Supporting Information

An Efficient Total Synthesis of (\pm)-Lycoramine

Chun-An Fan, Yong-Qiang Tu,* Zhen-Lei Song, En Zhang, Lei Shi, Min Wang, Baomin Wang, and Shu-Yu Zhang

State Key Laboratory of Applied Organic Chemistry \& Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China E-mail: tuyq@lzu.edu.cn

Scheme 1. NBS-Promoted Semipinacol Rearrangement of Tertiary Hydroxy-Protected Allylic Alcohol.

82 \%
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{bs}, 1 \mathrm{H})$, 2.51-2.30 (m, 2H), 2.20-2.01 (m, 2H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H})$, 1.50-1.46 (m, 1H), 1.23-1.13 ppm (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.2,137.5$, $129.1,129.1,127.4,127.4,127.3,60.3,56.4,30.7,27.1,24.1,20.9,20.8 \mathrm{ppm} ; \mathbf{M S}(70 \mathrm{eV}):$ $m / z(\%): 239(0.1)\left[M\left(\mathrm{Br}^{81}\right)-\mathrm{CH}_{3} \mathrm{CO}\right]^{+}, 237(0.1)\left[M\left(\mathrm{Br}^{79}\right)-\mathrm{CH}_{3} \mathrm{CO}\right]^{+}, 201(0.1)[M-\mathrm{Br}]^{+}, 171$ (0.8), 169 (0.8), 158 (100) $\left[M-\mathrm{Br}-\mathrm{CH}_{3} \mathrm{CO}\right]^{+}, 143$ (33), 130 (42), 129 (40), 115 (25), 91 (33), 43 (52); HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ONBr}: 298.0801$; found: $298.0800\left[M+\mathrm{NH}_{4}\right]^{+}$.

Note: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution on Varian Mercury- 300 MHz . The MS data were obtained with EI $(70 \mathrm{eV})$, and the relative intensity (\%) is given in brackets. High-resolution mass spectral analysis (HRMS) data were measured on the Bruker ApexII by means of the ESI technique.

Table 1. NBS-Promoted Semipinacol Rearrangement of Secondary Allylic Alcohol 6.

	NBS $\xrightarrow[\text { solvent }]{\text { (1.1 equiv) }}$ r.t.		$\begin{aligned} & \mathrm{N}^{2} \mathrm{O}^{2} \\ & \mathrm{R}^{1} \\ & \left.\mathrm{R}^{2}=\mathrm{Ar}\right) \\ & \left.\mathrm{R}^{2}=\mathrm{H}\right) \end{aligned}$	
entry	solvent	5:iso-5:5a+iso-5a ${ }^{\text {a }}$	$\begin{aligned} & \text { time } \\ & (\mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { yield } \\ & (\%)^{b} \end{aligned}$
1	$\mathrm{CH}_{3} \mathrm{CN}$	91:0:9	50	92
2	acetone	92:0:8	50	93
3	THF	>98:0:2	50	67
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	97:0:3	30	62
5	CHCl_{3}	>98:0:2	30	53
6	benzene	97:0:3	50	80
7	toluene	97:0:3	50	84
8	MeOH	93:0:7	30	93

${ }^{a}$ The ratios were determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Total yield of isolated products 5/iso-5/5a/iso-5a.

Table 2. NBS-Mediated Semipinacol Rearrangement of Secondary Hydroxy-Protected Allylic Alcohol 6".

entry	solvent	5:iso-5:5a+iso-5a ${ }^{\text {a }}$	time (h)	$\begin{aligned} & \text { yield } \\ & (\%)^{b} \\ & \hline \end{aligned}$
1	acetone	47:50:3	3.5	74
2	$i-\mathrm{PrOH}$	98:0:2	2	61

${ }^{a}$ The ratios were established by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Total yield of isolated products 5/iso-5/5a/iso-5a.

From the obtained results, we can see when TMS-protected allylic alcohol $\mathbf{6}^{\prime \prime}$ was subjected to this NBS-mediated rearrangement in the aprotic reaction medium of acetone (entry 1), the isomeric aldehyde iso- $\mathbf{5}$ could be distinctly observed in the absence of hydrogen bonds. In contrast, we could not find the formation of iso- 5 while proceeding in the protic solvent of i-PrOH (entry 2) in the presence of the hydrogen bonds between NBS and solvent. Combined with the above Table 1 of Supporting Informatiom, these supporting experiments show that the formation of hydrogen bonds may be the important factor influencing the face-diastereoselectivity of NBS.

Table 3. Base-induced Desilylation/Cyclization Reaction for the Construction of C Ring.

entry	$\begin{aligned} & \text { base } \\ & \text { (equiv) } \end{aligned}$	solvent	$\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (h)	yield (\%) ${ }^{a}$
1	KOH (0.5)	DMF	r.t.	24	b
2	KOH (1.5)	DMF	r.t.	24	25
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0)$	DMF- $\mathrm{H}_{2} \mathrm{O}$	80	48	b
4	$\mathrm{Et}_{3} \mathrm{~N}$ (2.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	12	- ${ }^{\text {c }}$
5	$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (2.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	12	$-^{c}$
6	DMAP (2.0) ${ }^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	12	- ${ }^{\text {c }}$
7	DBU (2.0) ${ }^{\text {e }}$	DMSO	80	0.5	95
8	DBU (0.3)	DMSO	80	1.5	91
9	DBU (0.2)	DMSO	80	8	83
10		DMSO	80	24	- ${ }^{\text {c }}$

${ }^{a}$ Isolated yield. ${ }^{b}$ Only almost 40% conversion. ${ }^{c}$ No reaction. ${ }^{d}$ DMAP $=$ 4-dimethylaminopyridine. ${ }^{e} \mathrm{DBU}=1,8$-diazabicyclo[5.4.0]undec-7-ene.

Scheme 2. Proposed Mechanism of The Cyclization Induced by DBU

1. Experimental Procedures and Spectroscopic and Analytical Data of the Products

Note: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution on Varian Mercury-300 or 400 MHz . The MS data were obtained with EI (70 eV), and the relative intensity (\%) is given in brackets. High-resolution mass spectral analysis (HRMS) data were measured on the Bruker ApexII by means of the SIMS or ESI technique.

1.1——Synthesis of Allylic Alcohol 6

To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ suspension of $7(4.0 \mathrm{~g}, 10.1 \mathrm{mmol})$ in dried tetramethylethlenediamine (TMEDA, 30 mL) was added dropwise $n-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $23.6 \mathrm{~mL}, 35.4 \mathrm{mmol}$) under an argon atmosphere during 10 min . The reaction mixture stirred at room temperature for 4 h , and then cooled to $-78{ }^{\circ} \mathrm{C}$ again. The solution of TBS-protected o-Vanillin $8(8.0 \mathrm{~g}, 30.3$ mmol) in dried TMEDA (15 mL) was added dropwise. The mixture was poured into saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{C}(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography on silica gel (petroleum/EtOAc 40:1) provided the allylic alcohol 6 (3:2, $3.6 \mathrm{~g}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.90-6.86(\mathrm{~m}, 2 \times 2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 2 \times 1 \mathrm{H}), 5.64(\mathrm{~m}, 2 \times 1 \mathrm{H})$, $5.48(\mathrm{bs}, 2 \times 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 2 \times 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \times 3 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \times 1 \mathrm{H}), 2.17(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 2 \times 1 \mathrm{H} ; \mathrm{OH}), 2.09-2.02(2 \times 3 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \times 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \times 1 \mathrm{H}) 1.00(\mathrm{~s}, 2 \times 9 \mathrm{H})$, $0.89(\mathrm{~s}, 2 \times 9 \mathrm{H}), 0.22(\mathrm{~s}, 2 \times 3 \mathrm{H}), 0.20(\mathrm{~s}, 2 \times 3 \mathrm{H}), 0.06(\mathrm{~s}, 2 \times 3 \mathrm{H}), 0.05 \mathrm{ppm}(\mathrm{s}, 2 \times 3 \mathrm{H}) ; 6$ (major): ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.6,142.7,138.0,133.4,121.0,120.3,119.4,110.5,71.0$,

1.2-Synthesis of Aldehyde 5

To a solution of $6(0.2 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $i-\mathrm{PrOH}(8 \mathrm{~mL})$ was added N-bromosuccinimide (NBS, $81.9 \mathrm{mg}, 0.46 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 30 min until allylic alcohol 6 had disappeared completely monitored by TLC. After direct removal of the solvent of $i-\mathrm{PrOH}$ in vacuo at ambient temperature, the residue was rapidly purified by column chromatography on silica gel (petroleum/EtOAc 100:1) to afford the aldehyde 5 (0.22 g, 93%).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{bs}$, $1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.6,149.3,142.8,130.9,121.1,119.1,110.4,68.2,54.5,54.2,51.1$, $41.1,30.1,28.0,26.7,26.7,26.7,25.8,25.8,25.8,19.7,18.0,-1.9,-2.2,-4.9,-4.9 \mathrm{ppm}$; MS $(70 \mathrm{eV}): m / z(\%): 501(5)\left[M\left({ }^{81} \mathrm{Br}\right)-t-\mathrm{Bu}\right]^{+}, 499(5)\left[M\left({ }^{79} \mathrm{Br}\right)-t-\mathrm{Bu}\right]^{+}, 419(2)[M-t-\mathrm{Bu}-\mathrm{HBr}]$, 369 (7) $\left[M\left({ }^{81} \mathrm{Br}\right)-t-\mathrm{Bu}-\mathrm{TBSOH}\right]^{+}$, 367 (7) $\left[M\left({ }^{79} \mathrm{Br}\right)-t-\mathrm{Bu}-\mathrm{TBSOH}\right]^{+}$, 287 (26) $[M-t-\mathrm{Bu}-\mathrm{TBSOH}-\mathrm{HBr}]^{+}, 209$ (16), 171 (26), 135 (21), 73 (100), 57 (17), 41 (17); HRMS (SIMS): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{36}{ }^{81} \mathrm{BrO}_{4} \mathrm{Si}_{2}$: 501.1317; found: $501.1320[M-t-\mathrm{Bu}]^{+}$.

1.3 - Synthesis of Aldehyde 9

5

1D NOSEY Selected Experiment

To a solution of $5(0.50 \mathrm{~g}, 0.9 \mathrm{mmol})$ in dried DMSO (10 mL) was added 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU, $0.27 \mathrm{~mL}, 1.8 \mathrm{mmol}$) at room temperature under an argon atmosphere. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 30 min until aldehyde 5 had disappeared completely monitored by TLC. After cooled to ambient temperature, $\mathrm{H}_{2} \mathrm{O}$ (4 $\mathrm{mL})$ was added to the resulting mixture followed by EtOAc $(40 \mathrm{~mL})$. The organic phase was separated, and then the aqueous layer was extracted with EtOAc ($4 \times 40 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the residue through column chromatography on silica gel (petroleum/EtOAc 30:1) afforded the aldehyde 9 ($0.31 \mathrm{~g}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.48(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.75(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{dd}, J=6.3,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=197.9,147.7,145.7,127.0,122.0,115.6,113.1,81.8,66.0,59.5,56.0,37.4,30.0$, $25.6,25.6,25.6,22.7,17.9,-4.9,-4.9 \mathrm{ppm}$; MS (70 eV): m / z (\%): 362 (3) $[M]^{+}, 305$ (62) $\left[M-t\right.$-Bu] ${ }^{+}, 287$ (37), 201 (76), 73 (100), 57 (54), 41 (46); HRMS (SIMS): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}$: 363.1986 ; found: $363.1996[M+\mathrm{H}]^{+}$.

1.4——Synthesis of Vinyl Ether 10

Methoxymethyltriphenyl phosphonium chloride ($\mathrm{MeOCH}_{2}-\mathrm{P}^{+} \mathrm{Ph}_{3}{ }^{\bullet} \mathrm{Cl}^{-}, 2.8 \mathrm{~g}, 8.2 \mathrm{mmol}$) was suspended in dried THF (20 mL), and cooled to $-10^{\circ} \mathrm{C}$ by ice-salt bath. n-BuLi $(1.5 \mathrm{M}$ in hexane, $5.5 \mathrm{~mL}, 8.2 \mathrm{mmol}$) was added slowly, and then the bright organic resulting mixture was stirred at room temperature for 1 h . Aldehyde $9(0.49 \mathrm{~g}, 1.36 \mathrm{mmol})$ was dissolved in dried THF (15 mL), and added dropwise to the resulting phosphrane solution via syringe at 0 ${ }^{\circ} \mathrm{C}$. After stirring at room temperature for 30 min , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ followed by addition of EtOAc (80 mL). The organic layer was separated, and the aqueous phase was further extracted with EtOAc $(4 \times 80 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (petroleum/EtOAc 50:1) to give the vinyl ether $10(\mathrm{Z} / \mathrm{E}=2: 1,0.39 \mathrm{~g}, 75 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.88-6.68(\mathrm{~m}, 2 \times 3 \mathrm{H}), 5.98(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}(E)), 5.76(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}(Z)), 4.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}(Z)), 4.82(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}(E)), 4.54(\mathrm{dd}, J=6.6$,
8.1 Hz, $1 \mathrm{H}(E)), 4.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}(Z)), 3.87(\mathrm{~s}, 3 \mathrm{H}(E)), 3.85(\mathrm{~s}, 3 \mathrm{H}(Z)), 3.79-3.67(\mathrm{~m}$, $2 \times 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}(\mathrm{Z})), 3.43(\mathrm{~s}, 3 \mathrm{H}(E)), 2.32-1.26(\mathrm{~m}, 2 \times 6 \mathrm{H}), 0.84(\mathrm{~s}, 2 \times 9 \mathrm{H}), 0.04(\mathrm{~s}, 2 \times 3 \mathrm{H})$, $0.02 \mathrm{ppm}(\mathrm{s}, 2 \times 3 \mathrm{H}) ; \mathbf{1 0}\left(E\right.$ isomer): ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.2,146.9,145.6$, $134.4,121.3,115.4,111.7,109.7,88.6,67.0,56.0,56.0,47.6,37.5,31.0,29.4,25.7,25.7$, $25.7,18.0,-4.8,-4.8 \mathrm{ppm} ; 10$ (Z isomer): ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=146.8,146.3$, $145.3,136.5,121.0,115.0,111.2,111.2,87.6,66.6,59.9,56.0,48.0,37.3,31.0,28.3,25.7$, 25.7, 25.7, 18.0, -4.8, -4.8 ppm ; MS (70 eV): $m / z(\%): 390(9)[M]^{+}, 333(26)[M-t-\mathrm{Bu}]^{+}, 315$ (54), 301 (27), 268 (100), 73 (89).

1.5——Synthesis of Aldehyde 11

To a solution of $\mathbf{1 0}(0.20 \mathrm{~g}, 0.51 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10: 1,5 \mathrm{~mL})$ was slowly added $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}(0.28 \mathrm{~g}, 0.67 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 10 \min at ambient temperature, excess saturated aqueous solution of $\mathrm{KI}(1 \mathrm{~mL})$ was added. The resulting reaction mixture was stirred for additional 15 min , and then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the residue through column chromatography on silica gel (petroleum/EtOAc 20:1) afforded the aldehyde 11 ($0.17 \mathrm{~g}, 91 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.57(\mathrm{dd}, J=2.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.75$ $(\mathrm{m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=6.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=2.1$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=2.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.25$ $(\mathrm{m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.3,146.4,146.0$, $132.7,121.8,115.0,112.0,86.9,67.2,55.9,53.7,46.6,38.3,31.2,28.4,25.7,25.7,25.7,18.0$, $-4.8,-4.8 \mathrm{ppm} ; \mathbf{M S}(70 \mathrm{eV}): m / z(\%): 376$ (4) $[M]^{+}, 343$ (2), 319 (6) $[M-t-\mathrm{Bu}]^{+}, 301$ (100), 242 (22), 268 (24), 209 (50), 181 (37), 75 (49); HRMS (SIMS): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$: 377.2143; found: $377.2152[M+\mathrm{H}]^{+}$.

1.6-Synthesis of Amide 12

To a solution of $\mathbf{1 1}(86 \mathrm{mg}, 0.23 \mathrm{mmol})$ in dried $\mathrm{CCl}_{4}(6 \mathrm{~mL})$ was added, sequentially, $2,2^{\prime}$-azobisisobutyronitrile (AIBN, $1.9 \mathrm{mg}, 0.01 \mathrm{mmol}$) and N-bromosuccinimide (NBS, 53 $\mathrm{mg}, 0.30 \mathrm{mmol}$) under an argon atomosphere. The flask was then placed in an oil-bath preheated at $95^{\circ} \mathrm{C}$, and the heterogeneous mixture was stirred for 12 min . The crude reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and then bubbled by MeNH_{2} gas, which was prepared in situ from $\mathrm{MeNH}_{2} \cdot \mathrm{HCl}$ and NaOH and dried by basic drying tower. Keeping on the continuous MeNH_{2} bubble, the suspension was stirred at room temperature for additional 10 min . After direct removal of CCl_{4} in vacuo at ambient temperature, the residue was rapidly purified by column chromatography on silica gel (petroleum/EtOAc 2:1) to give the amide $\mathbf{1 2}$ (66 mg , 71\%).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 1 \mathrm{H})$, $5.21(\mathrm{bs}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=6.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 3 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.29,2.23(\mathrm{ABq}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{td}, J=3.6,14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.01 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.7,146.4,145.9,133.8,121.4,115.0,111.9,86.6,67.3$, 55.9, 47.4, 46.8, 38.5, 31.4, 27.4, 26.0, 25.7, 25.7, 25.7, 17.9, -4.8, -4.8 ppm; MS (70 eV): m/z (\%): 405 (6) $[M]^{+}, 372$ (3), 348 (19) $[M-t-\mathrm{Bu}]^{+}, 303$ (100), 275 (60), 174 (16), 73 (40); HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{NSiNa}$: 428.2228; found: $428.2238[M+\mathrm{Na}]^{+}$.

1.7- Synthesis of Lactam 13

To a solution of $\mathbf{1 2}(78 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dried $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}(6 \mathrm{~mL})$ was added, sequentially, paraformaldehyde ($23.1 \mathrm{mg}, 0.77 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.19 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred at ambient temperature for 1.5 h , and then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ followed by addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40$ mL). The combined organic phases were washed by brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 20: 1\right)$ to give the lactam $\mathbf{1 3}(47.3 \mathrm{mg}, 81 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.66,6.64(\mathrm{ABq}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.39,4.31(\mathrm{ABq}, J=16.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.37(\mathrm{bs}, 1 \mathrm{H}), 4.10-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.84,2.80(\mathrm{ABq}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{bs}, 1 \mathrm{H} ; \mathrm{OH}), 2.56-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.53 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,146.2,144.8,136.9,124.4$,
$119.6,111.3,89.1,64.6,56.0,51.9,41.6,39.8,36.1,30.8,27.5,27.5 \mathrm{ppm} ; \mathbf{M S}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%): 303 (100) $[M]^{+}, 272$ (3) $[M-\mathrm{MeO}]^{+}, 260$ (5) $[M-\mathrm{MeCO}]^{+}, 244$ (20), 231 (46)[M-MeCONMe] ${ }^{+}, 213$ (11), 188 (27), 84 (52); HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}$: 304.1543; found: $304.1544[M+\mathrm{H}]^{+}$.

$1.8-$ Synthesis of (\pm)-Lycoramine 1

To a suspension of $\mathrm{LiAlH}_{4}(34 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dried THF $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an argon atmosphere was added slowly a solution of $\mathbf{1 3}(30 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dried THF $(3 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 4 h , cooled to room temperature, and carefully quenched with aqueous $\mathrm{NaOH}(3 N, 4 \mathrm{~mL})$ followed by addition of EtOAc (40 mL). The organic layer was separated, and the aqueous phase was carefully extracted with EtOAc (5×30 mL). The combined extracts was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 15: 1\right)$ to afford (\pm)-Lycoramine 1 ($23.7 \mathrm{mg}, 83 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.64,6.59(\mathrm{ABq}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08-4.06 (m, 1H), 3.99, 3.62 (ABq, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 1 \mathrm{H})$, 3.05-3.01 (m, 1H), 2.63 (bs, 1H; OH), 2.52-2.46 (m, 1H), 2.36(s, 3H), 2.00-1.52 ppm (m, 7H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta=146.0,144.1,136.3,128.8,121.8,110.8,90.0,65.4$, 60.4, 55.9, 54.0, 46.7, 41.8, 31.6, 31.2, 27.7, 23.7 ppm ; MS (70 eV): m/z (\%): 290 (10) $[M+H]^{+}, 289(57)[M]^{+}, 288(100)[M-H]^{+}, 232(8), 202(10), 115(13), 84$ (50); HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}$: 290.1751; found: $290.1747[M+\mathrm{H}]^{+}$.

2. Copies of NMR Spectra of the Products

-0.283

12

13

