Supporting Information

The Total Synthesis of (-)-SNF4435C and (+)-SNF4435D

Kathlyn A. Parker* and Yeon-Hee Lim
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400

Contents

Experimental details and full characterization of all new compounds S3
Difference NOE data ..
${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds S28

Index of Compounds

Structure	Exp.	NMR spec.	Structure	Exp.	NMR spec.
4d	S3	S28 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 29\left({ }^{13} \mathrm{C}\right)$	12	S10	S46 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 47\left({ }^{13} \mathrm{C}\right)$
5d	S4	S30 ($\left.{ }^{1} \mathrm{H}\right)$	13	S11	S48 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 49\left({ }^{13} \mathrm{C}\right)$
$\begin{gathered} \text { mixed } \\ \text { endo-8d, } \\ \text { exo-9d } \end{gathered}$	S4	S31 ($\left.{ }^{1} \mathrm{H}\right)$	14	S12	S50 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 51\left({ }^{13} \mathrm{C}\right)$
4 f	S5	S32 $\left({ }^{1} \mathrm{H}\right), \mathrm{S} 33\left({ }^{13} \mathrm{C}\right)$	15	S12	S52 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 53\left({ }^{13} \mathrm{C}\right)$
5 f	S6	S34 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 35\left({ }^{13} \mathrm{C}\right)$	16	S13	S54 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 55\left({ }^{13} \mathrm{C}\right)$
endo-8f	S6	S36 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 37\left({ }^{13} \mathrm{C}\right)$	Mosher -16	S13	S56 ($\left.{ }^{1} \mathrm{H}\right)$
exo-9f	S6	S38 ($\left.{ }^{1} \mathrm{H}\right)$, S39 $\left({ }^{13} \mathrm{C}\right)$	Mosher racemic 16	S13	S57 (${ }^{1} \mathrm{H}$)
4 g	S7	S40 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 41\left({ }^{13} \mathrm{C}\right)$	17	S14	S58 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 59\left({ }^{13} \mathrm{C}\right)$
5g	S8	S42 ($\left.{ }^{1} \mathrm{H}\right)$	19	S15	S60 $\left({ }^{1} \mathrm{H}\right), \mathrm{S} 61\left(^{13} \mathrm{C}\right)$
mixed endo-8g, endo8g', exo9g, exo9g'	S9	S43 ($\left.{ }^{1} \mathrm{H}\right)$	20	S15	S62 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 63\left({ }^{13} \mathrm{C}\right)$
			21	S16	S64 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 65\left({ }^{13} \mathrm{C}\right)$
			22	S17	S66 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S67}\left({ }^{13} \mathrm{C}\right)$
			23	S17	S68 ($\left.{ }^{1} \mathrm{H}\right)$
			1a+1b	S18	S69 (${ }^{1} \mathrm{H}$)
11	S10	S44 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 45\left({ }^{13} \mathrm{C}\right)$	1a	S17	S70 ($\left.{ }^{1} \mathrm{H}\right), \mathrm{S} 71\left({ }^{13} \mathrm{C}\right)$
			1b	S17	S72 ($\left.{ }^{1} \mathrm{H}\right)$, S73 $\left({ }^{13} \mathrm{C}\right)$

General Experimental Methods

- Procedures

All air- and moisture-sensitive reactions were performed under argon in oven-dried or flame-dried glassware. Solvents and solutions for air- and moisture-sensitive reactions were transferred via syringe or cannula with the maintenance of a positive pressure of an inert gas. Concentration of solutions was accomplished with a Buchi rotary evaporator evacuated by a water aspirator. In general, the residual solvent was removed on a vacuum line at 1-1.5 torr.

- Reagents and Solvents

Unless stated otherwise, commercially available reagents were used as supplied and solvents were dried over molecular sieves prior to use. HPLC grade hexane and HPLC grade ethyl acetate (EtOAc) were used in chromatography. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium-benzophenone ketyl and dichloromethane was distilled from calcium hydride under argon gas. Diisopropylethylamine and triethylamine were distilled from sodium.

- Chromatography

All experiments were monitored by thin layer chromatography (TLC) performed on EM Science precoated silica gel $60_{\mathrm{F}-254}$ glass-supported plates with 0.25 mm thickness. Spots were visualized by exposure to ultraviolet (UV) light (254 nm) or to iodine vapor or by staining with a 10% solution of phosphomolybdenic acid (PMA) in ethanol and then heating. Flash chromatography was carried out with Fisher brand silica gel (170-400 mesh). Preparative thin layer chromatography (PrepTLC) was performed on EM Science precoated silica gel $60_{\mathrm{F}-254}$ glass-supported plates with 1.00 mm thickness.

- Physical and Spectroscopic Measurements

Melting points were measured on a Thomas-Hoover apparatus and are uncorrected. Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR instrument. Samples were scanned as neat liquids on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian Inova-600 $\left(600 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$, Varian Inova-500 $(500 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$), Varian Inova-400 (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), or Gemini-2300 (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) spectrometer. Chemical shifts for proton NMR are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform- d or relative to the singlet at 7.15 ppm for benzene- d_{6}. Chemical shifts for carbon NMR are reported in ppm with the center line of the triplet for chloroform $-d$ set at 77.00 ppm . The following abbreviations are used in the experimental section for the description of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), doublet of quartets (dq), and broad singlet (bs). For complex multiplets, the chemical shift is given for the center of the multiplet. Coupling constants, J, are reported in Hertz (Hz). High resolution mass spectra were obtained with a Kratos MS-80 spectrometer.

- Materials Prepared by Literature Methods

(Z)-3-Iodo-2-methyl-2-propenal was prepared by the method of Larock. ${ }^{1}$ (E, Z)Iododiene $\mathbf{3}$ was best prepared by the Stork-Zhao procedure as modified by Beaudry and Trauner. ${ }^{2}$ The Still-Gennari reagents, [bis-(2,2,2-trifluoroethoxy)-phosphoryl]-acetic acid ethyl ester ${ }^{3 \mathrm{a}, \mathrm{b}}$ and (2-oxo-tetrahydrofuran-3-yl)-phosphonic acid diethyl ester ${ }^{4}$ were prepared by published methods. Methanesulfonic acid 4-(tert-butyldimethylsilanyloxy)-but-2-enyl ester was prepared by the method of Ziegler. ${ }^{5}$ 2-Methyl-3-oxo-pentanoic acid ethyl ester was prepared by alkylation of the dianion of 2-methyl-3-oxo-butanoic acid ethyl ester. ${ }^{6}$

- Experimental Procedures

Diene 4d. To a stirred suspension of isopropyltriphenylphosphonium iodide ($2.76 \mathrm{~g}, 4.27$ $\mathrm{mmol})$ in THF (44 mL) was added $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $1.71 \mathrm{~mL}, 4.27 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. After $30 \mathrm{~min},(\mathrm{Z})-3$-iodo-2-methyl-2-propenal ($560 \mathrm{mg}, 2.85 \mathrm{mmol}$) in THF (26 mL) was added dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 2 h . Then it was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with $\mathrm{Et}_{2} \mathrm{O} /$ hexane (1/5) to give $566 \mathrm{mg}(89 \%)$ of a pale yellow oil.

$$
\left.\begin{array}{rl}
\mathrm{R}_{f}: & 0.7\left(\mathrm{Et}_{2} \mathrm{O} / \text { hexanes, } 1 / 5\right) \\
{ }^{1} \mathrm{H} \text { NMR: } & \left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\
& \delta 5.95(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J \\
& =1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) . \\
{ }^{13} \mathrm{C} \text { NMR: } & (100 \mathrm{MHz}, \mathrm{CDCl} \\
3
\end{array}\right)
$$

[^0]

Vinyl stannane 5d. To a stirred solution of diene $\mathbf{4 d}$ ($241 \mathrm{mg}, 1.08 \mathrm{mmol}$) in dry benzene (11 mL) was added diisopropylethylamine ($56.7 \mu \mathrm{~L}, 0.324 \mathrm{mmol}$) and hexamethylditin (533 $\mu \mathrm{L}$, 1.62 mmol) and $5 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine)palladium ($62.6 \mathrm{mg}, 0.0542 \mathrm{mmol}$). The mixture was degassed with bubbling by an Ar stream for 10 min and then it was stirred at $80^{\circ} \mathrm{C}$ for 12 h. The mixture was cooled to rt, and stirred with KF on Celite ${ }^{\circledR}$ ($50 / 50 \mathrm{wt}$). The resulting suspension was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated. The residue was purified further by chromatography on a short pad of basic alumina, eluted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane (1/1). Concentration afforded a pale yellow oil 223 mg (88%), sufficiently pure for use in the next step.

```
            \(\mathrm{R}_{f}: \quad 0.8\) (EtOAc/hexanes, \(1 / 10\) )
    \({ }^{1} \mathrm{H}\) NMR: \(\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\), crude)
            \(\delta 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{t}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}\),
                3 H ), 0.20 ( \(\mathrm{s}, 9 \mathrm{H}\) ).
```


Endo-8d and Exo-9d. To a solution of iododiene 3 ($254 \mathrm{mg}, 0.772 \mathrm{mmol}$) in dry DMF $(8 \mathrm{~mL})$ was added vinyl stannane $\mathbf{5 d}(200 \mathrm{mg}, 0.772 \mathrm{mmol})$ and $10 \mathrm{~mol} \%$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$ catalyst $(20.0 \mathrm{mg}, 0.0772 \mathrm{mmol})$ at rt . The reaction flask was wrapped by aluminum foil. After 16 h at rt , catalyst ($10.0 \mathrm{mg}, 0.0386 \mathrm{mmol}$) was added again, and the reaction was stirred for 6 h more at rt . To remove trimethyltin iodide, the reaction was stirred with KF on Celite ${ }^{\circledR}(50 / 50 \mathrm{wt})$ for 2 h and filtered through Celite ${ }^{\circledR}$. The resulting solution was washed with aq NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The crude product was purified further by column chromatography with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $(1 / 20)$ to give $126 \mathrm{mg}(55 \%)$ as a mixture of endo and exo products in a ratio of $1: 1 .{ }^{7}$

[^1]
Endo-8d

R_{f}. 0.8 (EtOAc/hexanes, 1/10)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.12$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1,71(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.235(\mathrm{~s}, 3 \mathrm{H})$, $1.232(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$.
Exo-9d
$\mathrm{R}_{f}: \quad 0.8$ (EtOAc/hexanes, 1/10)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}$, $1 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.11$ (s, 3H), 1.03 ($\mathrm{s}, 3 \mathrm{H}$).

For mixture of endo-8d and exo-9d

IR: (neat)
v 2954, 2857, 1345, 1086 cm^{-1}
HRMS: (FAB)
Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 320.1626$, found 320.1628 .

($\boldsymbol{E}, \boldsymbol{Z}$)-Lactone 4f. (2-Oxo-tetrahydrofuran-3-yl)phosphonic acid diethyl ester (1.39 g, 6.27 mmol) was added to dry hexane (7 mL). Ar was introduced and the mixture was stirred at room temperature. Lithium tert-butoxide (1.0 M in hexane, $6.27 \mathrm{~mL}, 6.27$ mmol) was added in one portion via syringe. The solution became turbid, but no significant heating was observed. After $15 \mathrm{~min},(Z)$-3-iodo-2-methyl-2-propenal (820 mg , $4.18 \mathrm{mmol})$ in hexane $(2 \mathrm{~mL})$ was added dropwise over the course of 10 min via cannula. The solution became clear, and then was allowed to stir for an additional hour. It was quenched with water and the combined organic solution was washed with water, dried over anhydrous MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/10) to give $1.02 \mathrm{~g}(92 \%)$ of a light yellowish white powder.

```
    \(\mathrm{R}_{f:} \quad 0.1\) (EtOAc/hexanes, 1/5)
    \({ }^{1} \mathrm{H}\) NMR: \(\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
        \(\delta 7.40(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{td}, J\)
        \(=7.2 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})\).
\({ }^{13}\) C NMR: \(\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
    \(\delta 172.1,141.1,138.0,126.9,88.5,65.4,26.9,23.1\).
    IR: (neat)
    v 2253, 1750, 1197, \(1034 \mathrm{~cm}^{-1}\)
HRMS: (FAB)
```

Calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+}$286.9545, found 286.9557.

(E,Z)-Vinyl stannane 5f. To a stirred solution of (E, Z)-lactone $\mathbf{4 f}$ ($134 \mathrm{mg}, 0.507 \mathrm{mmol}$) in dry benzene (5.0 mL) was added diisopropylethylamine ($26.5 \mu \mathrm{~L}, 0.152 \mathrm{mmol}$) and hexamethylditin (216 $\mu \mathrm{L}, 0.608 \mathrm{mmol}$) and $5 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine)palladium ($29.3 \mathrm{mg}, 0.0253 \mathrm{mmol}$). The mixture was degassed with bubbling by an Ar stream for 10 min and then was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The mixture was cooled to rt, and stirred with KF on Celite ${ }^{\circledR}$ ($50 / 50 \mathrm{wt}$). The resulting suspension was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated. The residue was purified further by chromatography on a short pad of basic alumina, eluted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane ($1 / 5$). Concentration afforded 113 mg (74%) of a pale yellow oil, sufficiently pure for use in the next step.

$\mathrm{R}_{f}:$	$0.4($ Ethyl acetate/hexanes, 1/5)
${ }^{1} \mathrm{H} \mathrm{NMR:}$	$\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
	$\delta 7.42(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=7.2 \mathrm{HZ}, 2 \mathrm{H}), 2.14(\mathrm{td}, J$
	$=7.2 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR:	$\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
	$\delta 171.6,148.8,146.3,139.1,124.0,64.2,26.1,24.7,-8.6$.

$$
\delta 171.6,148.8,146.3,139.1,124.0,64.2,26.1,24.7,-8.6 .
$$

Endo 8 f and exo 9 f. To a solution of iododiene $\mathbf{3}(123 \mathrm{mg}, 0.375 \mathrm{mmol})$ in dry DMF (4 mL) was added vinyl stannane $\mathbf{5 f}(113 \mathrm{mg}, 0.375 \mathrm{mmol})$ and $10 \mathrm{~mol} \%\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$ catalyst ($9.70 \mathrm{mg}, 0.0375 \mathrm{mmol}$) at rt . The reaction flask was wrapped by aluminum foil. After 16 h at rt , catalyst ($10.0 \mathrm{mg}, 0.0386 \mathrm{mmol}$) was added again, the reaction was stirred further for 6 h at rt . To remove trimethyltin iodide, the reaction was stirred with KF on Celite ${ }^{\circledR}$ ($50 / 50 \mathrm{wt}$) for 2 h and filtered through Celite ${ }^{\circledR}$. The resulting solution was washed with aq NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined
organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The product was purified by column chromatography with $\mathrm{Et}_{2} \mathrm{O}$ /pentane, $1 / 5$ to give 73.6 mg of endo product and 3.8 mg of exo product (overall 57%).

endo-8f

color: pale yellow crystal
$\mathrm{R}_{f}: \quad 0.3\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.1 / 5\right)$
${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.16(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $4.08(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.77$ (s, 3H), 1.71 (s, 3H), 1.28 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 180.4,147.3,143.4,131.0,130.3,129.5,126.2,123.6,123.1,66.7,56.7$, 51.4, 48.8, 43.9, 29.6, 25.4, 22.4.

IR: (neat)
v 2983, 1751, 1515, 1344, $1109 \mathrm{~cm}^{-1}$
HRMS: (FAB)
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 362.1368$, found 362.1360.
exo-9f
color: pale yellow crystal
$\mathrm{R}_{f}: \quad 0.2\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.1 / 5\right)$
${ }^{1} \mathrm{H}$ NMR: $\quad\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.15(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 176.1,146.9,144.6,130.7,130.1,128.4,126.0,124.2,123.1,64.7,62.5$, 52.5, 46.4, 35.0, 23.7, 22.0, 21.8.

IR: (neat)
v 2993, 1765, 1519, 1348, $1206 \mathrm{~cm}^{-1}$
HRMS: (FAB)
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 362.1368$, found 362.1361.

(Z,Z)-Acetate $\mathbf{4 g}$. To a stirred solution of diol $\mathbf{1 7}$ ($170 \mathrm{mg}, 0.547 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.2 mL) were added DMAP ($133 \mathrm{mg}, 0.109 \mathrm{mmol}$) and pyridine $(245 \mu \mathrm{~L}, 3.01 \mathrm{mmol})$. After 10 min , acetic anhydride ($108 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$) was added to the mixture at rt. After stirring for 1 h , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$, and the organic solution
was washed with $10 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd aq NaHCO_{3}, and brine. The combined organic solution was dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/5) to give $216 \mathrm{mg}(98 \%)$ of a colorless oil.
$\mathrm{R}_{f:} \quad 0.7$ (EtOAc/hexanes, 1/1)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{dt}, J=5.9 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $14 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=12 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (m, 2H), $2.78(\mathrm{dd}, J=16 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H})$ 2.07 (s, 3H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 170.5,170.0,142.8,141.6,123.6,78.5,76.0,72.0,69.2,62.6,37.1,22.9$, 20.8, 20.7.

IR: (neat)
v 2960, 2859, 1744, 1370, 1222, $1062 \mathrm{~cm}^{-1}$
HRMS: (ESI-MS)
Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{IO}_{5}[(\mathrm{M}+\mathrm{H})]^{+} 395.0355$, found 395.0362.

(Z,Z)-Vinyl stannane 5g. To a stirred solution of (Z,Z)-acetate $\mathbf{4 g}(216 \mathrm{mg}, 0.537 \mathrm{mmol})$ in dry THF (3.4 mL) was added hexamethylditin ($211 \mu \mathrm{~L}, 0.644 \mathrm{mmol}$) and $5 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine)palladium ($31.0 \mathrm{mg}, 0.0268 \mathrm{mmol}$). The mixture was degassed with bubbling by an Ar stream for 10 min and then was heated to $80^{\circ} \mathrm{C}$ for 10 h. The mixture was cooled to rt, and stirred with KF on Celite ${ }^{\circledR}$ ($50 / 50 \mathrm{wt}$). The resulting suspension was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated. The residue was purified by chromatography on a short pad of basic alumina, eluted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane (1/5). Concentration of the eluent afforded a pale yellow oil 123 mg (54%), sufficiently pure for use in the next step.

[^2]

Endo $\mathbf{8 g}, \mathbf{8 g}$ ' and exo $\mathbf{9 g}, \mathbf{9 g}$. To a solution of iododiene $\mathbf{3}(93.3 \mathrm{mg}, 0.284 \mathrm{mmol})$ in dry DMF (2.8 mL) was added vinyl stannane $\mathbf{5 g}(124 \mathrm{mg}, 0.284 \mathrm{mmol})$ and $10 \mathrm{~mol} \%$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$ catalyst $(7.35 \mathrm{mg}, 0.0284 \mathrm{mmol})$ at rt . The reaction flask was wrapped by aluminum foil. After 16 h at rt , catalyst $(3.68 \mathrm{mg}, 0.0142 \mathrm{mmol})$ was added again and the reaction was stirred for 6 h at rt . To remove trimethyltin iodide, the reaction was stirred with KF on Celite ${ }^{\circledR}(50 / 50 \mathrm{wt})$ for 2 h and filtered through Celite ${ }^{\circledR}$. The resulting solution was washed with aq NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The crude product was purified further by column chromatography with $\mathrm{Et}_{2} \mathrm{O}$ /pentane, $1 / 10$ to give $61 \mathrm{mg}(46 \%)$ of a mixture of endo and exo products in a ratio of $82: 18$ (49% and 33% of each endo isomer and 18% of total two minor exo isomers). ${ }^{8}$

$$
\begin{aligned}
\mathrm{R}_{f}: & 0.3(\text { Ethyl acetate/hexanes, 1/10) } \\
{ }^{1} \mathrm{H} \text { NMR: } & \left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \\
& \delta 8.18(\mathrm{~m}+\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45,(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.98 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \\
& \mathrm{Hz}, 0.66 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.36 \mathrm{H}), 5.69 \text { and } 5.67(2 \mathrm{~s}, 0.18 \mathrm{H}), 5.62(\mathrm{~s}, \\
& 0.33 \mathrm{H}), 5.57(\mathrm{~s} .0 .49 \mathrm{H}), 5.19(\mathrm{~s}, 0.18 \mathrm{H}), 5.04(\mathrm{td}, J=6.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, \\
& 0.49 \mathrm{H}), 4.97(\mathrm{td}, J=6.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.89(\mathrm{~s}, 0.49 \mathrm{H}), 4.83(\mathrm{~s}, \\
& 0.33 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 0.33 \mathrm{H}), 3.59(\mathrm{~s}, 0.44 \mathrm{H}), 3.42 \\
& \text { and } 3.33(2 \mathrm{~s}, 0.18 \mathrm{H}), 2.87 \mathrm{and} 2.85(2 \mathrm{~s}, 0.18 \mathrm{H}), 2.75(\mathrm{~s}, 0.49 \mathrm{H}), 2.65(\mathrm{~s}, \\
& 0.33 \mathrm{H}), 2.53(\mathrm{~m}, 0.18 \mathrm{H}), 2.17(\mathrm{~m}, 0.82 \mathrm{H}), 2.08-2.00(\mathrm{~m}+\mathrm{s}, 8 \mathrm{H}), 1.76-1.68 \\
& \text { (vinylmethyl groups, 6H), } 1.25(2 \mathrm{~s}, 3 \mathrm{H}) . \\
\text { HRMS: } & \text { (FAB) } \\
& \text { Calcd. for } \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 492.1998, \text { found } 492.1990 .
\end{aligned}
$$

[^3]

Still-Gennari reagent 11. To a stirred suspension of sodium hydride, NaH (37.0 mg , $1.46 \mathrm{mmol})$ in anhydrous DMF (3.00 mL) was added dropwise a solution of [bis-(2,2,2-trifluoroethoxy)-phosphoryl]-acetic acid ethyl ester ($487 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF (3.00 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at rt , methanesulfonic acid 4-(tert-butyldimethylsilanyloxy)-but-2-enyl ester ($374 \mathrm{mg}, 1.33 \mathrm{mmol}$) was added dropwise and $\mathrm{NaI}(100 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added at rt . The resulting mixture was stirred for 24 h at rt under Ar atmosphere, then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with diethyl ether. The combined organic solution was washed with water and brine, and then dried over anh. MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/5) to give 494 mg (72%) of a colorless oil.

```
            R
HNMR: (600 MHz, CDCl }\mp@subsup{)}{}{\mathrm{ )}
            \delta 5.87(m, 2H), 4.43(m, 4H), 4.21(q, 2H), 4.17 (m, 2H), 3.26(m, 1H),
            2.74 (m, 2H), 1.33 (t, 3H), 0.93(s, 9H), 0.10 (s, 6H).
\mp@subsup{}{}{13}\textrm{C NMR: (100 MHz, CDCl}3)
            \delta 167.2, 133.0, 124.4 (d), 62.9 (m), 46.5, 44.3, 29.4 (d), 25.6, 13.6, -5.62.
            IR: (neat)
            v 2983, 1738, 1462, 1362, 1257, 1123, 1022, 973, 837 cm-
HRMS: (ESI-MS)
            Calcd. for }\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{32}{}\mp@subsup{\textrm{F}}{6}{}\mp@subsup{\textrm{O}}{6}{}\textrm{PSi}[(M+H)\mp@subsup{]}{}{+}517.1610,\mathrm{ found 517.1611.
```


(Z,Z)-Ester 12. A solution of phosphonate $\mathbf{1 1}(1.00 \mathrm{~g}, 1.95 \mathrm{mmol})$ in THF (11 mL) was added to a flask containing 18 -crown- 6 ether ($1.02 \mathrm{~g}, 3.89 \mathrm{mmol}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and potassium hexamethyldisilazane (0.5 M solution in toluene, 3.70 mL , $1.85 \mathrm{mmol})$ was added dropwise to the mixture. After stirring for 30 min at $0^{\circ} \mathrm{C}$, (Z)-3-iodo-2-methyl-2-propenal ($174 \mathrm{mg}, 0.885 \mathrm{mmol}$) in THF (5 mL) was added dropwise via cannula at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 3 h , and then was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. After warming to rt , the mixture was extracted with diethyl ether and the combined organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/10) to give 283 mg (71%) of a pale yellow oil.

```
    R
'1}\mp@subsup{}{}{1}\textrm{H}\mathrm{ NMR: (600 MHz, CDCl }\mp@subsup{)}{3}{
    \delta 6.20(s, 1H), 6.07(t, J =1.5 Hz, 1H), 5.68(m, 2H), 4.20(q, 2H), 4.16
    (m, 2H), 3.07 (m, 2H), 1.98(s, 3H), 1.27(t, 3H), 0.90(s, 9H), 0.06(s,
    6H).
'13}\mp@subsup{}{}{13}\mathrm{ NMR: (100 MHz, CDCl 
    \delta167.7, 143.5, 137.3, 132.3, 126.3, 78.1, 63.5, 60.7, 36.9, 25.9, 22.9,
    18.4, 14.0, -5.16
        IR: (neat)
            v 2954, 2895, 1721, 1471, 1462, 1376 cm
    HRMS: (FAB-MS)
            Calcd. for }\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{31}{}\mp@subsup{\textrm{IO}}{3}{}\textrm{Si}[(\textrm{M}+\textrm{Na})\mp@subsup{]}{}{+}473.0985\mathrm{ , found 473.1028.
```


(Z,Z)-Alcohol 13. To a stirred solution of ester $\mathbf{1 2}(46.7 \mathrm{mg}, 0.103 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added diisobutylaluminum hydride $(1.0 \mathrm{M}$ solution in Hexanes, $309 \mu \mathrm{~L}$, 0.300 mmol) at $-78^{\circ} \mathrm{C}$. The reaction mixure was stirred for 45 min at $-78^{\circ} \mathrm{C}$, and then quenched with methanol $(150 \mu \mathrm{~L})$. The resulting mixture was warmed to rt and stirred with Celite ${ }^{\circledR}$ for 2 h . Then it was filtered through Celite and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/5) to give $41 \mathrm{mg}(99 \%)$ of a colorless oil.

```
    Rf: 0.3 (EtOAc/hexanes, 1/5)
'1}\textrm{H}\mathrm{ NMR: (600 MHz, CDCl 
            \delta6.06(t, 1H), 5.70(m, 3H), 4.17(m, 2H), 4.10(m, 2H), 2.95(m, 2H),
    1.97(s,3H), 0.09 (s, 9H), 0.06 (s, 6H).
'13}\mp@subsup{}{}{1}\mathrm{ C NMR: (100 MHz, CDCl 
            \delta 144.9, 140.4, 131.6, 129.5, 127.8, 77.5, 63.6, 61.3, 36.8, 25.9, 24.9, -
            5.16.
    IR: (neat)
        v 3427, 3378, 2929, 2407, 1470, 1264, 1122, 1045, 869 cm-1
HRMS: (ESI-MS)
    Calcd. for }\mp@subsup{\textrm{C}}{16}{}\mp@subsup{\textrm{H}}{30}{}\mp@subsup{\textrm{IO}}{2}{}\textrm{Si}[(M+H)\mp@subsup{]}{}{+}409.1060, found 409.1067.
```


(Z,Z)-Acetate 14. To a stirred solution of alcohol 13 ($84.2 \mathrm{mg}, 0.206 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(821 \mu \mathrm{~L})$ was added DMAP ($8.40 \mathrm{mg}, 0.0206 \mathrm{mmol}$) and pyridine ($46.8 \mu \mathrm{~L}, 0.574$ $\mathrm{mmol})$. After 10 min , acetic anhydride ($21 \mu \mathrm{~L}, 0.217 \mathrm{mmol}$) was added. After stirring for 40 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$, and the organic solution was washed with $10 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd aq NaHCO_{3}, and brine. The organic solution was dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/5) to give $93 \mathrm{mg}(98 \%)$ of a colorless oil.

```
    Rf: 0.7 (EtOAc/hexanes, 1/5)
' H NMR: (600 MHz, CDCl }\mp@subsup{}{3}{\prime
            \delta6.08 (s,1H), 5.80(s, 1H), 5.67 (m, 2H), 4.54 (s, 2H), 4.16 (d, J=2.9 Hz,
    2H), 2.87 (d, J=4.4 Hz, 2H), 2.04 (s, 3H), 1.95 (s, 3H), 0.08 (s, 9H), 0.06
    (s,6H).
'13}\mp@subsup{}{}{1}\textrm{C NMR: (100 MHz, CDCl}3
    \delta 170.7, 144.3, 135.8, 132.4, 132.0, 126.7, 80.1, 63.5, 62.7, 37.4, 25.9,
    24.4, 20.4, -5.2.
    IR: (neat)
    v 2953, 2856, 1742, 1369, 1226, 1045 cm-1
    HRMS: (ESI-MS)
    Calcd. for }\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{32}{}\mp@subsup{\textrm{IO}}{3}{}\textrm{Si}[(M+H)\mp@subsup{]}{}{+}451.1165, found 451.1172
```


(Z,Z)-Allylic Alcohol 15. To a solution of TBS ether $\mathbf{1 4}$ ($93.0 \mathrm{mg}, 0.206 \mathrm{mmol}$) in THF $(1.20 \mathrm{~mL})$ was added TBAF (1.0 M solution in THF, $474 \mu \mathrm{~L}, 0.473 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 1 hr at rt , the reaction mixture was quenched by addition of satd aq $\mathrm{NH}_{4} \mathrm{Cl}$, and then extracted with diethyl ether. The combined organic solution was dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with $\mathrm{EtOAc} / \mathrm{hexane}(1 / 3)$ to give $62 \mathrm{mg}(94 \%)$ of a pale yellow oil.

[^4]20.8.

IR: (neat)
v 3501, 3442, 3306, 2963, 1734, 1369, 1265, 1026, $973 \mathrm{~cm}^{-1}$
HRMS: (ESI-MS)
Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{IO}_{3} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 359.0120$, found 359.0108.

(Z,Z)-Epoxy Alcohol 16. A flask containing $4 \AA$ molecular sieves (50 mg) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(11 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$, and $(+)$-DET ($20.0 \mu \mathrm{~L}, 0.115 \mathrm{mmol}$) and $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}(24.0$ $\mu \mathrm{L}, 0.08 \mathrm{mmol}$) were added successively. After $20 \mathrm{~min}, t-\mathrm{BuOOH}(5.0-6.0 \mathrm{M}$ in decanes, $469 \mu \mathrm{~L}, 2.35 \mathrm{mmol}$) was added dropwise via syringe at $-20^{\circ} \mathrm{C}$. After 30 min , allylic alcohol 15 ($394 \mathrm{mg}, 1.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise via cannula. The reaction mixture was allowed to stir for 11 h at $-20^{\circ} \mathrm{C}$ and then warmed to $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was added dropwise satd aq $\mathrm{Na}_{2} \mathrm{SO}_{4}$ via syringe and also diethyl ether. The reaction mixture was warmed to rt and vigorously stirred overnight. After the suspension was filtered through Celite ${ }^{\circledR}$, the filtrate was dried over anh $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified on silica gel with EtOAc/hexane (1/1) to give 396 mg (92%) of a pale yellow oil ($>99 \%$ ee as determined by Mosher ester analysis). $[\alpha]^{21}{ }_{D}\left(\mathrm{c} 0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=-9.18^{\circ}$

```
    R
'1}\textrm{H}\mathrm{ NMR: (400 MHz, CDCl }\mp@subsup{}{3}{}
    \delta6.11 (s, 1H), 5.89 (s, 1H), 4.59 (s, 2H), 3.89 (d, J= 12.6 Hz, 1H), 3.65
    (m,1H), 3.13(dt, J=5.4 Hz, J=2.2 Hz, 1H), 3.01 (m, 1H), 2.45 (dd, J=
    15 Hz, J=5.8 Hz,1H), 2.38(dd, J=15 Hz, J=5.8 Hz, 1H), 2.06 (s, 3H),
    1.97 (s, 3H).
\mp@subsup{}{}{13}\textrm{C NMR: (100 MHz, CDCl}3)
    \delta 170.6, 143.9, 133.1, 133.0, 78.7, 63.0, 61.4, 58.2, 54.3, 36.5, 24.5, 20.8.
    IR: (neat)
            v 3455, 2935, 1737, 1369, 1230, 1026,970 cm-1
HRMS: (FAB + ESI)
            Calcd. for }\mp@subsup{\textrm{C}}{12}{}\mp@subsup{\textrm{H}}{17}{}\mp@subsup{IOO}{4}{}\textrm{Na}[(M+Na)\mp@subsup{]}{}{+}375.0069, found 375.0064.
```


Mosher ester of 16. A methylene solution (5 mL) of epoxy alchohol 16 ($17.3 \mathrm{mg}, 0.0491$ mmol), maintained at rt , was treated with DMAP ($12.0 \mathrm{mg}, 0.0982 \mathrm{mmol}$). Then $(S)-\alpha-$ methoxy- α-trifluoro-methylphenyl-acetyl chloride ($18.5 \mu \mathrm{~L}, 0.0982 \mathrm{mmol}$) was slowly added and the reaction mixture allowed to stir for 4 hr . The crude reaction mixture was filtered through a pad of silica gel and was washed extensively with methyl chloride in order to afford the product ($26.7 \mathrm{mg}, 98 \%$).

[^5]
(Z,Z)-Diol 17. To a stirred solution of epoxy alcohol 16 ($133 \mathrm{mg}, 0.378 \mathrm{mmol}$) in MeOH $(11 \mathrm{~mL})$ was added finely ground $\mathrm{K}_{2} \mathrm{CO}_{3}(157 \mathrm{mg}, 1.13 \mathrm{mmol})$ in a single portion. The reaction mixture was stirred for 2 h and poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and half-satd aq $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic solution was dried over anh MgSO_{4}, and concentrated. The crude product was purified on silica gel with $\mathrm{EtOAc} /$ hexane (1/1) to give 117 mg (quantitative yield) of a pale yellow solid.

```
    \(\mathrm{R}_{f:} \quad 0.2\) (EtOAc/hexanes, 1/1)
\({ }^{1} \mathrm{H}\) NMR: \(\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
    \(\delta 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=14.1 \mathrm{~Hz}\),
    1 H ), 3.93 (m, 2H), 3.75 (bs, OH), 3.75 (dd, \(J=3.6 \mathrm{~Hz}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}\) ),
    3.66 (dd, \(J=11.2 \mathrm{~Hz}, J=5.99 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}\),
    \(3 \mathrm{H})\).
\({ }^{13}\) C NMR: \(\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
    ס 143.7, 141.8, 123.5, 78.9, 78.3, 72.2, 69.1, 63.7, 36.1, 23.0.
    IR: (neat)
    v 3720-3090 (br), 2930, 1455, 1240, 1135, \(1040 \mathrm{~cm}^{-1}\)
HRMS: (FAB)
```

 Calcd. for \(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{IO}_{3} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 332.9964\), found 332.9960.

(Z,Z)-Carboxylic Acid 19. To a stirred solution of the diol $17(110 \mathrm{mg}, 0.354 \mathrm{mmol})$ in $\mathrm{MeOH}(9.00 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{NaIO}_{4}(90.8 \mathrm{mg}, 0.424 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(796 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. After 2 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was filtered and the solid inorganic precipitate was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic solution was dried over anh MgSO_{4}, and concentrated to afford a pale yellow syrupy material. To a solution of $\mathrm{AgNO}_{3}(163 \mathrm{mg}, 0.959 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(398 \mu \mathrm{~L})$ was added a solution of the above crude material in $\mathrm{EtOH}(478 \mu \mathrm{~L})$. This was followed by dropwise addition of a solution of $\mathrm{KOH}(141 \mathrm{mg}, 2.51 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(515$ $\mu \mathrm{L}$) at $0{ }^{\circ} \mathrm{C}$ with vigorous stirring. The reaction mixture was stirred for an additional 15 h at rt . It was then filtered and the inorganic precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$. The washings were added to the filtrate and the combined aqueous solution was concentrated to remove ethanol. The residue was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified with $2 \mathrm{~N} \mathrm{HCl}(\mathrm{pH}=2)$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anh MgSO_{4}, and concentrated to give 99.3 mg (87%) of a clean pale yellow solid.

$\begin{array}{r} \mathrm{R}_{f} \\ { }^{1} \mathrm{H} \text { NMR: } \end{array}$	0.3 (2\% MeOH/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
	($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
	$\delta 10.3(\mathrm{br}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=16.4 \mathrm{~Hz}, J=8.4$
	Hz, 1H), 2.94 (dd, $J=16.4 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR:	(100 MHz, CDCl_{3})
	$\delta 177.3,141.7,140.9,124.4,79.5,75.7,69.8,38.5,23.2$.
IR:	(neat)
	v 3330, 2986,1735, 1321, 1240, 1153, 1021 cm^{-1}
HRMS:	(ESI)
	Calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{IO}_{3} \mathrm{Na}[(\mathrm{M}+\mathrm{Na})]^{+} 316.9651$, found 316.9654.

(Z,Z)-Acyl imidazole 20. To a stirred solution of carboxylic acid 19 ($47.7 \mathrm{mg}, 0.162$ mmol) in THF ($324 \mu \mathrm{~L}$) was added carbonyl diimidazole ($31.3 \mathrm{mg}, 0.192 \mathrm{mmol}$) at rt . After 1 h , the solvent was removed by reduced pressure on the rotary evaporator and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The combined organic solution was
dried over anh MgSO_{4}, and concentrated, leaving 99.3 mg (95%) of an unstable pale yellow solid.

```
    Rf: 0.3(2% MeOH/ CH2 Cl
    '1}\textrm{H}\mathrm{ NMR: (400 MHz, CDCl}3
        \delta8.31(s, 1H), 7.53(s, 1H), 7.07 (s, 1H), 6.31(s,1H), 6.06(s, 1H), 5.04
        (dd, J=7.6 Hz, J=5.2 Hz, 1H), 4.68 (s, 2H), 3.17 (dd, J=16.4 Hz, J=4.8
        Hz,1H), 3.09 (dd, J= 16.4 Hz, J= 8.0 Hz, 1H), 1.95 (s, 3H).
    \mp@subsup{}{}{13}\textrm{C NMR: (100 MHz, CDCl }\mp@subsup{)}{3}{\prime})
        \delta 168.2, 141.6, 140.2, 137.2, 131.0, 124.8, 116.6, 79.9, 76.6, 70.0, 37.8,
        23.2.
IR: (neat)
        v 3123, 2981,1742,1473, 1328, 1237, 1065 cm-1
```


(Z,Z)- $\boldsymbol{\alpha}$-Pyrone 21. To a stirred suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $68.3 \mathrm{mg}, 1.63$ mmol) in THF (3 mL) was added dropwise 2-methyl-3-oxopentanoic acid ethyl ester $(257 \mathrm{mg}, 1.63 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane, $1.04 \mathrm{~mL}, 1.63 \mathrm{mmol}$) was added dropwise. After 15 min at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to $-10{ }^{\circ} \mathrm{C}$ and allowed to stir for 10 min . Then it was cooled to $-78^{\circ} \mathrm{C}$, and a solution of acylimidazole $20(280 \mathrm{mg}, 0.813 \mathrm{mmol})$ in THF (3 mL) was added dropwise. After 2 h , the reaction mixture was warmed to $-23^{\circ} \mathrm{C}$ and stirred at that temperature for an additional 2 h . The reaction was quenched by $5 \% \mathrm{HCl}(1 \mathrm{~mL})$ at $-23^{\circ} \mathrm{C}$. After warming to rt , the reaction mixture was diluted with diethyl ether and water and extracted with ether. The combined organic solution was washed $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anh MgSO_{4}, and concentrated. Excess 2-methyl-3-oxo-pentanoic acid ethyl ester was removed on silica gel with $\mathrm{EtOAc} /$ hexane (1/5), allowing the recovery of a pale yellow solid suitable for use in the next step.
To a stirred solution of this material ($230 \mathrm{mg}, 0.529 \mathrm{mmol}$) in dry benzene (6 mL) was added DBU $(0.950 \mathrm{~mL}, 0.635 \mathrm{mmol})$ at rt . The reaction mixture was stirred at reflux for 3 h under Ar. The solvent was removed by concentration on the rotary evaporator and the crude product was purified on silica gel with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording 170 mg (54 $\%$ for two step) of a pale yellow solid. $[\alpha]^{22}\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=-10.0^{\circ}$

$$
\begin{array}{rl}
\mathrm{R}_{f} & 0.2\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \\
{ }^{1} \mathrm{H} \mathrm{NMR:} & \left(500 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}\right) \\
& \delta 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90 \\
& (\mathrm{dd}, J=\mathrm{Hz}, J=6.416 .4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}) .
\end{array}
$$

```
\({ }^{13}\) C NMR: \(\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
\(\delta 165.8,164.9,153.4,142.7,141.6,123.3,110.2,100.0,78.4,73.3,69.4\),
37.8, 22.8, 9.1, 8.5.
IR: (neat)
v 3158 (br), 2980, 1675, 1569, 1378, 1265, 1180, \(1056 \mathrm{~cm}^{-1}\)
HRMS: (ESI)
Calcd. for \(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{IO}_{4}[(\mathrm{M}+\mathrm{H})]^{+} 389.0250\), found 389.0240.
```


(Z,Z)- γ-Pyrone 22. To a stirred solution of α-pyrone $21\left(167 \mathrm{mg}, 0.429 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ was added methyl fluorosulfonate $(0.342 \mathrm{~mL}, 4.29 \mathrm{mmol})$ at rt under Ar. After 3 h , the reaction mixture was concentrated and the crude material was partitioned between with 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 4 mL of 1 N NaOH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic solution was dried over anh MgSO_{4}, and concentrated. The residue was subjected to silica gel with EtOAc/hexane (1/1), affording 127 mg (74 $\%$) of a pale yellow solid. $[\alpha]^{22}{ }_{\mathrm{D}}\left(\mathrm{c} 1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=-34.9^{\circ}$
$\mathrm{R}_{f:} \quad 0.2$ (EtOAc/hexanes, 1/1)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}$,
$J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=16.4$
$\mathrm{Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.014(\mathrm{~s}, 3 \mathrm{H})$, 2.011 (s, 3H), 1.84 (s, 3H).
${ }^{13} \mathrm{C}$ NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 180.5,162.0,154.5,142.9,141.3,123.6,120.2,100.0,79.2,73.4,69.6$,
55.4, 38.1, 23.0, 9.4, 6.8.

IR: (neat)
v 2924, 1665, 1597, 1461, 1325, 1255, 1164, $1054 \mathrm{~cm}^{-1}$
HRMS: (ESI)
Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{IO}_{4}[(\mathrm{M}+\mathrm{H})]^{+} 403.0406$, found 403.0389.

(Z,Z)-Vinyl stannane 23. To a stirred solution of iodo- γ-pyrone $\mathbf{2 2}$ ($24.7 \mathrm{mg}, 0.0614$ $\mathrm{mmol})$ in dry THF $(500 \mu \mathrm{~L})$ was added hexamethylditin ($24.1 \mu \mathrm{~L}, 0.0737 \mathrm{mmol}$) and 5 $\mathrm{mol} \%$ of tetrakis(triphenylphosphine)palladium ($3.50 \mathrm{mg}, 0.00307 \mathrm{mmol}$). The mixture was degassed with bubbling by an Ar stream for 10 min and then was heated to $80^{\circ} \mathrm{C}$ for 6 h . The mixture was cooled to rt, and stirred with KF on Celite ${ }^{\circledR}$ ($50 / 50 \mathrm{wt}$). The resulting suspension was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated. The residue was purified by chromatography on a short pad of basic alumina, eluted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane (1/1). Concentration afforded a pale yellow oil 23.7 mg (88%), sufficiently pure for use in the next step.

$$
\begin{aligned}
\mathrm{R}_{f}: & 0.4(\text { EtOAc/hexanes, 1/1) } \\
{ }^{1} \mathrm{H} \text { NMR: } & \left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \\
& \delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.1 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 4.42(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), \\
& 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) .
\end{aligned}
$$

SNF 4435 C (1a) and D (1b). To a solution of iododiene $3(62.9 \mathrm{mg}, 0.191 \mathrm{mmol})$ in dry DMF (1.30 mL) was added vinyl stannane $23(56.0 \mathrm{mg}, 0.127 \mathrm{mmol})$ and $10 \mathrm{~mol} \%$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$ catalyst $(3.3 \mathrm{mg}, 0.0127 \mathrm{mmol})$ at rt . The reaction flask was wrapped by aluminum foil. After 16 h at rt , catalyst ($1.65 \mathrm{mg}, 0.00635 \mathrm{mmol}$) was added again, and the reaction mixture was stirred for 6 h at rt . To remove trimethyltin iodide, the reaction was stirred with KF on Celite ${ }^{\circledR}(50 / 50 \mathrm{wt})$ for 2 h and filtered through Celite ${ }^{\circledR}$. The resulting solution was washed with aq NaHCO_{3} and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic solution was washed with water and brine, dried over anh MgSO_{4}, and concentrated. The crude product was purified by column chromatography with $\mathrm{Et}_{2} \mathrm{O} /$ hexane (1/1) to give 32.3 mg (53%) of a yellow solid. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of the mixture was consistent with a cyclization product that was a $4: 1$ mixture of SNF 4435 C and D.

HRMS: (ESI)
Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{6}[(\mathrm{M}+\mathrm{H})]^{+} 478.2230$, found 478.2245 .
SNF4435 C and D were separated by preparative TLC with $\mathrm{Et}_{2} \mathrm{O} /$ hexane (1/1) to give SNF4435 C $[\alpha]^{21}{ }_{\mathrm{D}}\left(\mathrm{c} 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=-72.6^{\circ}$ and SNF4435 D $[\alpha]^{21}{ }_{\mathrm{D}}\left(\mathrm{c} 0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=$ $+56.4^{\circ}$.

[^6]SNF 4435C (1a)
$\mathrm{R}_{f}: \quad 0.2$ (EtOAc/hexanes, 1/1)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 4.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ (s, 3H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1,29(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 180.5,162.0,155.0,146.3,145.0,131.0,130.4,129.1,123.7,123.5$, $122.0,119.6,110.2,73.5,70.5,63.6,55.5,51.7,51.1,46.3,42.9,30.3$, 22.9, 22.1, 9.3, 6.9.

IR: (neat)
v 2951, 2856, 1666, 1599, 1518, 1462, 1377, $1346 \mathrm{~cm}^{-1}$

SNF 4435D (1b)
$\mathrm{R}_{f:} \quad 0.195$ (EtOAc/hexanes, 1/1)
${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{t}, J$
$=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=10 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$
(s, 3H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1,29(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 178.8,161.9,155.2,146.2,144.0,131.2,130.4,129.8,124.3,123.3$, $123.1,119.7,110.0,72.3,70.6,61.0,55.2,54.8,51.1,45.4,42.9,30.7$, 22.4, 22.1, 9.2, 6.8.

IR: (neat)
v 2952, 2856, 1667, 1599, 1519, 1462, $1346 \mathrm{~cm}^{-1}$
HRMS: (ESI)
Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{6}[(\mathrm{M}+\mathrm{H})]^{+} 478.2230$, found 478.2245.
<Selected NOE signals of compound endo-8d>

<Difference NOE chart of compound endo-8d>

Irradiated (saturated) peak	Enhanced peaks
5.50 ppm	$1.71 \mathrm{ppm}, 1.67 \mathrm{ppm}$
5.05 ppm	$7.48 \mathrm{ppm}, 1.71 \mathrm{ppm}, 1.232 \mathrm{ppm}$
3.31 ppm	$7.48 \mathrm{ppm}, 2.40 \mathrm{ppm}, 1.235 \mathrm{ppm}, 1.232 \mathrm{ppm}$
2.40 ppm	$3.31 \mathrm{ppm}, 1.67 \mathrm{ppm}, 1.235 \mathrm{ppm}, 1.232 \mathrm{ppm}$
7.48 ppm	$8.12 \mathrm{ppm}, 5.05 \mathrm{ppm}, 3.31 \mathrm{ppm}, 0.99 \mathrm{ppm}$
8.12 ppm	7.48 ppm

<Selected NOE signals of compound exo-9d>

<Difference NOE chart of compound exo-9d>

Irradiated (saturated) peak	Enhanced peaks
5.56 ppm	$1.71 \mathrm{ppm}, 1.68 \mathrm{ppm}$
5.12 ppm	$3.29 \mathrm{ppm}, 1.71 \mathrm{ppm}, 1.03 \mathrm{ppm}$
3.29 ppm	$7.41 \mathrm{ppm}, 5.12 \mathrm{ppm}, 1.20 \mathrm{ppm}$
2.44 ppm	$7.41 \mathrm{ppm}, 1.68 \mathrm{ppm}, 1.11 \mathrm{ppm}, 1.03 \mathrm{ppm}$
7.41 ppm	$8.14 \mathrm{ppm}, 3.29 \mathrm{ppm}, 1.11 \mathrm{ppm}, 1.03 \mathrm{ppm}$

- Difference NOE for endo-8f

<Selected NOE signals of compound endo-8f>

<Difference NOE chart of compound endo-8f>

Irradiated (saturated) peak	Enhanced peaks
5.75 ppm	$1.77 \mathrm{ppm}, 1.71 \mathrm{ppm}$
5.15 ppm	$7.43 \mathrm{ppm}, 1.77 \mathrm{ppm}, 1.28 \mathrm{ppm}$
3.04 ppm	$4.08 \mathrm{ppm}, 1.71 \mathrm{ppm}, 1.28 \mathrm{ppm}$
2.24 ppm	$7.43 \mathrm{ppm}, 4.06 \mathrm{ppm}, 2.43 \mathrm{ppm}$
7.43 ppm	$8.16 \mathrm{ppm}, 5.15 \mathrm{ppm}, 4.08 \mathrm{ppm}, 2.24 \mathrm{ppm}$

- Difference NOE for exo-9f

<Selected NOE signals of compound exo-9f>

<Difference NOE chart of compound exo-9f>

Irradiated (saturated) peak	Enhanced peaks
5.66 ppm	$1.76 \mathrm{ppm}, 1.69 \mathrm{ppm}$
5.18 ppm	$3.55 \mathrm{ppm}, 1.76 \mathrm{ppm}, 0.92 \mathrm{ppm}$
3.55 ppm	$7.54 \mathrm{ppm}, 5.18 \mathrm{ppm}, 2.46 \mathrm{ppm}$
3.45 ppm	$7.54 \mathrm{ppm}, 1.69 \mathrm{ppm}, 0.92 \mathrm{ppm}$
7.54 ppm	$8.15 \mathrm{ppm}, 3.55 \mathrm{ppm}, 3.45 \mathrm{ppm}, 0.92 \mathrm{ppm}$

Difference NOE for endo-8g

<Difference NOE chart of compound endo-8g and endo-8g’>

Irradiated peak	Enhanced peaks	Irradiated peak	Enhanced peaks
7.44 ppm	$8.15,4.895,3.59,3.94 \mathrm{ppm}$	7.40 ppm	$8.13,4.83,3.72,3.65 \mathrm{ppm}$
5.56 ppm	$1.76,1.68 \mathrm{ppm}$	5.62 ppm	$1.76,1.676 \mathrm{ppm}$
4.895 ppm	$7.44,1.68,1.257 \mathrm{ppm}$	4.83 ppm	$7.40,1.676,1.26 \mathrm{ppm}$
3.59 ppm	$7.44,2.75,2.22,1.257 \mathrm{ppm}$	3.65 ppm	$7.40,4.97,2.65,1.26 \mathrm{ppm}$
2.75 ppm	$3.59,1.76,1.257 \mathrm{ppm}$	2.65 ppm	$3.65,1.76,1.26 \mathrm{ppm}$
5.039 ppm	$4.37,4.04,3.94,2.22 \mathrm{ppm}$	4.97 ppm	3.65 ppm

- Difference NOE for exo-9g

exo-9g'

<Difference NOE chart of compound exo-9g and exo-9g'>

Irradiated peak	Enhanced peaks	Irradiated peak	Enhanced peaks
5.19 ppm	$3.42,1.76 \mathrm{ppm}$	5.19 ppm	$3.33,1.77 \mathrm{ppm}$
5.69 ppm	$1.76,1.69 \mathrm{ppm}$	5.67 ppm	1.77 ppm
3.42 ppm	$7.34,5.19 \mathrm{ppm}$	3.33 ppm	$7.34,5.19 \mathrm{ppm}$

- Difference NOE for 1a

<Difference NOE chart of compound 1a>

Irradiated (saturated) peak	Enhanced peaks
5.58 ppm	$1.73 \mathrm{ppm}, 1.71 \mathrm{ppm}$
4.94 ppm	$7.54 \mathrm{ppm}, 1.71 \mathrm{ppm}, 1.29 \mathrm{ppm}$
3.63 ppm	$7.54 \mathrm{ppm}, 2.84 \mathrm{ppm}, 2.42 \mathrm{ppm}, 1.29 \mathrm{ppm}$
2.84 ppm	$3.63 \mathrm{ppm}, 1.73 \mathrm{ppm}, 1.29 \mathrm{ppm}$
3.95 ppm	1.73 ppm
4.77 ppm	$4.32,3.07 \mathrm{ppm}, 2.42 \mathrm{ppm}, 1.88 \mathrm{ppm}$
7.54 ppm	$8.14 \mathrm{ppm}, 4.94 \mathrm{ppm}, 3.63 \mathrm{ppm}, 4.32,3.97$ ppm

- Difference NOE for 1b

<Difference NOE chart of compound 1b>

Irradiated (saturated) peak	Enhanced peaks
5.69 ppm	$1.73 \mathrm{ppm}, 1.71 \mathrm{ppm}$
4.88 ppm	$7.46 \mathrm{ppm}, 1.71 \mathrm{ppm}, 1.29 \mathrm{ppm}$
3.74 ppm	$7.46 \mathrm{ppm}, 2.73 \mathrm{ppm}, 2.49 \mathrm{ppm}, 1.29 \mathrm{ppm}$
2.73 ppm	$3.74 \mathrm{ppm}, 1.73 \mathrm{ppm}, 1.29 \mathrm{ppm}$
3.83 ppm	$7.46 \mathrm{ppm}, 4.17 \mathrm{ppm}$
7.46 ppm	$8.14 \mathrm{ppm}, 4.88 \mathrm{ppm}, 3.74 \mathrm{ppm}, 4.17,3.83$ ppm

Supporting Information, Parker, K. A. and Lim, Y.-H.
$\underset{\substack{\mathrm{CH}_{3} \mathrm{CH}_{3} \\ 4 \mathrm{~d}}}{\substack{\mathrm{Z}}}$

Supporting Information, Parker, K. A. and Lim, Y.-H.
$\underset{\substack{\mathrm{CH}_{3} \mathrm{CH}_{3} \\ 4 \mathrm{~d}}}{\substack{\mathrm{Z}}}$

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

yha7s carbon

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

Supporting Information, Parker, K. A. and Lim, Y.-H.

[^0]: ${ }^{(1)}$ Larock R. C.; Doty, M. J.; Han. X. J. Org. Chem.; 1999, 64(24), 8770.
 ${ }^{(2)}$ Beaudry, C. M.; Trauner, D. Org. Lett. 2002, 4, 2221.
 ${ }^{(3)}$ (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.; (b) Tay, M. K.; About-Jaude, E.; Collignon, N.; Teulade, M. P.; Savignac, P. Synth. Commun. 1988, 18(12), 1349.
 ${ }^{(4)}$ Murphy. J. A.; Rasheed, F.; Roome, S. J.; Scott, K. A.; Lewis, L. J. Chem. Soc., Perkin Trans. 1, 1998, 15, 2331.
 ${ }^{(5)}$ Ziegler, F. E.; Lim, H. J. Org. Chem. 1984, 49, 3278.
 ${ }^{(6)}$ Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.

[^1]: ${ }^{7}$ The $1 \mathrm{H}-\mathrm{NMR}$ spectrum of the mixture was deconvoluted by information derived from the nOe experiments so that individual peaks could be assigned to each component of the mixture.

[^2]: $\mathrm{R}_{f}: \quad 0.5$ (Ethyl acetate/hexanes, $1 / 5$)
 ${ }^{1} \mathrm{H}$ NMR: $\quad\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
 $\delta 6.10(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57 (dd, $J=12 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=14$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.

[^3]: ${ }^{8}$ The $1 \mathrm{H}-\mathrm{NMR}$ spectrum of the mixture was detangled by information derived from the nOe experiments so that individual peaks could be assigned to each component of the mixture.

[^4]: $\mathrm{R}_{f}: \quad 0.4$ (EtOAc/hexanes, 1/3)
 ${ }^{1} \mathrm{H}$ NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{bs}, 1 \mathrm{H})$.
 ${ }^{13} \mathrm{C}$ NMR: $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 170.8,144.1,135.5,131.9,131.8,128.8,78.3,63.3,62.6,37.1,24.6$,

[^5]: $\mathrm{R}_{f}: \quad 0.7$ (EtOAc/hexanes, 1/1)
 ${ }^{1}$ H NMR: $\quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 7.42(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=12.5 \mathrm{~Hz}, J=3.5$
 $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=11.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$, $3.12(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=5.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 1.97$ ($\mathrm{s}, 3 \mathrm{H}$).

[^6]: ${ }^{9}$ Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot. 2001, 54, 548.

