mannopyranosyl-($\mathbf{1} \rightarrow \mathbf{4}$)-2,3-di- \boldsymbol{O} -benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-dmannopyranoside (41) and Methyl 2,3-Di- O-benzyl-4,6-O-benzylidene- α-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- \boldsymbol{O}-benzyl-6-O-pivaloyl- $\boldsymbol{\beta}$-d-mannopyranoside (42). A stirred solution of thioglycoside 29 ($1.010 \mathrm{~g}, 1.87 \mathrm{mmol})$, BSP ($0.431 \mathrm{~g}, 2.06 \mathrm{mmol}$), TTBP ($0.929 \mathrm{~g}, 3.74$ $\mathrm{mmol})$ and activated $3 \AA$ í powdered sieves in dichloromethane $(60 \mathrm{~mL})$ under a nitrogen atmosphere was kept at $-60{ }^{\circ} \mathrm{C}$ for 30 mins. Then was added $\mathrm{Tf}_{2} \mathrm{O}(378 \mu \mathrm{~L}, 2.24 \mathrm{mmol})$ and after 5 mins. acceptor $40(1.513 \mathrm{~g}, 1.71 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography
(18% ethyl acetate in hexane) afforded the corresponding α and β mannosides (1.910 g , $85 \%)$ with a ratio of 1:9. 41: $[\alpha]^{26}{ }_{\mathrm{D}}-49.2\left(c, 0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.47-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 24 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.89-4.72(\mathrm{~m}, 9 \mathrm{H})$, 4.64-4.53 (m, 5H), 4..45-4.42 (dd, $J=2.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H})$, 4.12-4.02 (m, 4H), 3.99-3.96 (dd, $J=4.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{m}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.45(\mathrm{dd}, J=2.8$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.20$ and $1.10(2 \mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.2,57.1,62.7,63.4,67.4,68.5,71.8,72.2,72.5,73.5,73.6,73.7,74.3$, $75.1,75.2,75.4,75.6,77.1,77.2,78.3,78.5,78.7,100.7\left({ }^{1} J_{\mathrm{CH}}=154.2 \mathrm{~Hz}\right), 101.3\left({ }^{1} J_{\mathrm{CH}}=\right.$ $157.5 \mathrm{~Hz}), 101.9\left({ }^{1} J_{\mathrm{CH}}=152.5 \mathrm{~Hz}\right), 102.3\left({ }^{1} J_{\mathrm{CH}}=153.8 \mathrm{~Hz}\right), 126.1,127.1,127.2,127.3$, $127.4,127.5,127.6,127.7,127.9,128.0,128.1,128.2,128.3,128.4,128.8,137.6,138.3$, 138.4, 138.5, 138.6, 138.7, 178.1; MALDI-HRMS Calcd for $\mathrm{C}_{78} \mathrm{H}_{90} \mathrm{O}_{18} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1337.6019, found, 1337.6067. 42: $[\alpha]^{24}{ }_{\mathrm{D}}-30.1\left(c, 1.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 24 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87-4.81(\mathrm{~m}, 4 \mathrm{H}), 4.76-4.65(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43-4.39 (m, 3H), 4.32-4.21 (m, 6H), 4.08-3.98 (m, 4H), 3.89-3.87 (m, 2H), 3.78-3.76 (m, 2H), $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{dd}, J=2.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.23(\mathrm{dd}, J$ $=2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.06(\mathrm{~m}, 1 \mathrm{H}), 1.21$ and $1.14(2 \mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $27.2,27.24,57.1,63.1,63.4,65.2,68.4,70.9,71.5,72.9,73.0,73.1,73.6,73.7,73.9$, $74.1,75.1,75.2,76.1,76.8,77.1,77.2,77.3,78.9,81.6,100.3\left({ }^{1} J_{\mathrm{CH}}=157.3 \mathrm{~Hz}\right), 101.2$ $\left({ }^{1} J_{\mathrm{CH}}=156.6 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=152.8 \mathrm{~Hz}\right), 102.2\left({ }^{1} J_{\mathrm{CH}}=170.8 \mathrm{~Hz}\right), 126.1,127.3,127.4$, 127.49, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.13, 128.3, 128.4, 128.6,
128.7, 137.5, 138.2, 138.4, 138.6, 138.7, 138.8, 178.1, 178.2; MALDI-HRMS Calcd for $\mathrm{C}_{78} \mathrm{H}_{90} \mathrm{O}_{18} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1337.6019$, found 1337.5968.

Methyl 2,3-Di-O-benzyl- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl-

β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranoside
(43). A solution of $41(1.723 \mathrm{~g}, 1.31 \mathrm{mmol})$, $\mathrm{CSA}(0.076 \mathrm{~g}, 0.33 \mathrm{mmol})$ and neo-pentyl glycol $(0.409 \mathrm{~g}, 3.93 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ under a nitrogen atmosphere was stirred under reflux at $45{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate, washed with saturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (44% ethyl acetate in hexane) afforded $43(1.404 \mathrm{~g}, 87 \%) .[\alpha]^{26}{ }_{\mathrm{D}}-54.5\left(c, 1.37, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.41-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 26 \mathrm{H}), 4.88-4.74(\mathrm{~m}, 7 \mathrm{H}), 4.63-$ $4.50(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 3 \mathrm{H})$, 4.28-4.24 (dd, $J=6.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.67(\mathrm{dd}, J=3.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.54-$ $3.52(\mathrm{dd}, J=2.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.44(\mathrm{dd}, J=6.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-$ $3.39(\mathrm{dd}, J=2.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 1.21$ and $1.11(2 \mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.6,27.7,57.5,63.0,63.1,63.8,67.6,71.6,72.2$, $72.8,74.0,74.1,74.2,74.3,74.7,74.8,74.9,75.3,75.8,76.2,76.6,78.9,80.1,82.3$, $101.0,101.7,102.7,127.7,127.8,127.9,128.0,128.2,128.3,128.4,128.47,128.5$, 128.52, 128.6, 128.7, 128.8, 129.0, 138.0, 138.8, 138.9, 139.0, 139.2, 178.6, 178.6; MALDI-HRMS Calcd for $\mathrm{C}_{71} \mathrm{H}_{86} \mathrm{O}_{18} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1249.5706$, found 1249.5672 .

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-

 6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-D-mannopyranoside (44). To a stirred solution of $43(1.193 \mathrm{~g}, 0.97 \mathrm{mmol})$ and DMAP (0.030 g , $0.25 \mathrm{mmol})$ in dichloromethane (15 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(271 \mu \mathrm{~L}, 1.94 \mathrm{mmol})$ followed by pivaloyl chloride ($126 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 4 h and washed with saturated aqueous NaHCO_{3} solution and brine. Organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (24% ethyl acetate in hexane) afforded $44(1.138 \mathrm{~g}, 89 \%) .[\alpha]^{26}{ }_{\mathrm{D}}-73.1\left(c, 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: 7.39-7.29 (m, 10H), 7.23-7.19 (m, 20H), 4.85-4.71 (m, 7H), 4.62-4.54 (m, 4H), $4.50(\mathrm{~s}$, $1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.40(\mathrm{dd}, J=2.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 2 \mathrm{H})$, 4.24-4.20 (m, 3H), 4.12-4.01 (m, 2H), 3.87 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.57-$ $3.53(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.43(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.22-$ $3.20(\mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.18,1.13$ and $1.08(3 \mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.2,56.9,62.6,63.0,63.5,66.2,71.4,71.7,72.1,73.6,73.7$, $74.1,74.2,74.3,74.5,74.6,74.8,75.3,75.7,77.3,78.3,78.9,81.3,100.5,101.2,102.2$, $127.2,127.3,127.5,127.6,127.7,127.74,127.8,127.95,127.97,128.0,128.1,128.2$, $128.3,128.34,128.6,137.7,138.4,138.5,138.6,138.7,138.8,178.1,178.9$; MALDIHRMS Calcd for $\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1333.6282$, found 1333.6273 .
Methyl 2,3-Di- O-benzyl-4,6- O-benzylidene- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di- O -benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranoside

and Methyl 2,3-Di- O-benzyl-4,6-O-benzylidene- α-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β -D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranoside (46). A stirred solution of thioglycoside $29(1.156 \mathrm{~g}, 2.14 \mathrm{mmol})$, BSP $(0.493 \mathrm{~g}, 2.36 \mathrm{mmol})$, TTBP ($1.026 \mathrm{~g}, 4.28 \mathrm{mmol}$) and activated $3 \AA ́$ powdered sieves in dichloromethane (80 mL) under nitrogen atmosphere was kept at $-60{ }^{\circ} \mathrm{C}$ for 30 mins. Then was added $\mathrm{Tf}_{2} \mathrm{O}$ (432 $\mu \mathrm{L}, 2.57 \mathrm{mmol})$ and after 5 mins. acceptor $44(2.171 \mathrm{~g}, 1.66 \mathrm{mmol})$ in dichloromethane (5 mL) was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (6% ethyl acetate in benzene) afforded the corresponding α and β mannosides (2.297 g , 79\%) with a ratio of 1:9. 45: $[\alpha]^{26}{ }_{\mathrm{D}}-52.4$ $\left(c, 1.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.47-7.45(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.21(\mathrm{~m}$, $43 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.89-4.70(\mathrm{~m}, 12 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.42-4.39(\mathrm{dd}, J=1.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.24-$ $4.22(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 6 \mathrm{H}), 3.98-3.95(\mathrm{dd}, J=4.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.43(\mathrm{dd}, J=3.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.39(\mathrm{dd}, J=$ $2.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 1.19,1.14,1.07(3 \mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.2,27.3,56.9,62.5,62.6,63.5,67.4,68.5,71.6,72.1,73.5,73.6,73.7$, $74.1,74.2,74.3,74.9,75.0,75.2,75.7,75.8,76.8,77.2,78.1,78.3,78.5,79.3,80.1,100.4$ $\left({ }^{1} J_{\mathrm{CH}}=159.6 \mathrm{~Hz}\right), 101.1\left({ }^{1} J_{\mathrm{CH}}=152.8 \mathrm{~Hz}\right), 101.3\left({ }^{1} J_{\mathrm{CH}}=162.0 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=154.3\right.$
$\mathrm{Hz}), 102.2\left({ }^{1} J_{\mathrm{CH}}=152.5 \mathrm{~Hz}\right), 126.1,127.15,127.2,127.3,127.4,127.5,127.6,127.64$, 127.7, 127.9, 128.0, 128.1, 128.11, 128.2, 128.3, 128.33, 128.8, 137.6, 138.3, 138.4, 138.5, 138.6, 138.7, 138.9, 178.02, 178.04; MALDI-HRMS Calcd for $\mathrm{C}_{103} \mathrm{H}_{120} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}$ $+\mathrm{Na}]^{+}: 1763.8062$, found 1763.7927. 46: $[\alpha]^{25}{ }_{\mathrm{D}} \quad-32.4\left(c, 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 33 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.85-4.72(\mathrm{~m}, 7 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.51-4.48(\mathrm{~m}$, $2 \mathrm{H}), 4.43-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 9 \mathrm{H}), 4.11-3.97(\mathrm{~m}, 5 \mathrm{H}), 3.87(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.43-$ $3.41(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.22(\mathrm{dd}, J=2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.04-3.03 (m, 1H), 1.19, 1.13 and $1.11(3 \mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8: 27.1, 27.2, 56.9, $62.8,63.5,65.2,70.9,71.6,71.8,72.8,73.0,73.1,73.6,73.7,74.0,74.1,74.2,74.23$, $74.7,75.0,75.2,75.5,76.0,76.6,76.9,77.2,77.6,78.1,78.9,81.8,100.3\left({ }^{1} J_{\mathrm{CH}}=155.1\right.$ $\mathrm{Hz}), 100.7\left({ }^{1} J_{\mathrm{CH}}=158.8 \mathrm{~Hz}\right), 101.2\left({ }^{1} J_{\mathrm{CH}}=160.5 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=165.4 \mathrm{~Hz}\right), 102.2$ $\left({ }^{1} J_{\mathrm{CH}}=158.9 \mathrm{~Hz}\right), 126.0,127.2,127.3,127.36,127.4,127.49,127.5,127.58,127.6$, 127.7, 127.8, 128.0, 128.04, 128.1, 128.3, 128.4, 128.6, 128.7, 137.6, 137.7, 138.4, 138.5, 138.6, 138.7, 138.8, 178.05, 178.09; MALDI-HRMS Calcd for $\mathrm{C}_{103} \mathrm{H}_{120} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 1763.8062$, found 1763.8127.

Methyl 2,3-Di-O-benzyl- β-d-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl-

 β-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl- β-D-mannopyranoside (47). A solution of 45 $(1.794 \mathrm{~g}, 1.03 \mathrm{mmol})$, CSA $(0.060 \mathrm{~g}, 0.26 \mathrm{mmol})$ and neo-pentyl glycol $(0.322 \mathrm{~g}, 3.09$ mmol) in dichloromethane (15 mL) under nitrogen atmosphere was stirred under reflux at$45^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate, washed with saturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (44\% ethyl acetate in hexane) afforded $47(1.482 \mathrm{~g}, 87 \%) .[\alpha]_{\mathrm{D}}^{25}-54.2\left(c, 0.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.40-7.33(\mathrm{~m}$, $10 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 30 \mathrm{H}), 4.86-4.70(\mathrm{~m}, 10 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 4 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.40(\mathrm{dd}, J=2.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 3 \mathrm{H})$, 4.27-4.22 (m, 2H), 4.10-4.03 (m, 5H), $3.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.71-$ $3.68(\mathrm{dd}, J=3.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.40-$ $3.38(\mathrm{dd}, J=2.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.22(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (br. s, 2H), 1.19, 1.14 and $1.08(3 \mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.2,57.0,62.6,62.7,63.5,67.2$, $71.2,71.7,72.0,72.4,73.5,73.6,73.7,73.9,74.1,74.2,74.3,74.5,74.8,74.9,75.2,75.7$, $77.3,78.2,79.2,79.8,81.9,100.4,101.0,101.3,102.2,127.2,127.3,127.34,127.37$, 127.4, 127.6, 127.7, 127.8, 127.87, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.6, 137.6, 138.4, 138.5, 138.6, 138.7, 138.8, 178.05, 178.09, 178.2; MALDI-HRMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1675.7749$, found 1675.7890.

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-

 6-O-pivaloyl- β-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-manno-pyranosyl-($\mathbf{1} \rightarrow \mathbf{4}$)-2,3-di- \boldsymbol{O}-benzyl-6- \boldsymbol{O}-pivaloyl- $\boldsymbol{\beta}$-d-mannopyranoside (48). To a stirred solution of $47(1.452 \mathrm{~g}, 0.88 \mathrm{mmol})$ and DMAP ($0.027 \mathrm{~g}, 0.22 \mathrm{mmol}$) in dichloromethane (12 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(245 \mu \mathrm{~L}, 1.76 \mathrm{mmol})$ followed by Pivolyl Chloride ($113 \mu \mathrm{~L}, 0.92 \mathrm{mmol}$) at room temperature under nitrogen atmosphere. Thereaction mixture was stirred for 4 h and washed with saturated aqueous NaHCO_{3} solution and brine. Organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (24% ethyl acetate in hexane) afforded $48(1.364 \mathrm{~g}, 89 \%) .[\alpha]^{25}{ }_{\mathrm{D}}-48.5\left(c, 1.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.38-7.32(\mathrm{~m}$, $10 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 30 \mathrm{H}), 4.85-4.69(\mathrm{~m}, 10 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}$, $2 \mathrm{H}), 4.41(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.09(\mathrm{~m}, 2 \mathrm{H})$, 4.05-4.01 (m, 3H), $3.87(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.49$ $(\mathrm{s}, 3 \mathrm{H}), 3.42-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{bs}, 1 \mathrm{H}), 1.18$, 1.12, 1.09 and $1.07(4 \mathrm{~s}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.09,27.14,27.19,27.24,56.9$, $62.5,62.7,63.1,66.2,71.5,71.7,71.9,72.2,73.5,73.6,73.62,73.7,74.2,74.5,74.6$, $74.9,75.2,75.6,75.9,78.2,79.1,79.4,81.3,100.4,100.9,101.4,102.2,127.2,127.3$, 127.4, 127.5, 127.56, 127.6, 127.67, 127.7, 127.8, 127.94, 127.99, 128.0, 128.1, 128.3, 128.32, 128.6, 137.7, 138.4, 138.6, 138.7, 138.8, 138.9, 177.9, 178.1, 178.9; MALDIHRMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{K}]^{+}: 1775.8069$, found 1775.8063.

Methyl 2,3-Di-O-benzyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di- \boldsymbol{O} -benzyl-6-O-pivaloyl- β-D-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-D-mannopyranoside (49) and Methyl 2,3-Di-O-benz-yl-4,6-O-benzylidene- α-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6- O-pivaloyl- β-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-piv-aloyl- $\boldsymbol{\beta}$-D-mannopyranoside (50). A stirred solution of thioglycoside 29 ($0.515 \mathrm{~g}, 0.95$
$\mathrm{mmol})$, BSP $(0.219 \mathrm{~g}, 1.05 \mathrm{mmol})$, TTBP $(0.473 \mathrm{~g}, 1.91 \mathrm{mmol})$ and activated $3 \AA ́$ powdered sieves in dichloromethane $(50 \mathrm{~mL})$ under nitrogen atmosphere was kept at -60 ${ }^{0} \mathrm{C}$ for 30 mins. Then was added $\mathrm{Tf}_{2} \mathrm{O}(192 \mu \mathrm{~L}, 1.14 \mathrm{mmol})$ and after 5 mins. acceptor 48 $(1.132 \mathrm{~g}, 0.76 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (8% ethyl acetate in toluene) afforded the corresponding α and β mannosides ($1.299 \mathrm{~g}, 79 \%$) with a ratio of 1:9. 49: $[\alpha]^{25}{ }_{\mathrm{D}}-53.4\left(c, 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.48-7.46(\mathrm{dd}, J=1.8,8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.20 (m, 53H), $5.53(\mathrm{~s}, 1 \mathrm{H}), 4.90-4.73(\mathrm{~m}, 14 \mathrm{H}), 4.71(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.62-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.41(\mathrm{dd}, J=2.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.26(\mathrm{~m}$, $3 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 5 \mathrm{H}), 3.98-3.95(\mathrm{dd}, J=$ $5.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2H), 3.80 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.27-$ $3.25(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.19,1.12,1.11$ and $1.07(4 \mathrm{~s}, 36 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.16,27.2,57.0,63.5,67.5,68.5,71.7,71.9,72.1,72.2,73.5,73.6$, $73.7,74.18,74.2,74.25,74.3,74.8,74.9,75.1,75.2,75.22,75.6,75.7,75.8,78.1,78.2$, $78.5,100.3\left({ }^{1} J_{\mathrm{CH}}=155.3 \mathrm{~Hz}\right), 100.9\left({ }^{1} J_{\mathrm{CH}}=156.9 \mathrm{~Hz}\right), 101.2\left({ }^{1} J_{\mathrm{CH}}=151.4 \mathrm{~Hz}\right), 101.3$ $\left({ }^{1} J_{\mathrm{CH}}=167.3 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=155.5 \mathrm{~Hz}\right), 102.2\left({ }^{1} J_{\mathrm{CH}}=151.0 \mathrm{~Hz}\right), 126.1,127.15$, $127.2,127.3,127.4,127.5,127.52,127.56,127.6,127.7,128.0,128.04,128.1,128.2$, $128.3,128.31,128.34,128.8,137.6,138.3,138.4,138.5,138.6,138.7,138.8,138.9$,
177.7, 178.01, 178.1; ESIMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$:2190.01, found 2190.10. 50: $[\alpha]^{25}{ }_{\mathrm{D}}-33.3\left(c, 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.52-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 15 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 38 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.66$ $(\mathrm{m}, 13 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 5 \mathrm{H}), 4.45-4.43(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.38(\mathrm{~m}$, $2 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 7 \mathrm{H}), 4.10-4.07(\mathrm{dd}, J=3.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-$ $3.98(\mathrm{~m}, 6 \mathrm{H}), 3.87(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.52(\mathrm{~m}$, $2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.23(\mathrm{dd}, J=2.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H})$, $1.18,1.11,1.09$ and $1.06(4 \mathrm{~s}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.2,27.3,27.4,56.9$, $62.5,62.7,62.9,63.5,65.2,68.4,70.9,71.7,71.94,71.98,72.9,73.0,73.2,73.6,73.7$, $74.0,74.1,74.2,74.8,74.9,75.2,75.7,75.8,76.1,77.2,77.6,78.2,78.9,79.0,81.8,100.4$ $\left({ }^{1} J_{\mathrm{CH}}=156.1 \mathrm{~Hz}\right), 100.9\left({ }^{1} J_{\mathrm{CH}}=155.0 \mathrm{~Hz}\right), 101.2\left({ }^{1} J_{\mathrm{CH}}=158.5 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=173.5\right.$ $\mathrm{Hz}), 102.2\left({ }^{1} J_{\mathrm{CH}}=152.3 \mathrm{~Hz}\right), 126.1,127.1,127.15,127.17,127.2,127.3,127.4,127.49$, $127.53,127.64,127.66,127.7,127.9,128.0,128.1,128.19,128.2,128.27,128.3,128.4$, $128.5,128.6,128.7,137.6,137.7,138.4,138.5,138.6,138.7,138.9,178.9,178.0$, 178.07; ESIMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2190.01$, found: 2190.08 .

Methyl 2,3-Di- O-benzyl- β-d-mannopyranosyl-(1 \rightarrow 4)-2,3-di- O-benzyl-6-O-pivaloyl-

 β-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl($1 \rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-D-mannopyranoside (51). A solution of 49 ($1.150 \mathrm{~g}, 0.53 \mathrm{mmol}$), CSA $(0.031 \mathrm{~g}, 0.13 \mathrm{mmol})$ and neo-pentyl glycol $(0.166 \mathrm{~g}, 1.59 \mathrm{mmol})$ in dichloromethane (15 mL) under a nitrogen atmosphere was stirred under reflux at $45^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate, washed withsaturated aqueous NaHCO_{3} solution, water and brine. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (44% ethyl acetate in hexane) afforded 51 ($0.972 \mathrm{~g}, 88 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}$-43.9 (c, 1.17, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.39-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.33-7.19(\mathrm{~m}$, $40 \mathrm{H}), 4.85-4.71(\mathrm{~m}, 12 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 6 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 4 \mathrm{H}), 4.35-4.30$ $(\mathrm{m}, 4 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 7 \mathrm{H}), 3.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}$, $3 \mathrm{H}), 3.82-3.79(\mathrm{dd}, J=2.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.67(\mathrm{dd}, J=3.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.52$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.09(\mathrm{~m}, 1 \mathrm{H}), 1.18$, $1.11,1.09$ and $1.07(4 \mathrm{~s}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.14,27.17,27.2,56.9,62.5$, $62.7,63.5,67.2,71.2,71.6,71.9,72.1,72.4,73.5,73.6,73.7,73.75,73.9,74.17,74.2$, $74.3,74.4,74.5,74.8,74.9,75.2,75.6,75.7,75.9,76.2,76.7,76.72,76.8,76.85,76.9$, $76.93,76.96,77.2,77.23,77.3,77.4,77.44,78.2,78.9,79.5,79.9,81.9,100.3,100.9$, $101.2,101.3,102.2,127.2,127.3,127.32,127.4,127.5,127.55,127.6,127.63,127.68$, 127.7, 127.75, 127.8, 127.82, 127.85, 127.9, 128.01, 128.05, 128.1, 128.2, 128.3, 128.4, $128.5,137.6,138.3,138.4,138.5,138.56,138.6,138.7,138.9,177.9,178.0,178.1$, 178.2; ESIMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2101.98$, found: 2102.05 .

Methyl 2,3-Di-O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-

 6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-manno-pyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di-\boldsymbol{O}-benzyl-6-O-pivaloyl- $\boldsymbol{\beta}$-d-mannopyranoside (52). To a stirred solution of 51 (0.940 $\mathrm{g}, 0.45 \mathrm{mmol})$ and DMAP $(0.014 \mathrm{~g}, 0.11 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(126 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$ followed by pivaloyl chloride $(58 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ at roomtemperature under nitrogen atmosphere. The reaction mixture was stirred for 4 h and washed with saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification by silica gel column chromatography (24% ethyl acetate in hexane) afforded $52(0.841 \mathrm{~g}, 86 \%) .[\alpha]^{25}{ }_{\mathrm{D}}-47.4$ $\left(c, 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 13 \mathrm{H}), 7.28-7.19$ $(\mathrm{m}, 35 \mathrm{H}), 4.87-4.67(\mathrm{~m}, 14 \mathrm{H}), 4.61-4.52(\mathrm{~m}, 7 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 3 \mathrm{H}), 4.33-$ $4.28(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 6 \mathrm{H}), 4.11-3.98(\mathrm{~m}, 6 \mathrm{H}), 3.86(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.80$ (m, 4H), $3.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 3 \mathrm{H})$, 3.25-3.18 (m, 4H), 3.13-3.11 (m, 1H), $2.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18,1.11,1.08,1.07$ and $1.06(5 \mathrm{~s}, 45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.12,27.15,27.2,27.25,56.9,62.5,62.7$, $63.1,63.5,66.2,71.4,71.7,71.9,72.0,72.1,73.5,73.6,73.7,74.1,74.2,74.22,74.3$, $74.5,74.6,74.8,74.9,75.2,75.6,75.7,75.9,76.7,76.72,76.8,76.83,76.85,76.87,76.9$, 76.96, 77.07, 77.1, 77.12, 77.2, 77.3, 77.4, 77.42, 78.1, 78.4, 81.3, 100.3, 100.8, 101.2, $101.4,102.2,127.2,127.3,127.34,127.43,127.44,127.49,127.52,127.57,127.6$, 127.66, 127.7, 127.8, 127.9, 127.98, 128.0, 128.02, 128.04, 128.08, 128.3, 128.6, 137.7, 138.4, 138.5, 138.6, 138.7, 138.9, 177.95, 177.97, 178.06, 178.08, 178.94; MALDIHRMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$:2186.0372, found 2186.0366.

Methyl 2,3-Di-O-benzyl-4,6-O-benzylidene- β-d-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-piv-aloyl- β-d-mannopyranoside (53) and Methyl 2,3-Di-O-benzyl-4,6-O-benzylidene- α -

D-mannopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow$ 4)-2,3-di- O-benzyl-6-O-pivaloyl- β-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl-6-O-pivaloyl- β-d-mannopyra-nosyl-(1 \rightarrow 4)-2,3-di- \boldsymbol{O}-benzyl-6- \boldsymbol{O}-pivaloyl- β-d-mannopyranoside (54). A stirred solution of thioglycoside $29(0.301 \mathrm{~g}, 0.56 \mathrm{mmol})$, BSP ($0.128 \mathrm{~g}, 0.61 \mathrm{mmol}$), TTBP $(0.277 \mathrm{~g}, 1.11 \mathrm{mmol})$ and activated $3 \AA ́$ powdered sieves in dichloromethane $(30 \mathrm{~mL})$ under nitrogen atmosphere was kept at $-60{ }^{\circ} \mathrm{C}$ for 30 mins. Then was added $\mathrm{Tf}_{2} \mathrm{O}(113$ $\mu \mathrm{L}, 0.67 \mathrm{mmol})$ and after 5 mins . acceptor $52(0.805 \mathrm{~g}, 0.37 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added by cannula and reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and stirred for additional 6 h before molecular sieves were filtered off, and the organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was concentrated under reduced pressure. Purification by silica gel column chromatography (10% ethyl acetate in toluene) afforded the corresponding α and β mannosides $(0.771 \mathrm{~g}, 80 \%)$ with a ratio of 1:10. 53: $[\alpha]^{25}{ }_{\mathrm{D}}-40.6\left(c, 1.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 63 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.88(\mathrm{~m}$, $16 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 7 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.44-4.40$ (m, 3H), 4.33-4.18 (m, 5H), 4.11-4.03 (m, 10H), 3.96-3.93 (dd, $J=4.8,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{br} . \mathrm{s}, 2 \mathrm{H})$, 3.62-3.50 (m, 4H), $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.18,1.11,1.09,1.08$ and $1.05(5 \mathrm{~s}, 45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.14,27.18,27.23,27.25,56.9,62.6,63.5,67.4,68.5,71.7,71.9,72.0$, $72.1,72.4,73.5,73.6,73.7,74.1,74.2,74.3,74.7,74.8,75.0,75.1,75.2,75.22,75.6$, $75.7,75.8,75.9,76.8,76.9,77.18,77.21,77.24,77.3,77.35,77.4,78.1,78.3,78.5,80.2$,
$100.3\left({ }^{1} J_{\mathrm{CH}}=155.0 \mathrm{~Hz}\right), 100.8\left({ }^{1} J_{\mathrm{CH}}=154.8 \mathrm{~Hz}\right), 101.1\left({ }^{1} J_{\mathrm{CH}}=156.4 \mathrm{~Hz}\right), 101.2\left({ }^{1} J_{\mathrm{CH}}=\right.$ $157.4 \mathrm{~Hz}), 101.3\left({ }^{1} J_{\mathrm{CH}}=157.4 \mathrm{~Hz}\right), 101.9\left({ }^{1} J_{\mathrm{CH}}=155.8 \mathrm{~Hz}\right), 102.2\left({ }^{1} J_{\mathrm{CH}}=152.8 \mathrm{~Hz}\right)$, $126.1,127.1,127.2,127.22,127.24,127.3,127.4,127.47,127.55,127.59,127.61$, 127.64, 127.65, 127.67, 127.9, 128.05, 128.1, 128.12, 128.14, 128.15, 128.26, 128.3, $128.33,137.6,138.3,138.4,138.57,138.59,138.6,138.64,138.7,138.8,138.9,177.94$, 177.98, 178.1; ESIMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2616.22$, found: 2616.31. 54: $[\alpha]^{25}{ }_{\mathrm{D}}-30.8\left(c, 1.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 16 \mathrm{H})$, 7.29-7.17 (m, 48H), $5.60(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.79$ $-4.65(\mathrm{~m}, 16 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.59-4.55(\mathrm{~m}, 5 \mathrm{H}), 4.52-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 4 \mathrm{H})$, 4.40-4.38 (m, 2H), 4.33-4.19 (m, 9H), 4.11-3.98 (m, 8H), 3.87-3.86 (m, 2H), 3.81-3.76 $(\mathrm{m}, 3 \mathrm{H}), 3.75-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.25-$ $3.18(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.18,1.11,1.08,1.07$ and $1.05(5 \mathrm{~s}, 45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.1,27.15,27.19,27.2,27.3,56.9,62.7,63.5,65.2,70.1,71.7,71.9,72.0$, $72.9,73.0,73.2,73.5,73.6,73.7,74.0,74.1,74.15,74.2,74.3,74.7,74.8,74.9,75.1$, $75.2,75.6,75.8,76.1,76.6,76.7,76.72,76.8,76.88,76.9,77.08,77.1,77.2,77.3,77.35$, $77.4,77.7,78.1,80.2,100.3\left({ }^{1} J_{\mathrm{CH}}=155.3 \mathrm{~Hz}\right), 100.8\left({ }^{1} J_{\mathrm{CH}}=160.8 \mathrm{~Hz}\right), 100.9\left({ }^{1} J_{\mathrm{CH}}=\right.$ $154.4 \mathrm{~Hz}), 101.1\left({ }^{1} J_{\mathrm{CH}}=171.9 \mathrm{~Hz}\right), 101.2\left({ }^{1} J_{\mathrm{CH}}=165.8 \mathrm{~Hz}\right), 102.2\left({ }^{1} J_{\mathrm{CH}}=152.6 \mathrm{~Hz}\right)$, 126.0, 127.1, 127.2, 127.3, 127.35, 127.4, 127.43, 127.47, 127.5, 127.57, 127.63, 127.7, $127.8,127.9,128.0,128.1,128.15,128.2,128.26,128.3,128.38,128.4,128.5,128.6$, 128.7, 137.6, 137.7, 138.3, 138.4, 138.5, 138.6, 138.7, 138.8, 138.9, 177.9, 178.1, 178.13; ESIMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2616.22$, found: 2616.19 .

Methyl

 benzyl- β-D-mannopyranosyl-($1 \rightarrow 4$)-2,3-di-O-benzyl- β-d-mannopyranosyl-($1 \rightarrow 4$)-2,3-di- O-benzyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3-di- O-benzyl- β-d-mannopyranosyl(1 \rightarrow 4)-2,3-di-O-benzyl- β-d-mannopyranoside (55). A stirred solution of 53 (0.529 g , $0.21 \mathrm{mmol})$ and sodium methoxide $(0.044 \mathrm{~g}, 0.82 \mathrm{mmol})$ in dry $\mathrm{MeOH}(6 \mathrm{~mL})$ was refluxed for 27 h at $70{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was neutralized with Amberlyst 15 ion exchange resin, filtered through Celite and concentrated under reduced pressure. Purification by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH} 1: 1\right)$ afforded $55(0.415 \mathrm{~g}, 94 \%) .[\alpha]^{27}{ }_{\mathrm{D}}-55.2\left(c, 1.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.46-7.36(\mathrm{~m}, 15 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 50 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.80(\mathrm{~m}, 16 \mathrm{H})$, $4.78-4.73(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.51(\mathrm{~m}, 8 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.99(\mathrm{~m}, 6 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 6 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.51-$ $3.43(\mathrm{~m}, 6 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 57.4,61.8$, $61.9,67.3,72.1,72.3,72.4,72.5,72.672 .7,74.5,74.6,74.67,74.7,74.9,75.0,75.1$, $75.15,75.2,75.3,75.32,75.4,75.6,75.8,76.4,76.5,76.7,77.2,77.3,78.4,78.6,79.9$, 80.3, 80.5, 100.9, 101.2, 101.3, 102.1, 102.7, 126.1, 126.8, 126.83, 126.9, 127.3, 127.4, $127.5,127.51,127.9,128.0,128.1,128.15,128.2,128.3,128.33,128.35,128.4,128.8$, 137.7, 138.4, 138.5, 138.7, 138.74, 138.8, 138.83, 138.9; MALDI-HRMS Calcd for $\mathrm{C}_{96} \mathrm{H}_{116} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$:2195.9276, found 2195.9271.Methyl β-D-Mannopyranosyl-($1 \rightarrow 4$)- β-D-mannopyranosyl-($1 \rightarrow 4$)- β-D-mannopyran-osyl-($1 \rightarrow 4$)- β-D-mannopyranosyl-($1 \rightarrow 4$)- β-D-mannopyranosyl-($1 \rightarrow 4$)- β-D-mannopyranoside (56). A mixture of hexasaccharide 55 ($40 \mathrm{mg}, 0.018 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$
$(60 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was shaken under 50 psi of H_{2} for 48 h . The reaction mixture was filtered through Whatman 1 filter paper, which was washed with water $(\mathrm{pH} 7)$ five times. Removal of water under reduced pressure at $50{ }^{\circ} \mathrm{C}$ afforded the target compound $56(16 \mathrm{mg}, 87 \%)$. M.p. $>300{ }^{0} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}-62.0\left(c, 0.25, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 4.64(\mathrm{~s}$, $4 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H}), 3.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 6 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 10 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.56-3.53(\mathrm{dd}, J=9.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 8 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta: 56.8,60.5,60.9,66.6,69.7,69.9,70.4,71.4,71.5,72.7,74.8,74.9,76.4,76.5,76.6$, 76.7, $100.1\left({ }^{1} J_{\mathrm{CH}}=160.0 \mathrm{~Hz}\right), 100.9\left({ }^{1} J_{\mathrm{CH}}=161.0 \mathrm{~Hz}\right)$; ESIHRMS Calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{31} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1027.3329$, found 1027.3303.

References

(1) Crich, D.; Sun, S.; Brunckova, J. J. Org. Chem. 1996, 61, 605-615.
(2) Crich, D.; Sun, S. Tetrahedron 1998, 54, 8321-8348.
(3) Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015-9020.
(4) Crich, D.; Smith, M.; Yao, Q.; Picione, J. Synthesis 2001, 323-326.

Cosmes

16

38

47

53

