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1) Detailed process for deducing the frequency response functions linking small strain with the 

doubly degenerate ��� Raman-active mode. 

For a two-dimensional system under mechanical strain, a doubly degenerate mode splits into two bands. 

The energies of the splitting modes are the eigenvalues of the corresponding Hamiltonian: 

�� = ��		

		��	 
 (1) 

where a, b, and c are matrix elements. The solutions of Eq. (1) are:  


�,� = (� + �) ± �(� − �)� + 4
�2  

(2) �, �, and	
 under small strain can be expanded as: 

�� = �� + ���  + !��"" + #�� "� = �� + ���  + !��"" + #�� "
 = 
� + �$�  + !$�"" + #$� "  

(3) 

The original state is degenerate, whose frequency is 
�, so for an unstrained structure: 

� = �, 
 = 0 

(4) 

such that �� = �� = 
�, 
� = 0. Under strain, the split frequencies can be written as 


�,� = �� + (�� + ��)�  + (!� + !�)�"" + (#� + #�)� "2
± �[(�� − ��)�  + (!� − !�)�"" + (#� − #�)� "]� + 4(�$�  + !$�"" + #$� ")�2  

(5) 

Then, we will solve the relationships of the whole coefficients by symmetry restrictions of the )*+ point 

group. 

(1) Inversion operation: If changing the sign of shear strain (� "�− � ") in Eq. (5), the frequencies are 

invariant. 




�,� = �� + (�� + ��)�  + (!� + !�)�"" + (#� + #�)� "2
± �[(�� − ��)�  + (!� − !�)�"" + (#� − #�)� "]� + 4(�$�  + !$�"" + #$� ")�2
≡ �� + (�� + ��)�  + (!� + !�)�"" − (#� + #�)� "2
± �[(�� − ��)�  + (!� − !�)�"" − (#� − #�)� "]� + 4(�$�  + !$�"" − #$� ")�2  

(6) 

Thus, we have 

� #� + #� = 0																																						(�� − ��)(#� − #�) + 4�$#$ = 0(!� − !�)(#� − #�) + 4!$#$ = 0  

(7) 

(2) To apply equivalent uniaxial strain along the - and .	directions (�  = �"" = �, � " = 0), the 

symmetry is conserved, and no split happens. Thus, 

�[(�� − ��)� + (!� − !�)�]� + 4(�$� + !$�)�2 ≡ 0 

such that 

/�� + !� = �� + !��$ + !$ = 0  

(8) 

(3) The system is invariable after a 60-degree rotation. The rotation of a second-rank tensor is given 

generally as 

0�  1 	� "1� "1 	�""1 2 = � 	cos6	sin6−sin6	cos6	� ��  	� "� "	�""� �cos6 − sin6sin6				cos6	�
= 0�  cos�6 + �""sin�6 + 2� "sin6cos6															� "(cos�6 − sin�6) − (�  − �"")sin6cos6� "(cos�6 − sin�6) − 8�  − �""9sin6cos6				�  sin�6 + �""cos�6 − 2� "sin6cos6											2 

(9) 

When	θ = ;$, the strain tensor becomes: 

<==
=>14 �  + 34 �"" + √32 � " 				12 � " − √34 (�  − �"")12 � " − √34 (�  − �"")				34 �  + 14 �"" − √32 � "BCC

CD
 

(10) 



Thus, we have: 


�,�
= �� + (�� + ��)�  + (!� + !�)�"" + (#� + #�)� "2
± �[(�� − ��)�  + (!� − !�)�"" + (#� − #�)� "]� + 4(�$�  + !$�"" + #$� ")�2≡ ��
+ (�� + ��) E14�  + 34 �"" + √32 � "F + (!� +!�) E34�  + 14 �"" −√32 � "F − (#� + #�) 012 � " −√34 (�  − �"")22

± GHH
HHHHH
HHIJ(�� − ��) E14�  + 34 �"" +√32 � "F + (!� − !�) E34 �  + 14 �"" − √32 � "F + (#� − #�) 012 � " − √34 (�  − �"")2K�

+4�$ E14�  + 34 �"" + √32 � "F + !$ E34�  + 14 �"" −√32 � "F − #$ 012 � " − √34 (�  − �"")2�2  

(11) 

The equality of the first term in Eq. (11) gives: 

LMM
N
MMO (�� + ��) = 14 (�� + ��) + 34 (!� + !�) − √34 (#� + #�)
(!� + !�) = 34 (�� + ��) + 14 (!� + !�) + √34 (#� + #�)
(#� + #�) = √32 (�� + ��) − √32 (!� + !�) + 12 (#� + #�)

 

(12) 

Combining with Eq. (7), we have: 

(�� + ��) = (!� + !�) 
(13) 

Based on Eqs. (7, 8, 13), combined with the definitions	�P = QRSQT� = URSUT� , ∆α = QRXQT� = URXUT� , we 

have: 

LMM
MN
MMM
O�� = �P − ∆��� = �P + ∆�!� = �P + ∆�!� = �P − ∆�!$ = −�$#� = −#�#$ = ∆�#��$

 

(14) 



Eq. (14) reduces the number of coefficients from 9 to 4. 

The equality of the second term in Eq. (11) gives: 

[(�� − ��)�  + (!� − !�)�"" + (#� − #�)� "]� + 4(�$�  + !$�"" + #$� ")�
≡ J014 (�� − ��) + 34 (!� − !�) − √34 (#� − #�)2 �  
+ 034 (�� − ��) + 14 (!� − !�) + √34 (#� − #�)2 �""
+ 0√32 (�� − �� − !� + !�) + 12 (#� − #�)2 � "K�
+ 4JE14�$ + 34!$ − √34 #$F �  + E34�$ + 14!$ + √34 #$F �""
+ 0√32 (�$ − !$) + 12#$2 � "K

�
 

(15) 

Combined with Eq. (14), Eq. (15) reduces to: 

8−2∆��  + 2∆��"" + 2#�� "9� + 4Y�$�  − �$�"" + ∆�#��$ � "Z�
≡ J012 ∆� + 32∆� − √32 #�2 �  + 0−32∆� + 12∆� + √32 #�2 �"" + 82√3∆� + #�9� "K�
+ 4 0E14�$ − 34�$ − √34 ∆�#��$ F �  + E34�$ − 14�$ + √34 ∆�#��$ F �""
+ Y√3�$ + 12∆�#��$ Z � "2� 

(16) 

It is equivalent to 

[−2∆�8�  − �""9 + 2#�� "\� + 4Y�$8�  − �""9 + ∆�#��$ � "Z�
≡ 0E∆� − √32 #�F 8�  − �""9 + 82√3Δ� + #�9� "2�

+ 4 0E−12�$ − √34 ∆�#��$ F 8�  − �""9 + Y√3�$ + 12∆�#��$ Z � "2� 



(17) 

Both sides whose corresponding terms are equal, so we have: 

LMM
N
MMO 4(∆�)� + 4�$� = E∆� − √32 #�F� + 4E12�$ + √34 ∆�#��$ F�

4#�� + 4Y∆�#��$ Z� = 82√3Δ� + #�9� + 4Y√3�$ + 12∆�#��$ Z�
−4∆�#� + 4�$ ∆�#��$ = 0 = E∆� − √32 #�F 82√3Δ� + #�9 − 4E12�$ + √34 ∆�#��$ F Y√3�$ + 12∆�#��$ Z

 

(18) 

The definition #$ = ∆Q^RQ_  is meaningless at #� = �$ = 0. If we regard #$ as an independent parameter, 

one solution of Eq. (17) is: 

� #� = �$ = 0
#$ = ∆�#��$ = ±2∆� 

(19) 

If we plug these relationships from Eqs. (14, 19) into the eigenvalue Eq. (5), the split frequencies of 

degenerate mode will be: 


�,� = 
� + �P(�  + �"") ± ∆�`(�  − �"")� + 4� "�  

(20) 

This gives a universal formulation linking strain and the frequencies of the split doubly degenerate 

modes. 

 

2) The response curves of Raman frequencies with uniaxial and shear strains 

Let us return to the evolutions of Raman shifts with uniaxial strain and shear strain in graphene, 

graphyne (GY), and graphdiyne (GDY), which are presented in Figure 5. The response curves of Raman 

frequencies to strains are fitted by quadratic functions; generally, they can be expressed as ω = B2 ×�� + B1 × � + B0 , where B0, B1, and	B2  are the intercept, monomial, and quadratic coefficients, 

respectively, and the ratio between B2  and B1	(B2/B1)  can reflect the relative contribution of 

nonlinear effects	to some extent; � is the applied strain; and 
 is the corresponding frequency. Most 

often, when the applied strain is small, the frequency can be assumed to be linearly associated with the 

strain. Inevitably there are still some nonlinear effects, which are unified into quadratic terms. The 

detailed values of B1 and B2 are presented in Tables S1 and S2. However, the B2 values are much 

smaller than the B1 values, so the most important contributors in this system are the linear terms. The B2/B1 ratios under shear strain are generally greater than under uniaxial strain, which means the 

nonlinear effects by shear strain are more obvious than uniaxial strain. There are two possible reasons for 



these effects: one is the variations of structures under shear strain are stronger, another reason maybe 

attribute to the nonlinearly transition from structure to frequency. Thus, under uniaxial strain, we consider 

the strain from -4% to +4%, but under shear strain, where the strain was restrainted to [−3%, +3%] to 

reduce errors by nonlinear effects. 

Table S1. Response curves coefficients linking frequencies with uniaxial strain 

  B1 (cm
−1

/%) B2 (cm
−1

/%
2
) B2/B1 

 

graphene 

G S −23.8 0.37 −0.015 G X −36.8 0.26 −0.007 G"S −22.9 0.27 −0.011 G"X −36.2 0.12 −0.003 

 

 

 

 

GY 

 

 

B  −26.8 0.15 −0.006 B" −26.3 0.17 −0.006 G S −26.8 0.21 −0.008 G X −30.7 0.42 −0.014 G"S −26.3 0.42 −0.016 G"X −30.5 0.74 −0.024 Y  −30.2 −1.97 0.065 Y" −26.2 −1.79 0.068 

 

 

 

 

 

 

 

 

GDY 

 

B  −20.0 0.16 −0.008 B" −19.8 0.16 −0.008 G′′ S −23.4 0.08 −0.003 G′′ X −34.3 −1.39 0.040 G′′"S −24.6 0.78 −0.032 G′′"X −33.2 0.68 −0.020 G′  −35.6 −0.87 0.024 G′" −33.4 −0.48 0.014 G S −25.8 0.37 −0.014 G X −38.5 1.87 −0.049 G"S −26.3 2.23 −0.085 G"X −39.9 0.33 −0.008 Y  −35.1 −2.18 0.062 Y" −30.8 −2.09 0.068 Y′ S −23.0 0.13 −0.006 Y′ X −44.0 2.79 −0.063 Y′"S −25.3 2.49 −0.098 



Y′"X −45.9 0.20 −0.004 

 

  



 

Table S2. Response curves coefficients linking frequencies with shear strain 

  B1 (cm
−1

/%) B2 (cm
−1

/%
2
) B2/B1 

 

graphene 

GS −3.08 −3.21 1.042 GX 6.16 2.73 0.443 

 

 

GY 

B −0.30 0.57 −1.900 GS −4.50 −1.01 0.224 GX 1.51 −0.23 −0.152 Y −11.8 −4.12 0.349 

 

 

 

 

 

 

GDY 

B 1.29 0.00 0.000 G′′S −9.41 −3.48 0.370 G′′X 10.8 −3.24 −0.300 G′ −5.52 −1.6 0.290 GS −9.49 0.96 −0.101 GX 16.5 2.83 0.172 Y −8.3 −6.48 0.781 YS1  −18.2 2.42 −0.133 Y′X 27.6 1.58 0.057 

 

3) Variations of bond lengths and angles versus uniaxial strain and shear strain 

Figures S1 and S2 show the variations in bond lengths and angles with uniaxial strain and shear strain, 

respectively. The structures of graphene, GY, and GDY are shown in Figure 1 of main text. r� is the 

length of the aromatic bond on the benzene ring, r� is the length of the  C– C bond between the triply 

coordinated atom and its doubly coordinated neighbor, r$ is the length of the C ≡ C triple bond, and rk 

is the length of the bond between adjacent carbon triple bonds. There are only two kinds of angles (120° 

and 180°) in the initial states for the three structures, but they all changed under strain. 6� is an internal 

angle of the benzene ring, and 6� is the angle on the alkyne-containing chain and links the aromatic 

bond with the triple bond. All the other angles can be deduced from 6�, 6� or are nearly invariable, so 

they are ignored. When uniaxial strain is applied, the original )*+	(l6/nnn) symmetry is transformed 

into rhombic )�+ 	(lnnn) symmetry. However, if shear strain is applied, the symmetry will reduce to 

monoclinic	o�+	(l2/n). To relax the strained structure, the bond lengths and angles changed differently 

between uniaxial strain and shear strain, leading to the different behaviors of the vibrational frequencies. 

 



 

Figure S1. Variations in bond lengths and angles with uniaxial strain. The bond lengths of graphene, GY, 

and GDY are shown in (a), (b), and (c); the bond angles of those are shown in (d), (e), and (f). Squares 

and triangles correspond to the values under uniaxial strain in the - and . directions, respectively. 

Different colors correspond to different bond lengths or angles. 

 

 

Figure S2. Variations in bond lengths and angles with shear strain. The bond lengths of graphene, GY, 

and GDY are shown in (a), (b), and (c); the bond angles are shown in (d), (e), and (f). Squares and 



triangles correspond to the values under uniaxial strain in - and . directions. Different colors 

correspond to different bond lengths or angles. 

 

4) The effects of van der Waals interactions on the frequency of G band. 

We adopte the non-local van der Waals density functional (vdW-DF) and explored the performance of 

vdW-DF combined with PBE functional to investigate the effects of vdW interactions. Table R1 shows 

the frequencies of G peaks for graphene, GY and GDY by different methods based on optimized 

structures. 

Table S3. The frequency of G band by different methods (cm
–1

). 

 ω(graphene) ω(GY) ω(GDY) 
ω(GY)

 

−ω(graphene) 

ω(GDY)
 

−ω(graphene) 

LDA 1620 1464 1520 -156 -100 

PBE 1568 1418 1478 -150 -90 

PBE+vdW 1557 1398 1457 -159 -100 

 

 


